1,394 research outputs found

    Fast and Tiny Structural Self-Indexes for XML

    Full text link
    XML document markup is highly repetitive and therefore well compressible using dictionary-based methods such as DAGs or grammars. In the context of selectivity estimation, grammar-compressed trees were used before as synopsis for structural XPath queries. Here a fully-fledged index over such grammars is presented. The index allows to execute arbitrary tree algorithms with a slow-down that is comparable to the space improvement. More interestingly, certain algorithms execute much faster over the index (because no decompression occurs). E.g., for structural XPath count queries, evaluating over the index is faster than previous XPath implementations, often by two orders of magnitude. The index also allows to serialize XML results (including texts) faster than previous systems, by a factor of ca. 2-3. This is due to efficient copy handling of grammar repetitions, and because materialization is totally avoided. In order to compare with twig join implementations, we implemented a materializer which writes out pre-order numbers of result nodes, and show its competitiveness.Comment: 13 page

    AMaĻ‡oSā€”Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaĻ‡oS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaĻ‡oS and discusses how its current architecture realizes these principles

    Overview of query optimization in XML database systems

    Get PDF

    VAMANA : A High Performance, Scalable and Cost Driven XPath Engine

    Get PDF
    Many applications are migrating or beginning to make use native XML data. We anticipate that queries will emerge that emphasize the structural semantics of XML query languages like XPath and XQuery. This brings a need for an efficient query engine and database management system tailored for XML data similar to traditional relational engines. While mapping large XML documents into relational database systems while possible, poses difficulty in mapping XML queries to the less powerful relational query language SQL and creates a data model mismatch between relational tables and semi-structured XML data. Hence native solutions to efficiently store and query XML data are being developed recently. However, most of these systems thus far fail to demonstrate scalability with large document sizes, to provide robust support for the XPath query language nor to adequately address costing with respect to query optimization. In this thesis, we propose a novel cost-driven XPath engine to support the scalable evaluation of ad-hoc XPath expressions called VAMANA. VAMANA makes use of an efficient XML repository for storing and indexing large XML documents called the Multi-Axis Storage Structure (MASS) developed at WPI. VAMANA extensively uses indexes for query evaluation by considering index-only plans. To the best of our knowledge, it is the only XML query engine that supports an index plan approach for large XML documents. Our index-oriented query plans allow queries to be evaluated while reading only a fraction of the data, as all tuples for a particular context node are clustered together. The pipelined query framework minimizes the cost of handing intermediate data during query processing. Unlike other native solutions, VAMANA provides support for all 13 XPath axes. Our schema independent cost model provides dynamically calculated statistics that are then used for intelligent cost-based transformations, further improving performance. Our optimization strategy for increasing execution time performance is affirmed through our experimental studies on XMark benchmark data. VAMANA query execution is significantly faster than leading available XML query engines

    Estimating Answer Sizes for XML Queries

    Get PDF
    Abstract. Estimating the sizes of query results, and intermediate results, is crucial to many aspects of query processing. In particular, it is necessary for effective query optimization. Even at the user level, predictions of the total result size can be valuable in ā€œnext-step ā€ decisions, such as query refinement. This paper proposes a technique to obtain query result size estimates effectively in an XML database. Queries in XML frequently specify structural patterns, requiring specific relationships between selected elements. Whereas traditional techniques can estimate the number of nodes (XML elements) that will satisfy a node-specific predicate in the query pattern, such estimates cannot easily be combined to provide estimates for the entire query pattern, since element occurrences are expected to have high correlation. We propose a solution based on a novel histogram encoding of element occurrence position. With such position histograms, we are able to obtain estimates of sizes for complex pattern queries, as well as for simpler intermediate patterns that may be evaluated in alternative query plans, by means of a position histogram join (pH-join) algorithm that we introduce. We extend our technique to exploit schema information regarding allowable structure (the no-overlap property) through the use of a coverage histogram. We present an extensive experimental evaluation using several XML data sets, both real and synthetic, with a variety of queries. Our results demonstrate that accurate and robust estimates can be achieved, with limited space, and at a miniscule computational cost. These techniques have been implemented in the context of the TIMBER native XML database [22] at the University of Michigan.

    XQuery optimization in relational database systems

    Get PDF

    IMAX: incremental maintenance of schema-based XML statistics

    Get PDF
    Journal ArticleCurrent approaches for estimating the cardinality of XML queries are applicable to a static scenario wherein the underlying XML data does not change subsequent to the collection of statistics on the repository. However, in practice, many XML-based applications are dynamic and involve frequent updates to the data. In this paper, we investigate efficient strategies for incrementally maintaining statistical summaries as and when updates are applied to the data. Specifically, we propose algorithms that handle both the addition of new documents as well as random insertions in the existing document trees. We also show, through a detailed performance evaluation, that our incremental techniques are significantly faster than the naive recomputation approach; and that estimation accuracy can be maintained even with a fixed memory budget

    CIRQUID: Complex information retrieval queries in a database

    Get PDF
    • ā€¦
    corecore