114,221 research outputs found

    On Time-optimal Trajectories for a Car-like Robot with One Trailer

    Full text link
    In addition to the theoretical value of challenging optimal control problmes, recent progress in autonomous vehicles mandates further research in optimal motion planning for wheeled vehicles. Since current numerical optimal control techniques suffer from either the curse of dimens ionality, e.g. the Hamilton-Jacobi-Bellman equation, or the curse of complexity, e.g. pseudospectral optimal control and max-plus methods, analytical characterization of geodesics for wheeled vehicles becomes important not only from a theoretical point of view but also from a prac tical one. Such an analytical characterization provides a fast motion planning algorithm that can be used in robust feedback loops. In this work, we use the Pontryagin Maximum Principle to characterize extremal trajectories, i.e. candidate geodesics, for a car-like robot with one trailer. We use time as the distance function. In spite of partial progress, this problem has remained open in the past two decades. Besides straight motion and turn with maximum allowed curvature, we identify planar elastica as the third piece of motion that occurs along our extr emals. We give a detailed characterization of such curves, a special case of which, called \emph{merging curve}, connects maximum curvature turns to straight line segments. The structure of extremals in our case is revealed through analytical integration of the system and adjoint equations

    Build 3D Abstractions with Wireframes

    Get PDF
    This chapter serves as an introduction to 3D representations of scenes or Structure From Motion (SfM) from straight line segments. Lines are frequently found in captures of man-made environments, and in nature are mixed with more organic shapes. The inclusion of straight lines in 3D representations provide structural information about the captured shapes and their limits, such as the intersection of planar structures. Line based SfM methods are not frequent in the literature due to the difficulty of detecting them reliably, their morphological changes under changes of perspective and the challenges inherent to finding correspondences of segments in images between the different views. Additionally, compared to points, lines add the dimensionalities carried by the line directions and lengths, which prevents the epipolar constraint to be valid along a straight line segment between two different views. This chapter introduces the geometrical relations which have to be exploited for SfM sketch or abstraction based on line segments, the optimization methods for its optimization, and how to compare the experimental results with Ground-Truth measurements

    Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    Get PDF
    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images

    Theory and Simulation of the diffusion of kinks on dislocations in bcc metals

    Full text link
    Isolated kinks on thermally fluctuating (1/2) screw, edge and (1/2) edge dislocations in bcc iron are simulated under zero stress conditions using molecular dynamics (MD). Kinks are seen to perform stochastic motion in a potential landscape that depends on the dislocation character and geometry, and their motion provides fresh insight into the coupling of dislocations to a heat bath. The kink formation energy, migration barrier and friction parameter are deduced from the simulations. A discrete Frenkel-Kontorova-Langevin (FKL) model is able to reproduce the coarse grained data from MD at a fraction of the computational cost, without assuming an a priori temperature dependence beyond the fluctuation-dissipation theorem. Analytic results reveal that discreteness effects play an essential r\^ole in thermally activated dislocation glide, revealing the existence of a crucial intermediate length scale between molecular and dislocation dynamics. The model is used to investigate dislocation motion under the vanishingly small stress levels found in the evolution of dislocation microstructures in irradiated materials

    An Algorithmic Study of Manufacturing Paperclips and Other Folded Structures

    Get PDF
    We study algorithmic aspects of bending wires and sheet metal into a specified structure. Problems of this type are closely related to the question of deciding whether a simple non-self-intersecting wire structure (a carpenter's ruler) can be straightened, a problem that was open for several years and has only recently been solved in the affirmative. If we impose some of the constraints that are imposed by the manufacturing process, we obtain quite different results. In particular, we study the variant of the carpenter's ruler problem in which there is a restriction that only one joint can be modified at a time. For a linkage that does not self-intersect or self-touch, the recent results of Connelly et al. and Streinu imply that it can always be straightened, modifying one joint at a time. However, we show that for a linkage with even a single vertex degeneracy, it becomes NP-hard to decide if it can be straightened while altering only one joint at a time. If we add the restriction that each joint can be altered at most once, we show that the problem is NP-complete even without vertex degeneracies. In the special case, arising in wire forming manufacturing, that each joint can be altered at most once, and must be done sequentially from one or both ends of the linkage, we give an efficient algorithm to determine if a linkage can be straightened.Comment: 28 pages, 14 figures, Latex, to appear in Computational Geometry - Theory and Application
    corecore