5 research outputs found

    Label-free detection of biomolecules with Ta2O5-based field effect devices

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Nanotecnologias e NanociênciasInternational Iberian Nanotechnology Laboratory (INL

    Study of the pH sensing characteristic of metal oxide

    Get PDF
    ได้ทุนอุดหนุนการวิจัยจากมหาวิทยาลัยเทคโนโลยีสุรนารี ปีงบประมาณ พ.ศ. 2558-255

    Metabolomic sensing system for personalised medicine using an integrated CMOS sensor array technology

    Get PDF
    Precision healthcare, also known as personalised medicine, is based on our understanding of the fundamental building blocks of biological systems, with the ultimate aim to clinically identify the best therapeutic strategy for each individual. Genomics and sequencing technologies have brought this to the foreground by enabling an individual’s entire genome to be mapped for less than a thousand dollar in just one day. Recently, metabolomics, the quantitative measurement of small molecules, has emerged as a field to understand an individual’s molecular profile in terms of both genetics and environmental factors. This is crucial because a genome could only indicate an individual’s susceptibility to a particular disease, whereas a metabolome provides an immediate measurement of body function, enabling a means of diagnosis. However, the current approach of measurements depends on large-scale and expensive equipment such as mass spectroscopy and NMR instrumentation, which does not offer a single analytical platform to detect the entire metabolome. This thesis describes the development of an integrated CMOS sensor array technology as a single platform to quantify different metabolites using specific enzymes. The key stages in the work were: to construct instrumentation systems to perform enzyme assays on the CMOS sensor array; to establish techniques to package the CMOS sensor array for an aqueous environment; to implement and develop a room temperature Ta2O5 sputtering process on CMOS sensor array for hydrogen ion detection; to collaborate with a chemist and investigate an inorganic layer on top of the CMOS ISFET sensor to show an improvement of sensitivity towards potassium ion; to test several different enzyme assays electrochemically and optically and show the functionalities of the sensors; to devise microfluidic channels for segregation of the sensor array into different compartments and perform enzyme immobilisation techniques on CMOS chips; and integrate the packaged chip with microfluidic channels and enzyme immobilisation using 2D inkjet printer into a complete system that has the potential to be used as a multi-enzyme platform for detection of different metabolites. Two CMOS sensor array chips (1) a 256×256-pixel ISFET array chip and (2) a 16×16-pixel Multi-Corder chip were fully understood. Therefore, a high-speed instrumentation system was constructed for the ISFET array chip with a maximum readout speed of 500 frames per second, with 2D and 3D imaging capability, as well as single pixel analysis. Follow by that, a miniaturised measurement platform was implemented for the Multi-Corder chip that has three different sensor arrays, which are ISFET, PD and SPAD. All the sensor arrays can be operated independently or together (ionic sensor and one of the optical sensors). Several post-processing steps were investigated to allow suitable fabrication process on small 4×4 mm2 CMOS chips. Post-processing of the CMOS chips was first established using room temperature sputtering process for Ta2O5 layer, achieving Ta:O ratio of 1:1.77 and a surface roughness of 0.42 nm. This Ta2O5 layer was then fabricated on top of CMOS ISFETs, which improves the ISFET pH sensitivity to 45 mV/pH, with an average drift of 6.5 ± 8.6 mV/hour from chip to chip and a working pH range of 2 to 12. Furthermore, a layer of POMs was drop casted on top of Ta2O5 ISFET to make ISFET sensitive to potassium ions. This was investigated in terms of potassium ions sensitivity, hydrogen ions sensitivity and sodium ions as interfering background ions. The POMs Ta2O5 ISFET was found to have a net potassium sensitivity of 75 mV/pK, with a linear range between pH 1.5 to 3. Moreover, the POMs ISFET has -5 mV/pH in pH sensitivity, showing that it is selectivity towards potassium ions and not hydrogen ions. However, sodium ions were found to produce a large interference towards the pK sensitivity of POMs ISFET and reduced the pK sensitivity of POMs ISFET. Hence, further work is still required to modify POMs layer for better selectivity and sensitivity. Besides that, microfluidic channels were fabricated on top of the CMOS chips that could provide segregation for multiple enzyme assays on a single chip. In addition, a PDMS and a manual dam and fill method were developed to encapsulate the CMOS chips for wet biochemistry measurements. The CMOS sensor array was found to have the ensemble averaging capability to reduce noise as a function of √N , where N is the number of sensors used for averaging. Several enzyme assays that include: hexokinase, lactate dehydrogenase, urease and lipase were tested on the ISFET sensor array. Moreover, using an optical sensor array, namely a PD on the Multi-Corder chip and using LED illumination, quantification of cholesterol levels in human blood serum was demonstrated. Enzyme kinetics calculations were performed for hexokinase and cholesterol oxidase assays and the results were comparable to that obtained from a bench top spectrophotometer. This shows the CMOS sensor array can be used as a low cost portable diagnostic device. Several enzyme immobilisation techniques were explored but were unsuccessful. Alginate enzyme gel immobilisation with a 2D inkjet printer was found to be the best candidate to bio-functionalise the CMOS sensor array. The packaged chip was integrated with microfluidic channels and alginate enzyme gel immobilisation into a complete system, in order to perform an enzyme assay with its control experiments simultaneously on a single chip. As a proof-of-concept, this complete system has the potential to be used as a multiple metabolite quantification platform

    Developing ultrasensitive and CMOS compatible ISFETs in the BEOL of industrial UTBB FDSOI transistors

    Get PDF
    Le marché des capteurs a récemment connu une croissance spectaculaire alimentée par l'application remarquable de capteurs dans l'électronique de consommation, l'industrie de l'automatisation, les appareils portables, le secteur automobile et l'internet des objets de plus en plus adopté. La technologie avancée des complementary metal oxide semiconductor (CMOS), les technologies de nano et de micro-fabrication et les plateformes de synthèse de matériaux innovantes sont également des moteurs du développement incroyable de l'industrie des capteurs. Ces progrès ont permis la réalisation de capteurs dotés de nombreuses caractéristiques telles que la précision accrue, les dimensions miniaturisées, l’intégrabilité, la production de masse, le coût très réduit et le temps de réponse rapide. Les ion-sensitive field-effect transistors (ISFETs) sont des capteurs à l'état solide (bio) chimiques, destinés à la détection des ions H+ (pH), Na+ et K+. Malgré cela, la commercialisation des ISFETs est encore à ses balbutiements, après près de cinq décennies de recherche et développement. Cela est dû principalement à la sensibilité limitée, à la controverse sur l'utilisation de l'électrode de référence pour le fonctionnement des ISFETs et à des problèmes de stabilité. Dans cette thèse, les ISFETs ultrasensibles et compatibles CMOS sont intégrés dans le BEOL des transistors UTBB FDSOI standard. Un circuit diviseur capacitif est utilisé pour polariser la grille d’avant afin d'assurer des performances stables du capteur. En exploitant la fonction d’amplification intrinsèque fournie par les transistors UTBB FDSOI, nous avons présenté des ISFET ultra sensibles. L'amplification découle du fort couplage électrostatique entre la grille avant et la grille arrière du FDSOI et des capacités asymétriques des deux grilles. Un changement de tension au niveau de la grille avant apparaît sur la grille arrière sous la forme d'un décalage amplifié de la tension. L'amplification, représentée par le facteur de couplage (γ), est égale au rapport de la capacité de l'oxyde de grille et de la capacité de le buried oxide (BOX). Par conséquent, en fonctionnalisant la détection du pH sur la grille avant pour les dispositifs FDSOI, la modification du potentiel de surface sur la grille avant est détectée par la grille arrière et amplifiée du facteur de couplage (γ), donnant lieu à un capteur chimique à l'état solide à sensibilité ultra-élevée. L'intégration de la fonctionnalité de détection a été réalisée en back end of line (BEOL), ce qui offre les avantages d'une fiabilité et d'une durée de vie accrues du capteur, d'une compatibilité avec le processus CMOS standard et d'une possibilité d'intégration d'un circuit diviseur capacitif. Le fonctionnement des MOSFETs, sans une polarisation appropriée de la grille avant, les rend vulnérables aux effets de grilles flottantes indésirables. Le circuit diviseur capacitif résout ce problème en polarisant la grille avant tout enmaintenant la fonctionnalité de détection sur la même grille par un couplage capacitif au métal commun du BEOL. Par conséquent, le potentiel au niveau du métal BEOL est une somme pondérée du potentiel de surface au niveau de la grille de détection et de la polarisation appliquée au niveau de la grille de contrôle. Le capteur proposé est modélisé et simulé à l'aide de TCAD-Sentaurus. Un modèle mathématique complet a été développé. Il fournit la réponse du capteur en fonction du pH de la solution (entrée du capteur) et des paramètres de conception du circuit diviseur capacitif et du transistor UTBB FDSOI. Dans ce cas, des résultats cohérents ont été obtenus des travaux de modélisation et de simulation, avec une sensibilité attendue de 780 mV / pH correspondant à un film de détection ayant une réponse de Nernst. La modélisation et la simulation du capteur proposé ont également été validées par une fabrication et une caractérisation du capteur de pH à grille étendue avec validation de son concept. Ces capteurs ont été développés par un traitement séparé du composant de détection de pH, qui est connecté électriquement au transistor uniquement lors de la caractérisation du capteur. Ceci permet une réalisation plus rapide et plus simple du capteur sans avoir besoin de masques et de motifs par lithographie. Les capteurs à grille étendue ont présenté une sensibilité de 475 mV/pH, ce qui est supérieur aux ISFET de faible puissance de l'état de l’art. Enfin, l’intégration de la fonctionnalité de détection directement dans le BEOL des dispositifs FDSOI UTBB a été poursuivie. Une sensibilité expérimentale de 730 mV/pH a été obtenue, ce qui confirme le modèle mathématique et la réponse simulée. Cette valeur est 12 fois supérieure à la limite de Nernst et supérieure aux capteurs de l'état de l’art. Les capteurs sont également évalués pour la stabilité, la résolution, l'hystérésis et la dérive dans lesquels d'excellentes performances sont démontrées. Une nouvelle architecture de détection du pH est également démontrée avec succès, dans laquelle la détection est fonctionnalisée au niveau de la diode de protection de la grille plutôt que de la grille avant des dispositifs UTBB FDSOI. La commutation de courant abrupte, aussi basse que 9 mV/decade, pourrait potentiellement augmenter la sensibilité de polarisation fixée à 6,6 decade/pH. Nous avons démontré expérimentalement une sensibilité de 1,25 decade/pH supérieure à la sensibilité reportée à l’état de l’art.Abstract: The sensor market has recently seen a dramatic growth fueled by the remarkable application of sensors in the consumer electronics, automation industry, wearable devices, the automotive sector, and in the increasingly adopted internet of things (IoT). The advanced complementary metal oxide semiconductor (CMOS) technology, the nano and micro fabrication technologies, and the innovative material synthesis platforms are also driving forces for the incredible development of the sensor industry. These technological advancements have enabled realization of sensors with characteristic features of increased accuracy, miniaturized dimension, integrability, volume production, highly reduced cost, and fast response time. Ion-sensitive field-effect transistors (ISFETs) are solid state (bio)chemical sensors, for pH (H+), Na+, K+ ion detection, that are equipped with the promise of the highly aspired features of CMOS devices. Despite this, the commercialization of ISFETs is still at the stage of infancy after nearly five decades of research and development. This is due mainly to the limited sensitivity, the controversy over the use of the reference electrode for ISFET operation, and because of stability issues. In this thesis, ultrasensitive and CMOS compatible ISFETs are integrated in the back end of line (BEOL) of standard UTBB FDSOI transistors. A capacitive divider circuit is employed for biasing the front gate for stable performance of the sensor. Exploiting the intrinsic amplification feature provided by UTBB FDSOI transistors, we demonstrated ultrahigh sensitive ISFETs. The amplification arises from the strong electrostatic coupling between the front gate and the back gate of the FDSOI, and the asymmetric capacitances of the two gates. A change in voltage at the front gate appears at the back gate as an amplified shift in voltage. The amplification, referred to as the coupling factor (γ), is equal to the ratio of the gate oxide capacitance and the buried oxide (BOX) capacitance. Therefore, functionalizing the pH sensing at the front gate of FDSOI devices, the change in surface potential at the front gate is detected at the back gate amplified by the coupling factor (γ), giving rise to an ultrahigh-sensitive solid state chemical sensor. Integration of the sensing functionality was made in the BEOL which gives the benefits of increased reliability and life time of the sensor, compatibility with the standard CMOS process, and possibility for embedding a capacitive divider circuit. Operation of the MOSFETs without a proper front gate bias makes them vulnerable for undesired floating body effects. The capacitive divider circuit addresses these issues by biasing the front gate simultaneously with the sensing functionality at the same gate through capacitive coupling to a common BEOL metal. Therefore, the potential at the BEOL metal would be a weighted sum of the surface potential at the sensing gate and the applied bias at the control gate. The proposed sensor is modeled and simulated using TCAD-Sentaurus. A complete mathematical model is developed which provides the output of the sensor as a function of the solution pH (input to the sensor), and the design parameters of the capacitive divider circuit and the UTBB FDSOI transistor. In that case, consistent results have been obtained from the modeling and simulation works, with an expected sensitivity of 780 mV/pH corresponding to a sensing film having Nernst response. The modeling and simulation of the proposed sensor was further validated by a proof of concept extended gate pH sensor fabrication and characterization. These sensors were developed by a separated processing of just the pH sensing component, which is electrically connected to the transistor only during characterization of the sensor. This provides faster and simpler realization of the sensor without the need for masks and patterning by lithography. The extended gate sensors showed 475 mV/pH sensitivity which is superior to state of the art low power ISFETs. Finally, integration of the sensing functionality directly in the BEOL of the UTBB FDSOI devices was pursued. An experimental sensitivity of 730 mV/pH is obtained which is consistent with the mathematical model and the simulated response. This is more than 12-times higher than the Nernst limit, and superior to state of the art sensors. Sensors are also evaluated for stability, resolution, hysteresis, and drift in which excellent performances are demonstrated. A novel pH sensing architecture is also successfully demonstrated in which the detection is functionalized at the gate protection diode rather than the front gate of UTBB FDSOI devices. The abrupt current switching, as low as 9 mV/decade, has the potential to increase the fixed bias sensitivity to 6.6 decade/pH. We experimentally demonstrated a sensitivity of 1.25 decade/pH which is superior to the state of the art sensitivity
    corecore