1,709 research outputs found

    Linearly bounded infinite graphs

    Get PDF
    Linearly bounded Turing machines have been mainly studied as acceptors for context-sensitive languages. We define a natural class of infinite automata representing their observable computational behavior, called linearly bounded graphs. These automata naturally accept the same languages as the linearly bounded machines defining them. We present some of their structural properties as well as alternative characterizations in terms of rewriting systems and context-sensitive transductions. Finally, we compare these graphs to rational graphs, which are another class of automata accepting the context-sensitive languages, and prove that in the bounded-degree case, rational graphs are a strict sub-class of linearly bounded graphs

    The vertex-transitive TLF-planar graphs

    Full text link
    We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs, a class containing in particular all the one-ended planar Cayley graphs and the normal transitive tilings. We characterize these graphs with a finite local representation and a special kind of finite state automaton named labeling scheme. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of any given degree. Also, we are able decide to whether any TLF-planar transitive graph is Cayley or not.Comment: Article : 23 pages, 15 figures Appendix : 13 pages, 72 figures Submitted to Discrete Mathematics The appendix is accessible at http://www.labri.fr/~renault/research/research.htm

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely
    • …
    corecore