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ABSTRACT 

This chapter first presents the interrelations between computing and genetics, which both are based on 
information and, particularly, self-reproducing artificial systems. It goes on to examine genetic code 
from a computational viewpoint. This raises a number ofimportant questions about genetic code. These 
questions are stated in the form of an as yet unpublished working hypothesis. This hypothesis suggests 
that many genetic alterations are caused by the last base of certain codons. If this conclusive hypoth­
esis were to be confirmed through experiementation if would be a significant advance for treating many 
genetic diseases. 

INTRODUCTION 

The mutual, two-way relationships between genet­
ics and computing (see Table 1) go back a long way 
and are more wide-ranging, closer and deeperthan 
what they might appear to be at first sight. The 
best-known contribution of genetics to computing 
is perhaps evolutionary computation. Evolutionary 
computation's most noteworthy representatives 
are genetic algorithms and genetic programs as 
search strategies. The most outstanding inputs 
from computing to genetics are reproductive au­
tomata and genetic code deciphering. Therefore, 
section 2 will deal with von Neumann reproductive 

automata. Section 3 will discuss genetic code. 
Section 4 will introduce the well-know x2 test 
because of this importance in establishing the 
working hypothesis. Later, section, will address 
genome deciphering. And finally section 6 will 
establish the conjecture or working hypothesis, 
which is the central conclusion of the paper, and 
define the future research lines. 

SELF-REPRODUCING AUTOMATA 

The most spectacular contribution of computing to 
genetics was unque stionably John von Neumann's 



premonitory theory of self-reproducing automata, 
i.e. the construction of formal models of automata 
capable of self-reproduction. Von Neumann gave a 
conference in 1948 titled "The General and Logical 
Theory ofAutomata" (Von Neumann, 1951,1963) 
establishing the principle s of how a machine could 
self-reproduce. The procedure von Neumann 
suggested was at first considered an interesting 
logical and mathematical speculation more than 
anything else. However, von Neumann's view of 
how living beings reproduced (abstractedly sim­
pler than what it might appear) was acclaimed five 
years later, when it was confirmed, after James 
D. Watson and Francis Harry C. Crick (1953(a)) 
discovered the model of DNA. 

It was as of 1950sthat Information Theory (IT) 
exercised a remarkable influence on biology, as it 
did, incidentally, on many other fields removed 
from the strictly mathematical domain. It was 

Table 1. Computing vs. genetics 

From genetics to computing 

Natural Computation (NC) = Evolutionary Computation 
(EC) [Genetics Algorithms (GA) + Evolution Strategies 
(ES) + Evolutionary Programming (EP)] + Neural 
Networks (NN) + Genetic Programming 1 

1966 Fogel, Owens and Walsh (1966) establish how 
finite state automata can be evolved by means of 
unit transformations and two genetic operators: 
selection and mutation. 1 

1973 Rechemberg (1973) defined the evolutionary 
strategies of finite state machine populations. 

1974 Holland (1975) and disciples defined genetic 
algorithms. 

1992 Koza (1992) proposed the use of the evolutionary 
computation technique to find the best procedure 
for solving problems, which was the root of 
genetic programming. 

1994 Michalewitz (1992) established evolutionary 
programs as a way of naturally representing 
genetic algorithms and context-sensitive genetic 
operators. 

precisely as of then that many of the life sciences 
started to adopt concepts proper to IT. All the infor­
mation required for the genesis and development 
of the life of organisms is actually located in the 
sequence of the bases of long DNA chains. Their 
instructions are coded according to a four-letter 
alphabet A, T, C and G. A text composed of the 
words written with these four letters constitutes 
the genetic information of each living being. The 
Nobel prize-winning physicist Erwin Schrodinger 
(1944) conjectured the existence of genetic code, 
which was demonstrated nine years later by 
Watson and Crick (1953(a), (b)), both awarded 
the Nobel prize for this discovery. It was in the 
interim, in 1948, when von Neumann established 
how a machine could self-reproduce. 

From computing to genetics 

1940 Claude Elwood Shannon (1940) defended his 
PhD thesis titled "An Algebra for Theoretical 
Genetics". 

1944 Erwin Schrodinger (1983) conjectured that genetic 
code existed. 

1948 John Von Neumann (1966) established the 
principles underlying a self-reproducing machine. 

1953 Crick (Watson, 1953) luckily but mistakenly 
named the small dictionary that shows the 
relationship between the four DNA bases and 
the 20 amino acids that are the letters of protein 
language genetic code. 

1955 John G. Kemeny (1955) defined the characteristics 
of machine reproduction and how it could take 
place. 

1975 Roger and Lionel S. Penrose (Penrose, 1974) 
tackled the mechanical problems of self-
reproduction based on Homer Jacobson's and 
Kemeny's work. 

1982 Tipler (1982) justified the use of self-reproducing 
automata. 



Self-Reproduction 

In his Utopian novel "Erewhon", which is the mirror 
image of "nowhere", Samuel Butler (1982) explores 
the possibility of machines using men as inter­
mediaries for building new machines. There have 
been many examples of machines built by other 
machines in the last century. Steam engines were 
used to build other steam engines, and machine 
tools made all sorts of devices. Long before the 
computer era, there were mechanical and electrical 
machines that formed metal to build engines. The 
Industrial Revolution was largely possible thanks 
to machine tools: machines that were conceived 
exclusively to build other machines. However, 
devices that can be used to make other devices 
were not exactly the type of machine tools that the 
English Prime Minister, Benjamin Disraeli, had 
in mind when he said, "The mystery of myster­
ies is to view machines making machines", i.e. 
machines building other machines withouthuman 
involvement. In other words, machines that self-
reproduce or, if you prefer a less controversial 
term, are self-replicate. 

What is the meaning of the word reproduc­
tion? As John G. Kemeny (1955) pointed out, if 
reproduction is understood as the creation of an 
object that is identical to the original one from 
nothing, it is evident that a machine cannot self-
reproduce, but neither could a human being. For 
reproduction not to violate the principle of energy 
conservation, some rawmaterialis required. What 
characterises the reproduction of life is that the 
living organism is capable of creating new, similar 
organisms from the inert matter in its surround­
ings. If we accept that machines are not alive 
and we insist on the fact that the creation of life 
is a fundamental characteristic of reproduction, 
the problem is settled: a machine is incapable 
of self-reproduction. The problem is therefore 
reformulated so as not to logically rule out the 
reproduction of machines. To do this, we need 
to omit the word "living". So, we will stipulate 
that the machine should be capable of creating a 

similar new organism from simple components 
existing in its surroundings. 

Scientists have been dreaming about creat­
ing machines programmed to produce replicas 
of themselves since 1948. These replicas would 
produce other replicas and so on, without any 
limit whatsoever. The theory that established the 
principles of how such a feat could be achieved 
was first formulated in 1948. This theory has 
two aspects, which could be termed logical and 
mechanical. The mechanical question was ad­
dressed, among others by Lionel S. and Roger 
Penrose (1974) and will not be considered here. 
The logical part, which is our concern here, was 
first researched by von Neumann at the Institute 
for Advanced Study in Princeton. It was there 
that von Neumann suggested the possibility of 
building a device that had the property of self-
reproduction. The method involved building 
another describable machine from which it fol­
lowed logically that this machine would carry a 
sort of tail that would include the code describing 
how to reproduce the body of the machine and 
how to reproduce the actual code. According to 
Kemeny (1955), a colleague of von Neumann, the 
basic body of the machine would be composed of 
a box containing the constituent parts, to which 
a tail would be added that stored the units of 
information. From the mechanical viewpoint, it 
was considered that the elementary parts from 
which the machine would have to be built would 
be rolls of tape, pencils, rubbers, empty tubes, 
quadrants, photoelectric cells, motors, batteries 
and other similar devices. The machine would 
assemble these parts from the surrounding raw 
material, which it would organise and transform 
into a reproduction of itself. As von Neumann's 
aim was to solve the logical conditions of the 
problem, the incredible material complications of 
the problem were left aside for the time being. 

Von Neumann's proposal for building ma­
chines that have the reproductive capability of 
the living organisms was originally considered 
as an interesting mathematical speculation more 



than anything else, especially taking into ac­
count that computers back then were 30 or more 
tonne giants and were little more than devices 
for rapidly performing mathematical operations. 
How could we get a machine to produce a copy 
of itself ? A command from a human programmer 
to "Reproduce!" would be out of the question, as 
the machine could only respond "I cannot self-
reproduce because I don't know who I am". This 
approach would be as absurd as if a man gave 
his partner a series of bottles and glass flasks 
and told her to have a child. In von Neumann's 
opinion, any human programmer proposing to 
create a dynasty of machines would have to take 
the following three simple actions: 

1. Give the machine a full description of it­
self. 

2. Give the machine a second description of 
itself, which would be a machine that has 
already received the first description. 

3. Finally, order the machine to create another 
machine that is an exact copy of the machine 
in the second description and order the first 
machine to copy and pass on this final order 
to the second machine. 

The most remarkable thing about this logical 
procedure is that, apart from being simpler than 
it may appear, it was von Neumann's view of how 
living creatures reproduce. A few years after his 
conference, his ideas were confirmed when the 
biologists Crick and Watson (1953 (a) and (b)) 
found the key to genetic code and discovered 
the secret of organic reproduction. It was es­
sentially the same as the sequence for machine 
reproduction that von Neumann had proposed. 
In living beings, deoxyribonucleic acid (DNA) 
plays the role ofthe first machine. The DNAgives 
instructions to ribonucleic acid (RNA) to build 
proteins; RNA is like DNA's "assistant". Whereas 
the RNA performs the boring task of building 
proteins for its parent organisms and offspring, 
the DNA plays the brilliant and imaginative role 

of programming its genes, which, in the case of a 
human baby, will decide whether it has blonde or 
brown hair and whether it will be of an excitable 
or calm temperament. In short, DNA and RNA 
together carry out all the tasks that the first von 
Neumann machine has to perform to create the 
second machine of the dynasty. And, therefore, 
if we decide to build self-reproductive machines, 
there is important biological evidence that von 
Neumann came across the right procedure to do 
so a long time ago. 

But, one might wonder, why would anyone 
wantto build computers that make copies of them­
selves? The procedure could atbestbe bothersome. 
Suppose that someone went to bed after having 
spent the evening working at his computer and, 
when he woke up the next day found that there 
were two computers instead of one. What would 
these regenerating computers be useful for? The 
answer is that they will be used at remote sites to 
perform difficult and dangerous tasks that people 
cannot do easily. Consequently, we have to con­
sider at length the possible location of such places. 
What is it that is holding back human biological 
development? Why, over thirty-five years after 
man first set foot on the moon, is there still no 
permanent lunar colony? Over three quarters of a 
century have passed since man first managed to 
fly and most human beings are still obliged to live 
on the surface ofthe Earth. Why? The astronomer 
Tipler (1980), from the University of California 
in Berkeley, answered this question very clearly 
when stated that it was the delay in computer not 
rocket technology that was preventing the human 
race from exploring the Galaxy. It is in space, not 
on Earth, where the super intelligent self-repro­
ducing machines will pay off, and it is in space 
where the long-term future of humanity lies. It is 
fascinating to consider how Tipler and others who 
have studied the far-off future consider how von 
Neumann machines will make it possible, firstly 
to colonise the solar system of planets and then the 
Milky Way with over 150,000 million suns. 



Of course, none of the machines mentioned 
here have, as far as we know, been built, but 
there is nothing to stop them from being built. 
Scientifically, nothing stands in the way of their 
construction. Whether it is technologically fea­
sible to make replicas is another question, and a 
tricky one at that. 

GENETIC CODE 

Code vs. Cipher 

Technically, a code is defined as a substitution at 
the level of words or sentences, whereas a cipher 
is defined as a substitution at the level of letters. 
Ciphering means concealing a message using a 
cipher, whereas coding means concealing a mes­
sage using a code. Similarly, the terms decipher 
is applied to the discovery of a ciphered mes­
sage, i.e., in cipher, whereas the term decode is 
applied to the discovery of a coded message. As 
we can see, the terms code and decode are more 
general, and are relatedto both codes and ciphers. 
Therefore,these two terms shouldnotbe confused 
through misuse. Forexample, Morse code, which 
translates the letters of the English alphabet and 
some punctuation marks to dots and dashes, is 
not a code in the sense of a form of cryptography 
because it does not conceal a message. The dots 
and dashes are simply a more convenient form 
of representing the letters for telegraphy. Really, 
Morse code is nothing other than an alternative 
alphabet. 

Code is formally defined as follows. Let A* be 
a free monoid (Hu, 1965) engendered by the set 
A, i.e. A* is the set of finite-length words formed 
by means of concatenation (the associative law of 
internal composition) with the symbols of A and 
with a neutral element, namely, the empty word. 
Acode C = {?!,..., c,\ then, isasubset of A*, where 
the elements of care the words of the code and 
ni denotes the size of the word c. 

A code is said to be binary, ternary or, gener­

ally, n-ary when A is formed by, respectively, two, 
three or, generally, n symbols. If all the words are 
of the same length, C is said to be a fixed-length 
or block code. Otherwise, C is said to be a vari­
able-length code. 

Let a be the alphabet of a source of information, 
which is defined as the source that emits symbols 
of an effect a ^,, . . . ,*5), whose probability of ap­
pearance is given by 7t, (l < z < r). Then a coding 
is an application cp of a in C, which is extended 
to an application cp* of a* in C*. And, of course, 
decoding is an application y of C* in a*. A code 
has only one decoding, i.e. cp* is injective, and \\i 
or \|/* is the identity. 

Genetic Code 

The expression genetic code is now used to mean 
two very different things. The lay public uses it 
often to refer to the full genetic message of the 
organism. Molecular biologists use it to allude 
to the small dictionary that shows how to relate 
the four-letter language of the nucleic acids to the 
twenty-letter language of the proteins in the same 
way as Morse code relates the dots-and-dashes 
language to the twenty-six letters of the alphabet. 
Here we will use the term in this sense. However, 
the technical term for such a rule of translation 
is not, strictly speaking, code but cipher, just 
as Morse code should be called Morse cipher. 
This Crick did not know at the time, which was 
a stroke of luck, as genetic code sounds much 
better than genetic cipher. In actual fact, Crick 
correctly referred to the set of bases contained 
in the chromosomes as ciphered text or key, but 
added that the term key or ciphered text was too 
limited. The chromosomal structures are at the 
same time the instruments that develop what they 
foresee. They represent both the legal text and the 
executive power or, to use another comparison, 
they are both the architect's plans and the builder's 
workforce. 

Code is the core of molecular biology just like 
the periodic table of elements is at the heart of 



chemistry, but there is a profound and transcen­
dental difference. The periodic table is almost 
certainly valid and true all over the universe. 
However, if there is life in other worlds, and if 
this life is based on nucleic acids and proteins, of 
which there is no guarantee, it is very likely that 
the code there would be substantially different. 
There are even small code variations in some ter­
restrial organisms. Genetic code, like life itself, is 
not an aspect of the eternal nature of things, but, 
at least partly, product of an accident. 

The central lemma of genetic code is the rela­
tionship betweenthe sequence of the bases of DNA 
or of its transcribed m-RNA and the sequence of 
protein amino acids. This means thatthe sequence 
of bases of a gene is collinear with the sequence 
of amino acids of its product polypeptide. What 
makes this code, which is the same in all living 
beings, so marvellous is its simplicity. A set of 
three bases or codon specifies an amino acid. The 
t-RNA molecule s, which work as protein synthe sis 
adaptors, read the codons sequentially. 

Crick et al.'s 1961 experiments (Crick et al., 
1961) established that genetic code had the fol­
lowing characteristics: 

1. The alphabet: Al = {A,G,C,T}. 
2. Coding relationship. A group of three bases 

codes an amino acid. This group of three 
bases is called, as mentioned above, codon 
or triplet. 

3. Non-optimality: The fact that there is a 
code is such is likely to be due to structural, 
electrochemical and physical criteria applied 
to the molecules involved in the described 
processes. The optimal base is actually 3 
(Pazos, 2000). 

4. Non-overlapping: In a code of non-overlap­
ping triplets, each codon specifies only one 
amino acid, whereas in a code of overlap­
ping triplets, ABC specifies the first amino 
acid, BCD the second, CDEthe third and so 
on. Studies of the amino acid sequence in 
the protein cover of mutants of the tobacco 

mosaic virus indicated that normally only 
one amino acid altered, leading to the con­
clusion that genetic code does not overlap. 

5. Codon reading sequentially: The sequence 
of bases is read sequentially from a fixed 
starting point. There are no commas, i.e. 
genetic code does not require any punctua­
tion or signal whatsoeverto indicate the end 
of a codon or the start of the next one. There 
is only an "initiation signal" in the RNA, 
which indicates where the reading should 
start. This signal is the AUG codon that 
codes the amino acid methionine. 

6. Code inefficiency or degeneracy: There is 
more than one word or coding codon for 
most amino acids. Mathematically, this 
means thatthere is asuperjective application 
betweenthe codons and the amino acids plus 
the chain initiation and termination signals, 
which is transcendental for the subject of 
this paper. Table 2 shows genetic code. Only 
tryptophan and methionine are encoded by a 
single triplet. Two or more triplets encode the 
other eighteen. Leucine, arginine and serine 
are specified by six codons each. However, 
under normal physiological conditions, the 
code is not ambiguous: each codon desig­
nates a single amino acid. From this table, 
the respective amino acid can be located, 
given the position of the bases in a codon, 
as follows. Suppose we have the m-RNA 
codon 5 AUG 3', then we start at A in Table 
2, then go to U and then to G and we find 
methionine. 

Figure 1 shows a finite-state automaton that 
recognises the DNA alphabet and translates the 
codons into amino acids. 

7. Importance of the bases in the codon: The 
codons that specify the same amino acid 
are called synonyms, e.g. CAU and CAC 
are synonyms for histidine. Note that the 
synonyms are not distributed arbitrarily in 



Table 2. An amino acid specified by two 
or more synonyms occupies only one cell, 
unless there are over four synonyms. The 
amino acids in each cell are specified by 
codons whose first two bases are the same 
but differ as to the third, e.g. GUU, GUC. 
GUA and GUG. Most synonyms differ only 
as to the last base of the triplet. 

Looking at the code, we find that XYC and 
XYU always code the same amino acid, whereas 
XYG and XYA almost always do. It is clear then 
that the first two letters of each codon are signifi­
cant factors, whereas the third appears to be less 
important and not to fit in as accurately as the 
others. The structural basis forthese equivalences 
is evident owing to the nature of the anticodons 
of the t-RNA molecules. However, and this is 
what we want to stress in this paper, the last base 
of the codon is fundamental from the functional 
viewpoint, as it is the one that will characterise 
the behaviour of the protein and the original gene 
in which it is located. The generalised degeneracy 

of genetic code has two biological implications. 
On the one hand, degeneracy reduces the noxious 
effects of mutations to aminimum. One plausible 
reason why code is degenerated is that redundancy 
provides a safety mechanism. But utility is also 
a possible ground: it is quite plausible that the 
silent mutations may have long-term benefits. 
On the other hand, code degeneracy can also be 
significant insofar as it allows DNA to largely 
modify its base composition without altering the 
sequence of amino acids it encodes. The content of 
[G] + [C] could encode the same proteins if they 
simultaneously used different synonyms. 

8. Termination signals: the last characteristic 
of the code refers to the fact that of the 64 
possible triplets, there are three that do not 
encode any amino acid, and these are UAG, 
UAA and UGA. 

Table 2. Genetic code 

Position 1 
(5' end) 

U 

c 

A 

G 

Position 2 
U 
Phenylalanine 
Phenylalanine 
Leucine 
Leucine 
Leucine 
Leucine 
Leucine 
Leucine 
Isoleucine 
Isoleucine 
Isoleucine 
Met (Start) 
Valine 
Valine 
Valine 
Valine 

C 
Serine 
Serine 
Serine 
Serine 
Proline 
Proline 
Proline 
Proline 
Threonine 
Threonine 
Threonine 
Threonine 
Alanine 
Alanine 
Alanine 
Alanine 

A 
Tyrosine 
Tyrosine 
Stop 
Stop 
Histidine 
Histidine 
Glutamine 
Glutamine 
Asparagine 
Asparagine 
Lysine 
Lysine 
Aspartic acid 
Aspartic acid 
Glutamic acid 
Glutamic acid 

G 
Cysteine 
Cysteine 
Stop 
Tryptophan 
Arginine 
Arginine 
Arginine 
Arginine 
Ser 
Ser 
Arginine 
Arginine 
Glycine 
Glycine 
Glycine 
Glycine 

Position 3 
(3' end) 
U 

c 
A 
G 
U 

c 
A 
G 
U 

c 
A 
G 
U 

c 
A 
G 



Figure 1. A finite-state automaton that translates genetic code to amino acids 

START 



X TEST 

Suppose that we find that a series of events E15 E2. 
..., E occur in agiven sample with frequencies op 

o2,..., o, called "observed frequencies", and that, 
according to the rules of probability, they would 
be expected to occur with frequencies ep e2, ..., 
e, called theoretical or expected frequencies, as 
shown in Table 3. 

A measure of the discrepancy between the 
observed and expected frequencies is given by 

2 

the X statistic, as 

. (Pi-eJ , (°i-eJ , ^ j ~ e j ) _ ^ j ~ e j ) 

where, if the total frequency is N, So, = Ze] =N . 
2 

If % =0, the observed and expected frequen-
2 

cies are exactly equal, whereas if X > 0, they are 
2 

not. The greater the value of X , the greater the 
discrepancies between the two frequencies are. 

2 

The X sample distribution is very closely 
approximated to the chi-square distribution 
given by Y = Y0^

2)y2(v-2y^X
: 

•YoX^2e/2X' 

eters of the population from the sample 
statistics. 

In practice, the expected frequencies are 
calculated according to a null hypothesis H0. If, 
according to this hypothesis, the calculated value 

2 

of X is greater than any critical value, such as 
2 2 

X0.95 or X 0.99, which are the critical values at the 
significance levels of 0.05 and 0.01, respectively, 
it is deduced that the observed frequencies differ 
significantly from the expected frequencies and 
the H0 is rejected at the respective significance 
level. Otherwise, the HQwill be accepted or, at 
least, not rejected. 

Now, looking at Table 4 taken from Jack Le ster 
2 

King and Thomas H. Jukes (1969), we ran the X 
2 

test on these data and found that the value of X 
is 477.809. As this value is much greater than 
the expected X0.9& which, for the 19 degrees of 
freedom in respect of the twenty amino acids, is 
38.6, we find that the observed frequencies dif­
fer very significantly from the expected values, 
thereby rejecting the H0. Accordingly, it is to 
be expected that the bases are not associated as 
triplets at random and, therefore, an explanation 
needs to be sought. 

where v is the number of degrees of freedom 
given by: 

a. v = k-1, if the expected frequencies can 
be calculated without having to estimate 
population parameters from the sample 
statistics. 

b. v = k-l-m, if the expected frequencies can 
only be calculated by estimating m param-

DECIPHERING THE GENOME 

As already mentioned, genes are usually located 
in the chromosomes: cellular structures whose 
main component is deoxyribonucleic acid, ab­
breviated to DNA. DNA is formed by comple­
mentary chains, made up of long sequences of 
nucleotide units. Each nucleotide contains one 

Table 3. Sample with associated frequencies 

Event 

Observed frequency 

Expected frequency 

El 

ol 

el 

E2 

o2 

e2 

Ej 

oj 

ej 



Table 4. Amino acids and triplets associated with their frequencies according to King and Jukes 
(1969) 

AMINO ACroS 

Serine 

Leucine 

Arginine 

Glycine 

Alanine 

Valine 

Threonine 

Proline 

Isoleucine 

Lysine 

Glutamic acid 

Aspartic acid 

Phenylalanine 

Asparagine 

Glutamine 

Tyrosine 

Cysteine 

Histidine 

Methionine 

Tryptophan 

Triplets 

UCU.UCA.UCC 
UCGAGUAGC 

CUU.CUA.CUC 
CUG.UUA.UUG 

CGU.CGA.CGC 
CGGAGAAGG 

GGUGGAGGC 
GCG 

GCUGCAGCC 
GCG 

GUU.GUA.GUC 
CUG 

ACUACAACC 
ACG 

CCUGCAGCC 
CCG 

AUU.AUA.AUC 

AAA.AAG 

GAAGAG 

GAUGAC 

UUU.UUC 

AAU.AAC 

CAAGAG 

UAU.UAC 

UGU.UGC 

CAU.CAC 

AUG 

UGG 

TOTAL 

Number of 
appearances 

443 

417 

230 

406 

406 

373 

340 

275 

209 

395 

318 

324 

220 

242 

203 

181 

181 

159 

99 

71 

5,492 

Observed 
frequency 
(%) 

8.0 

7.6 

4.1 

7.4 

7.4 

6.8 

6.2 

5.0 

3.8 

7.2 

5.8 

5.9 

4.0 

4.4 

3.7 

3.3 

3.3 

2.9 

1.8 

1.3 

100.0 

Expected 
number 

472 

434 

582 

390 

395 

330 

373 

275 

280 

302 

258 

192 

121 

225 

210 

165 

137 

164 

99 

88 

5,492 

Expected 
frequency 

(%) 

8.6 

7.9 

10.6 

7.1 

7.2 

6.0 

6.8 

5.0 

5.1 

5.5 

4.7 

3.5 

2.2 

4.1 

3.8 

3.0 

2.5 

3.0 

1.8 

1.6 

100.0 

IQi-oa2 

ei 

1.782 

0.666 

212.9 

0.656 

0.306 

5.603 

2.919 

0 

18.0 

28.639 

13.953 

90.750 

81 

1.284 

0.233 

1.551 

14.131 

0.152 

0 

3.284 

X2 = 477.809 

of the four possible nitrogenised bases: adenine 
(A), cytosine (C), thymine (T) and guanine (G). 
which only associate in two possible ways with 
each other: A with T and C with G. Usually, some 
portions of DNA form genes and others do not. 
In the case of human beings, the portions that are 
genes make up only approximately 10% of total 

DNA. The remainder appears to have nothing 
to do with protein synthesis; it is, until it finds 
a functionality, genetic trash so to speak. In any 
case, the reading and interpretation of this set of 
symbols that make up DNA can be compared to 
deciphering the hieroglyphics of life. If Jean-Fran­
cois Champollion's deciphering of hieroglyphic 



script from the Rosetta Stone was arduous and 
difficult, imagine deciphering 3xl09 symbols 
from a four-letter alphabet. To give an idea of the 
magnitude of the endeavour, suffice it to say, for 
example, that the sequence of DNA nucleotides 
written would take up a space equivalent to 150 
volumes similar to the telephone book of a city 
like Madrid, with four million inhabitants. Or, 
to establish a more illustrative comparison, if 
a virus gene that has 3,000 pairs of bases takes 
up one page of a book composed of 3,000 letters 
and a gene of a bacterium, which contains three 
million pairs of bases, would be equivalent to a 
1,000-page book, the human genome, composed 
of three thousand million bases, would take up 
a library of a thousand books. Perhaps one form 
of deciphering the hieroglyphics would be what 
Eric Steven Lander of the MIT proposed when he 
said that just as the organisation of the chemical 
elements in the periodic table lent coherence to a 
mass of previously unrelated data, we will end up 
discovering that the tens of thousands of genes of 
existing organisms are made of combinations of a 
much smaller number of simpler genetic modules 
or elements or, so to speak, primordial genes. The 
important point is that human genes should not 
be considered as completely different from each 
other. Rather, they should be seen as families 
that live all sorts of lives. Having completed the 
table, structural genetics will leave the field open 
to functional genetics or the practical use of the 
table. For example, the difference between two 
people boils down to no more than 1% of the base s. 
Most genes have only two, three or four variants, 
that is, some 300,000 principal variants. 

Going back now to deciphering the genome, 
sequencing the genome refers to solely stating 
the bases A, T, C and G of the genome, i.e. read­
ing without understanding. Therefore, it is to 
spell out or, at most, babble the genome. For the 
time being, genome sequencing simply involves 
determining how the thousands of millions of 
bases of which it is composed are chained. As 

Daniel Cohen (1994) said, who we follow in this 
section, it is not hard to realise how arid the task 
is, as it involves examining a text that more or 
less reads as follows: 

TCATCGTCGGCTA GCTCATTCGA CCATCG-
TATGCATCACTATTACTGATCTTG..., 

and goes on for millions of lines and thousands 
of pages. Of course, it was to be expected that 
a language that has a four-letter alphabet would 
be much more monotonous than contemporary 
languages, whose Latin, Cyrillic alphabets, etc., 
are composed of over twenty letters. 

But sequencing the genome is notthe last stop, 
as it has to be deciphered, i.e. its meaning has to 
be understood like learning to read letters and 
converting them into ideas. And this is the tricky 
thing. There is, in actual fact, no way of foreseeing 
when, how and to what extent it will be possible 
to decipher the sequenced genome. It would be 
marvellous, but not very realistic, to suppose that 
learning to read the genome would unexpectedly 
lead to its understanding just as children learn 
the letters and suddenly cross some mysterious 
threshold and start to understand what they are 
reading. Reality is, however, much tougher, and 
the deciphering of the genome looks like a very 
hard and thankless task. This is due not so much 
to the poverty of the alphabet but to the ignorance 
of the language. 

Just to give an illustrative example of what 
we have just said, try to read, albeit for no more 
than twenty minutes, and aloud (no cheating!), 
a novel written in a language you don't know 
(Turkish, Serbo-Croatian, etc.) transliterated to 
the twenty-six letter Latin alphabet and see what 
a headache you get. Suppose now that you have 
no choice, because you are on a desert island and 
the only book you have is written in one of these 
languages and you do not have dictionary on hand. 
Therefore, you would have to make do with what 
little you know and be patient and perseverant. If 



you do this, you will end up becoming acquainted 
with some features of the unknown language. For 
example, you will identify recurrent patterns, 
establish analogies, discover some rules, other 
meanings, interesting similarities, etc., etc., etc. 
The first thing we find is that the genetic language 
has a peculiarity, which, at least in principle, is 
disconcerting: it doesnotjust consist of sequences 
furnished with a precise meaning, the sequences 
of interest which are called genes. It all includes 
jumbled paragraphs situated both between gene 
and gene, intergenes, and inside the genes, intra-
genes, which divide the meaningful sequence. To 
date, no one has been able to find out what all this 
filling is for. And, what is even more exasperating 
is that these extravagant series of letters make up 
over ninety per cent of the genome, at least, the 
human genome, which is an interminable list of 
genes and intergenes with non-coding intragenes 
situated within the very genes. 

Now consider a volume of poetry by Quevedo 
(1995), but written in an unknown language 
and according to the following genomic style, 
although for the readers' comfort, the text has 
been translated into Spanish: 

kvlseimkmifdsqmoieurninaedpvaeighmlke-
himdogcoleizoapglkchdjthzkeivauozierdmof-
moimthaaoekkkkkkkghdmorsleidjtldifltsfifesithg-
melimlkajchwchmqurozqdaverirlmeoarusndorke-
jmtsimeormtlehoekdmzriglalmethoslerthrosa-
zlckthmekromlsdigquemelthnlslrejtestalkhlrjjs-
letehrejrozthiolalelyrletuolgdhnartlgldrtlmalkjfs-
dnanaioemzlekthldiimsekjrmlkthomsdlkgldheoz-
kelldesgyrureiotpleghkdssseruieormdkfjhjkdddd-
goghfjdsenbvcxxwqsd... 

Biologists are now beginning to distinguish the 
characteristic sequencesthat initiate and terminate 
the words of the genome and can better identify 
genes from what are not genes. Therefore, with a 
bit of training, geneticists will manage to pick out, 
from the above mess, the following sentence: 

Quitar codicia no anadir dinero hace a los hom-
bres ricos Casimiro 

But, even after identifying the words of the 
poem, they would still be a long way away from 
imagining what Casimiro, to whom the poem is 
addressed, was like. 

Returning to the analogy with the human 
language, the task facing those who are sequenc­
ing the genome is to make an inventory of the 
thousands of words of the biological dictionary of 
humanity. Only the inventory. The explanation of 
the words will come afterwards. To give an idea 
of the endeavour, this dictionary, at a rate of thirty 
genes and approximately a million characters per 
page, will have three thousand pages, given that 
the genome has three thousand million bases. 
The equivalent, in pages and weight, of the two-
volume Diccionario de la Real Academia de la 
Lengua Espanola. 

But, unlike usual dictionaries, the words will be 
arranged not in alphabetical but in chromosomal 
order. Instead of being grouped in the respective 
sections A to Z, the words of the human genomic 
dictionary would be arranged in 23 chapters, one 
for each pair of chromosomes duly numbered 
from 1 to 23 in the conventional order attributed 
to them by biologists. The genes of the first pair 
are the longest, whereas those of the twenty-first 
and twenty-second are the shortest. These are, as 
mentioned above, the chromosomes termed "au­
tosomes", i.e. non sexual, from the Greek soma, 
meaning body. The twenty-third pair is the sex 
chromosomes X and Y. 

So, in the first chapter, a chromosome of x 
million bases would take up x pages at a rate of 
a million characters per page, in the second, y..., 
and in the twenty-first, z. "Beaconing" and map­
ping the genome is equivalent to paginating the 
dictionary; ordering the pages from 1, 2, 3, ... to 
three thousand, in 23 chapters, yet without filling 
the pages in. At this stage, we still do not know 
what there is on each of the pages, except for a 
thousand words, set out here and there. Having 



done the pagination or, if you prefer, map-making, 
the experts will be able to start on the systematic 
sequencing of the genes, i.e., fill the pages with 
words still without explanation. 

Then, in a few years time, when we have the 
sequence of the whole human genome, we will 
see that page 1 of chapter 1 contains the words, 
or their genomic equivalent, not in alphabetical 
order (a, aal, aam, Aaronic, ..., ab, aba, abaca), 
but arranged as stipulated by nature through the 
chromosomes (e.g., grace, disgrace, graceless, 
followed by a word, like "everyday", which bears 
no resemblance to its foregoer, then gracecup, 
graced, followed by an "incongruous" plum and 
division and, then, disgraceful, aggrace, begrace, 
etc.). Looking at these words more carefully, we 
find that many are composed of the letters "grace" 
and we wonder what this common factor means. 
Further on, we find that the common factor "gen" 
appears in genetic and also, in another place in 
another chapter, in genesis, genius, ingenious, 
genial, etc. All the "grace" and all the "gen" can 
then be entered into a computer to discover how 
often they appearand fully examine the sequences 
in which they are accommodated. The whole 
thing can then be reclassified taking note of the 
significant statistical data. On other occasions, 
researchers may come across a series of the style: 
complain, complainant, complaint, plaint, plain­
tive, plaintiff, and may be fortunate enough to 
know the meaning of its common factor, in this 
case, "plaint", because it is associated with some 
hereditary particular or other that has already 
been studied at length. They will then be able 
to venture to try out new rules of construction, 
new combinations, taking the same common root. 
This is how the cartouches helped to decipher 
hieroglyphics. In other words, genes, like the 
words of the language can be grouped by fami­
lies, the words of different human languages that 
revolve around the same concept share the same 
root. Likewise, it is to be supposed that the genes 
whose sequence is similar fulfil similar functions. 
As a matter of fact, it now appears that genes that 

resemble each other come from one and the same 
ancestral gene and form families of genes with 
similar functions. These are termed multigenic 
families, whose genes may be disseminated across 
several chromosomes. Often, neighbouring genes 
have a similar spelling even if they do not start 
with the same letters. And homonymic genes are 
often synonyms, genes that are written differently 
but have similar meanings. This will mean that 
they can be used like puntales (a fragment of plain 
text associated with a fragment of ciphered text) 
were used to decipher secret codes. 

The analysis will be gradually refined and fine-
tuned . Finally, we will know how to distinguish the 
equivalents of linguistic synonyms. By detecting 
the common roots, we will even learn to trace 
back the genealogy of certain genes, i.e. follow 
their evolutionary lineage. Complex biological 
functions like breathing, digestion or reproduc­
tion are assimilated to sentences whose words 
are inscribed on different pages of the genomic 
dictionary. Now, if there is afirstbook, the genetic 
dictionary written according to the topographical 
order of the chromosomes, evolution has written 
another thousand after learning this dictionary, 
on physiology, growth, ageing, immunity, etc., to 
the book of thought, which, doubtless, will never 
be finished. It is even conceivable that one and 
the same gene could acquire a different meaning 
depending on its position in one or other genetic 
sentence, just as a word in human language de­
pends on the context. Additionally, biological 
functions have been invented as evolution has 
become more complex. It is likely that genetic 
combination was at the same time enriched by 
new rules integrating earlier levels in as many 
other Russian dolls of algorithms, placed inside 
each other in a subtle hierarchy. 

In sum, the syntax and style of the genetic lan­
guage has gradually been refined, and it remains 
for us to discover its semantics and pragmatics. The 
messages that determine eye colour, skin texture 
or muscular mass are doubtless not the same as 
those that induce the immune system, cellular 



differentiation or cerebral wiring. Obviously, 
many fundamental concepts of this language are 
unknown. Even after sequencing is complete, there 
will still be a lot to research to do and it will take 
perhaps centuries of work to get things straight, 
if we ever do. The question is that DNA is neither 
an open book nor a videotape. 

FUTURE TRENDS 

Now already numerous, wide-ranging and re­
warding, the interrelations between genetics and 
computing will expand increasingly in the future. 
The major trends that are likely to be the most 
constructive are: 

A) Biological computation. Under this label, 
DNA computing deserves amention. While 
the early work on DNA computing dates 
back to Adelman, there is still a long way 
to go before we can build what is now be­
ing referred to as the chemical universal 
Turing machine (CUMT). Its construction 
would have an extraordinary effect on the 
understanding of genetics and computer 
science, as it would allow theoretical and 
experimental approaches and models in 
both fields to be combined holistically. 

B) DNA, the brain and computers have one thing 
in common: all three process information. 
Consequently, it is evident that, at a given 
level of abstraction, their operational prin­
ciples will be the same. This will lead, sooner 
or later, to the discovery of an information 
theory that accounts forthe behaviour of the 
three processors and even more. In actual 
fact, the world has been considered so far as 
being formed by matter and energy, both of 
which are, since Einstein's famous formula 
ofhuman destiny, E=±mc2, equivalent. Now, 
to understand today's world (both at the 
macroscopic level, for which the general 
theory of relativity accounts, i .e. black holes, 

and the microscopic level accounted for by 
quantum physics, i.e. Wheeler's delayed 
choice experiment), information needs to 
be added to the matter-energy equation. 
Now, this theory would of course encompass 
Shannon's communication theory, but would 
go further than Shannon's premise does. It 
might perhaps only retain his notions of the 
information unit "bit" and negative entropy. 
One of the authors is already working in this 
field and expects to have some preliminary 
results to report in a few months' time. 

C) Genetics-computation hybridization. The 
exchange of approaches between genetics 
and computation will provide a hybrid form 
of dealing with problems in both fields. 
This will improve problem solving in both 
domains. For example, geneticists will be 
able to routinely apply concepts commonly 
used in computing, like abstraction or re­
cursiveness. This way they will acquire 
profound skills for solving complex prob­
lems. Additionally, the huge quantities of 
information that DNA employs to develop 
its full potential, as well as the complexity 
of its workings, will be excellent guides 
for dealing with problems in the world of 
computing. 

CONCLUSION AN FUTURE 
RESEARCH LINES 

The classical scientific dogma, which is or should 
be inculcated to any university student, is that 
first conjectures or working hypotheses are 
formulated and are then tested. But, of course, 
to formulate such conjectures or hypotheses, the 
facts, as such, need to be taken into account, and 
these facts are: 

a) Proteins owe theirfunction to their structure 
or folding, i.e. to their shape, which depends 
on the order of the amino acid sequence of 



which they are composed. And this order 
is again determined by the sequence of the 
DNA bases. 

b) From Table 4, taken from King and Jukes 
(King, 1969), we calculated the %2 and found 
that the %2 test results offer no doubt as to 
the fact that the distribution of the triplets 
and their translation to amino acids is not 
due to chance, quite the opposite. 

c) According to genetic code, we know that 
several triplets yield the same amino acid. 

This leads us to formulate the proposed work­
ing hypothesis or conjecture: 

An individual's situation will depend on what 
triplet and in what position it yields a particular 
amino acid. 

Testing: 
To test this conjecture, we have to, and this 

is what we are in the process of doing, take the 
following steps. 

51. Determine a genetic disease of unique ae­
tiology 

52. Try to associate the possibilities of "triplets 
versus generated amino acids" relationships 
within the gene causing the disease and 
establish, if possible, a causal relationship 
and, if not, a correlation. For this purpose, 
we have to define the right sample size. 

53. If a causality or correlation greater than 0.8 
is established, go to SI with a new case. 
If the number of cases is greater than the 
proposed sample size and causality or cor­
relation was established for all cases, accept 
the hypothesis, if not, reject it. 

Of course, when genetic code has been com­
pletely deciphered, this type of hypotheses will 
make no sense, because the DNA will explain its 
message and its resultant consequences. But, in 
the meantime, it is a way of understanding why 
some diseases occur. This will, of course, lead 

to its prevention, cure or, at least, to the relief of 
its effects, through genetic engineering. 
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