2,081 research outputs found

    Self-Replication and Self-Assembly for Manufacturing

    Get PDF
    It has been argued that a central objective of nanotechnology is to make products inexpensively, and that self-replication is an effective approach to very low-cost manufacturing. The research presented here is intended to be a step towards this vision. We describe a computational simulation of nanoscale machines floating in a virtual liquid. The machines can bond together to form strands (chains) that self-replicate and self-assemble into user-specified meshes. There are four types of machines and the sequence of machine types in a strand determines the shape of the mesh they will build. A strand may be in an unfolded state, in which the bonds are straight, or in a folded state, in which the bond angles depend on the types of machines. By choosing the sequence of machine types in a strand, the user can specify a variety of polygonal shapes. A simulation typically begins with an initial unfolded seed strand in a soup of unbonded machines. The seed strand replicates by bonding with free machines in the soup. The child strands fold into the encoded polygonal shape, and then the polygons drift together and bond to form a mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the simulation, by simply changing the sequence of machine types in the seed

    Self-Replicating Strands that Self-Assemble into User-Specified Meshes

    Get PDF
    It has been argued that a central objective of nanotechnology is to make products inexpensively, and that self-replication is an effective approach to very low-cost manufacturing. The research presented here is intended to be a step towards this vision. In previous work (JohnnyVon 1.0), we simulated machines that bonded together to form self-replicating strands. There were two types of machines (called types 0 and 1), which enabled strands to encode arbitrary bit strings. However, the information encoded in the strands had no functional role in the simulation. The information was replicated without being interpreted, which was a significant limitation for potential manufacturing applications. In the current work (JohnnyVon 2.0), the information in a strand is interpreted as instructions for assembling a polygonal mesh. There are now four types of machines and the information encoded in a strand determines how it folds. A strand may be in an unfolded state, in which the bonds are straight (although they flex slightly due to virtual forces acting on the machines), or in a folded state, in which the bond angles depend on the types of machines. By choosing the sequence of machine types in a strand, the user can specify a variety of polygonal shapes. A simulation typically begins with an initial unfolded seed strand in a soup of unbonded machines. The seed strand replicates by bonding with free machines in the soup. The child strands fold into the encoded polygonal shape, and then the polygons drift together and bond to form a mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the simulation, by simply changing the sequence of machine types in the seed

    Network Automata: Coupling structure and function in real-world networks

    Full text link
    We introduce Network Automata, a framework which couples the topological evolution of a network to its structure. It is useful for dealing with networks in which the topology evolves according to some specified microscopic rules and, simultaneously, there is a dynamic process taking place on the network that both depends on its structure but is also capable of modifying it. It is a generic framework for modeling systems in which network structure, dynamics, and function are interrelated. At the practical level, this framework allows for easy implementation of the microscopic rules involved in such systems. To demonstrate the approach, we develop a class of simple biologically inspired models of fungal growth.Comment: 7 pages, 5 figures, 1 tables. Revised content - surplus text and figures remove

    Primordial Evolution in the Finitary Process Soup

    Full text link
    A general and basic model of primordial evolution--a soup of reacting finitary and discrete processes--is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes--ϵ\epsilon-machines as defined in computational mechanics--and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.Comment: 7 pages, 10 figures; http://cse.ucdavis.edu/~cmg/compmech/pubs/pefps.ht

    Computing vs. Genetics

    Get PDF
    This chapter first presents the interrelations between computing and genetics, which both are based on information and, particularly, self-reproducing artificial systems. It goes on to examine genetic code from a computational viewpoint. This raises a number of important questions about genetic code. These questions are stated in the form of an as yet unpublished working hypothesis. This hypothesis suggests that many genetic alterations are caused by the last base of certain codons. If this conclusive hypothesis were to be confirmed through experiementation if would be a significant advance for treating many genetic diseases

    COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL SYSTEMS

    Get PDF
    The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system.* However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered. A conjecture is formulated that suggests the possibility of employing an algebraic-topological, "quantum" computer (Baianu, 1971b) for analogous and symbolic simulations of biological systems that may include chaotic processes that are not, in genral, either recursively or digitally computable. Depending on the biological network being modelled, such as the Human Genome/Cell Interactome or a trillion-cell Cognitive Neural Network system, the appropriate logical structure for such simulations might be either the Quantum MV-Logic (QMV) discussed in recent publications (Chiara, 2004, and references cited therein)or Lukasiewicz Logic Algebras that were shown to be isomorphic to MV-logic algebras (Georgescu et al, 2001)

    From Evo to EvoDevo: Mapping and Adaptation in Artificial Development

    Get PDF
    • …
    corecore