196 research outputs found

    Design and analysis of a displacement sensor-integrated compliant microgripper based on parallel structure

    Get PDF
    This study evaluates the displacement sensitivity of a new compliant microgripper. The microgripper is designed based on a four-bar mechanism and the concept of a compliant mechanism. The effects of the width of the right circular hinge, the thickness of microgripper, and the material properties on the dis-placement sensitivity are considered via using the finite element method. In the beginning, the stress and deformation of the compliant microgripper are evaluated. Subsequently, the displacement of the microgripper is then analyzed. The results showed that the design parameter and the displacement sensitivity have a close relationship. To increase the grasping reliability and measure the displacement or force, a micro-displacement sensor is integrated with the proposed microgripper. Finally, the modeling and analysis of the proposed sensor are conducted

    Design and test of a compact compliant gripper using the Scott-Russell mechanism

    Get PDF
    This paper presents the design, modeling, fabrication, and test of a monolithic compliant gripper for micro-manipulation applications. A compact compliant mechanism that enables in-principle straight-line parallel jaw motion is obtained, by combining the Scott-Russell mechanism and the parallelogram mechanism. The right-circular corner-filleted (RCCF) flexure hinge is adopted to achieve a large displacement of lumped-compliance joints. A pseudo-rigid-body model (PRBM) method with the help of the virtual work principle is performed to obtain parametric analytical models including the amplification coefficient and kinetostatics. Finite element analysis (FEA) is conducted to validate the analytical model and capture adverse parasitic motions of jaws. A monolithic prototype was fabricated, the test results of which show satisfactory performances

    Achieving near-zero particle generation by simplicity of design—A compliant-mechanism-based gripper for clean-room environments

    Get PDF
    Lab Automation facilitates high-throughput processes and improves reproducibility and efficiency while removing human action, primary source of contaminating particles. Handling poses a risk of contamination due to close contact with the objects. We propose a novel gripper (CrocoGrip) relying on compliant mechanisms to reduce the amount of contaminating particles generated by the gripper rather than preventing their emission, the latter being the common approach in current grippers. Using a structured design approach including simplified motion models and Finite Element Methods, we developed a novel gripper that is actuated by linear solenoids and purely relies on deformation for its motion. As a result, abrasive behavior and, therefore, the generation of particles is reduced without the need for additional sealing. We experimentally proved that the number of particles emitted by the CrocoGrip fulfills the demands of ISO14644 class 5. Due to the monolithic design of the CrocoGrip and, as a result, the need for few components, we achieve a simplicity of design, making cleaning, sterilization and maintenance easy, even for nonexperts. Furthermore, all parts but the two solenoids can be sterilized through autoclaving. The gripping is performed by utilizing the deformation energy of the compliant mechanism, making the gripping energy-efficient and safe. By using interchangeable jaws, the CrocoGrip was able to handle a microplate in SBS-standard, a 50 mL Falcon tube, and a Ø60 mm Petri dish using a robotic arm. CrocoGrip exploits the advantages of compliant mechanisms, especially for applications requiring clean-room environments. This approach of CM-based grippers enables an increase in the cleanliness of handling processes without an increase in system complexity of the gripper to facilitate the lab automation of highly sensitive processes, such as in tissue engineering

    Adaptive and reconfigurable robotic gripper hands with a meso-scale gripping range

    Get PDF
    Grippers and robotic hands are essential and important end-effectors of robotic manipulators. Developing a gripper hand that can grasp a large variety of objects precisely and stably is still an aspiration even though research in this area has been carried out for several decades. This thesis provides a development approach and a series of gripper hands which can bridge the gap between micro-gripper and macro-gripper by extending the gripping range to the mesoscopic scale (meso-scale). Reconfigurable topology and variable mobility of the design offer versatility and adaptability for the changing environment and demands. By investigating human grasping behaviours and the unique structures of human hand, a CFB-based finger joint for anthropomorphic finger is developed to mimic a human finger with a large grasping range. The centrodes of CFB mechanism are explored and a contact-aided CFB mechanism is developed to increase stiffness of finger joints. An integrated gripper structure comprising cross four-bar (CFB) and remote-centre-of-motion (RCM) mechanisms is developed to mimic key functionalities of human hand. Kinematics and kinetostatic analyses of the CFB mechanism for multimode gripping are conducted to achieve passive-adjusting motion. A novel RCM-based finger with angular, parallel and underactuated motion is invented. Kinematics and stable gripping analyses of the RCM-based multi-motion finger are also investigated. The integrated design with CFB and RCM mechanisms provides a novel concept of a multi-mode gripper that aims to tackle the challenge of changing over for various sizes of objects gripping in mesoscopic scale range. Based on the novel designed mechanisms and design philosophy, a class of gripper hands in terms of adaptive meso-grippers, power-precision grippers and reconfigurable hands are developed. The novel features of the gripper hands are one degree of freedom (DoF), self-adaptive, reconfigurable and multi-mode. Prototypes are manufactured by 3D printing and the grasping abilities are tested to verify the design approach.EPSR

    Design of a monolithic double-slider based compliant gripper with large displacement and anti-buckling ability

    Get PDF
    In a micro-manipulation system, the compliant gripper is used for gripping, handling and assembling of objects. Large displacement and anti-buckling characteristics are desired in the design of the gripper. In this paper, a compliant gripper with these two characteristics is proposed, modelled and verified. The large displacement is enabled by using distributed compliance in a double-slider kinematic mechanism. An inverted flexure arrangement enables the anti-buckling of the gripper when closing the two jaws. A pseudo-rigid-body model (PRBM) method with the help of virtual work principle is employed to obtain several desired analytical relations including the amplification coefficient and kinetostatics. The results of the finite element analysis (FEA) are shown to be consistent with the results of the derived analytical model. An experimental test was carried out through a milling machined aluminium alloy prototype, the results of which verify the good performance of the compliant gripper

    Grasp stability and design analysis of a flexure-jointed gripper mechanism via efficient energy-based modeling

    Get PDF
    For flexure-based gripper mechanisms, the arrangement and design of joint elements may be chosen to allow enclosure of objects in grasping. This must provide stable containment under load, without causing excessive stress within the joint materials. This paper describes an energy-based model formulation for a cable-driven flexure-jointed gripper mechanism that can accurately describe the nonlinear load-deflection behavior for a grasped object. The approach is used to investigate the limits of grasp performance for a gripper with two single-joint fingers through simulation studies, including the accurate prediction of stability limits due to joint buckling. Hardware experiments are set up and conducted to validate the theoretical model over a range of loading conditions that exceed limits for stable grasping. Parametric design studies are also presented to show the influence of joint geometry on both grasp stability and flexure peak stress. Considering the intersection of feasible design sets, generated from simulation data over a range of possible object geometries, is shown to be an effective approach for selecting gripper design parameters

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000

    Micro motion amplification – A Review

    Get PDF
    Many motion-active materials have recently emerged, with new methods of integration into actuator components and systems-on-chip. Along with established microprocessors, interconnectivity capabilities and emerging powering methods, they offer a unique opportunity for the development of interactive millimeter and micrometer scale systems with combined sensing and actuating capabilities. The amplification of nanoscale material motion to a functional range is a key requirement for motion interaction and practical applications, including medical micro-robotics, micro-vehicles and micro-motion energy harvesting. Motion amplification concepts include various types of leverage, flextensional mechanisms, unimorphs, micro-walking /micro-motor systems, and structural resonance. A review of the research state-of-art and product availability shows that the available mechanisms offer a motion gain in the range of 10. The limiting factor is the aspect ratio of the moving structure that is achievable in the microscale. Flexures offer high gains because they allow the application of input displacement in the close vicinity of an effective pivotal point. They also involve simple and monolithic fabrication methods allowing combination of multiple amplification stages. Currently, commercially available motion amplifiers can provide strokes as high as 2% of their size. The combination of high-force piezoelectric stacks or unimorph beams with compliant structure optimization methods is expected to make available a new class of high-performance motion translators for microsystems

    A unified element stiffness matrix model for variable cross-section flexure hinges in compliant mechanisms for micro/nano positioning

    Get PDF
    This paper presents a unified analytical model of element stiffness matrix for variable cross-section flexure hinges in plane deformation which is most frequently employed in planar-motion compliant mechanisms for micro/nano positioning. The unified analytical model is derived for flexure hinges in plane deformation based on the principle of virtual work. The derivation is generalized such that it can be applied to various geometries. To optimize and simplify element stiffness matrix model, four coefficients with curve integral are introduced. The results of the analysis were validated in part by modeling several previously investigated configurations, namely flexible beam hinge and right circular hinge. To further validate the proposed analytical model, finite element analysis and experimental testing were used. And the experimental testing shows the proposed unified model is more precise than pseudo-rigid-body method. The proposed model provides a concise and generalized solution to derive the element stiffness matrices of flexible hinges in plane deformation, which will have excellent applications in design and analysis of variable cross-section flexible hinges in compliant mechanisms
    • …
    corecore