82,280 research outputs found

    Teaching rule‐based algorithmic composition: the PWGL library cluster rules

    Get PDF
    This paper presents software suitable for undergraduate students to implement computer programs that compose music. The software offers a low floor (students easily get started) but also a high ceiling (complex compositional theories can be modelled). Our students are particularly interested in tonal music: such aesthetic preferences are supported, without stylistically restricting users of the software. We use a rule‐based approach (constraint programming) to allow for great flexibility. Our software Cluster Rules implements a collection of compositional rules on rhythm, harmony, melody, and counterpoint for the new music constraint system Cluster Engine by Örjan Sandred. The software offers a low floor by observing several guidelines. The programming environment uses visual programming (Cluster Rules and Cluster Engine extend the algorithmic composition system PWGL). Further, music theory definitions follow a template, so students can learn from examples how to create their own definitions. Finally, students are offered a collection of predefined rules, which they can freely combine in their own definitions. Music Technology students, including students without any prior computer programming experience, have successfully used the software. Students used the musical results of their computer programs to create original compositions. The software is also interesting for postgraduate students, composers and researchers. Complex polyphonic constraint problems are supported (high ceiling). Users can freely define their own rules and combine them with predefined rules. Also, Cluster Engine’s efficient search algorithm makes advanced problems solvable in practice

    Probabilistic Constraint Logic Programming

    Full text link
    This paper addresses two central problems for probabilistic processing models: parameter estimation from incomplete data and efficient retrieval of most probable analyses. These questions have been answered satisfactorily only for probabilistic regular and context-free models. We address these problems for a more expressive probabilistic constraint logic programming model. We present a log-linear probability model for probabilistic constraint logic programming. On top of this model we define an algorithm to estimate the parameters and to select the properties of log-linear models from incomplete data. This algorithm is an extension of the improved iterative scaling algorithm of Della-Pietra, Della-Pietra, and Lafferty (1995). Our algorithm applies to log-linear models in general and is accompanied with suitable approximation methods when applied to large data spaces. Furthermore, we present an approach for searching for most probable analyses of the probabilistic constraint logic programming model. This method can be applied to the ambiguity resolution problem in natural language processing applications.Comment: 35 pages, uses sfbart.cl

    Improving the Asymmetric TSP by Considering Graph Structure

    Get PDF
    Recent works on cost based relaxations have improved Constraint Programming (CP) models for the Traveling Salesman Problem (TSP). We provide a short survey over solving asymmetric TSP with CP. Then, we suggest new implied propagators based on general graph properties. We experimentally show that such implied propagators bring robustness to pathological instances and highlight the fact that graph structure can significantly improve search heuristics behavior. Finally, we show that our approach outperforms current state of the art results.Comment: Technical repor

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases
    corecore