
XQuery Optimization in Relational Database Systems

Riham Abdel Kader
Supervised by Maurice van Keulen

Univeristy of Twente
P.O. Box 217

7500 AE Enschede, The Netherlands

r.abdelkader@utwente.nl

ABSTRACT
With the increasing need for manipulating and exchanging
XML data, the topic of processing XML documents and op-
timizing XML queries is being studied by many researchers.
There are still, however, many open issues in query optimiza-
tion in the context of XML database systems. In this paper,
we give an overview on the state of XML query optimiza-
tion by reviewing the different optimization techniques de-
veloped by previous research and employed by existing XML
database systems. We subsequently enumerate some of the
still unresolved problems in the optimization process. We
conclude this paper with a description of our current work
in which we focus on improving the evaluation of XPath
expressions by rewriting the path at the algebraic level.

1. INTRODUCTION
The eXtensible Markup Language (XML) defined and stan-

dardized by the World Wide Web Consortium (W3C) has
proven to be a good model for data format and exchange in
distributed systems and over the Web due to its tree struc-
ture and flexibility. The large spread of XML implies a
growth in the size of the data exchanged, stored and subse-
quently processed. Thus there is a pressing need for XML
optimization techniques and much current research is fo-
cused on developing such techniques.

Several languages have been defined for selecting and trans-
forming XML data, of which two languages XPath and XQuery
are standardized by W3C . While XPath can only perform
selections on an XML document, XQuery supports richer
operations (joins, aggregations, and element construction).

Several systems for processing XQueries over stored doc-
uments have been proposed. These systems differ in several
aspects, two of which are the storage layout (i.e., relational
or native), and the adopted algebra (i.e., tree-based or tuple-
based). In a relational approach, XML data is mapped to
and stored as relational tables while native systems have a
dedicated tree-based storage structure. Specific optimiza-
tion techniques have been developed for many systems. Ex-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

tended relational systems have an advantage over native en-
gines in that they can make use of the mature relational tech-
nology. These optimization techniques, however, fall short
in meeting the complexity of the XML data and the devel-
opment of new techniques or the extension of the already
existing ones is required.

This PhD research focuses on XQuery optimization in the
context of relational database systems. Our aim is to de-
velop algebraic equivalence rules for query rewriting, accu-
rate cost models for estimating plan costs based on collected
statistics and a plan enumeration and selection technique
that chooses the best plan at runtime. Besides the more
generic scientific contributions applicable to other systems,
the result of this research is meant to be incorporated in the
relational database system MonetDB/XQuery.

In this paper, we first describe the state of art for some
optimization techniques. Section 3 lists some of the unre-
solved problems in XQuery optimization and in Section 4 we
describe the motivation and the work we are currently do-
ing to develop an equivalence rule for algebraically rewriting
XPath expressions.

2. EXISTING XML OPTIMIZATION TECH-
NIQUES

2.1 Optimization Based on Equivalence Rewrit-
ing

In XML, equivalence rewriting can be accomplished at
two different levels: XQuery core level which is equivalent
to syntactical rewriting, and algebraic level. The XQuery
core language defined in [5] is a proper subset of the XQuery
language and consists of a set of simple expressions to which
the more complex XQuery expressions are rewritten before
being translated into a logical plan.

2.1.1 XPath Rewriting
Several XML processing systems can not handle XPath

expressions with reverse axes, such as parent, ancestor, pre-
ceding, etc. Moreover, some types of systems (e.g., stream-
ing systems) are not efficient in evaluating this group of axes.
An example of an XQuery core level equivalence rewriting
is the technique described in [13]. It tries to overcome the
first problem and to optimize the processing in the second
situation by defining two sets of equivalence rules to rewrite
an XPath expression involving reverse axes to an equivalent
reverse-axis-free one. One set of rules rewrites the XPath to
an expression including a join operator while the other set
rewrites the XPath to one containing more location steps.

2.1.2 Order and Duplicate Elimination
One important requirement with optimization potential

is that nodes returned from XPath or XQuery evaluation
should be in document-order unless the user explicitly disre-
gards order. The XQuery standard specifies that an XPath
is translated to an XQuery core expression such that every
step in the XPath is followed by a distinct-docorder opera-
tor. This operator maintains not only the document order
but also the uniqueness of the nodes throughout the path
evaluation. Although having these operators after each step
keeps the intermediate results duplicate-free, it might slow
down the system’s performance. An alternative is to sort
and eliminate duplicates only at the end of the path eval-
uation but this will result in performing unnecessary and
redundant work which may also degrade the system’s per-
formance. The technique proposed in [6] decides after which
steps in the plan to keep these expensive operators and after
which they can be safely removed, such that the evaluation
time of the plan is minimized. Properties like ordered, and
duplicate free are assigned to a path expression if its evalua-
tion returns a set of nodes that conforms to these properties.
The described technique is an automaton-based algorithm
called DDO which, given a starting set of nodes having a
certain property, can infer the property of the set resulting
from applying a certain XPath axis. By inferring the prop-
erties of the result, it can be decided if the presence of a sort
and/or duplicate elimination operator is necessary after this
step. Although this proposal can handle all XPath axes, it
is limited by one constraint: the input to the start state in
the automaton can only be a singleton node.

Other systems tackle the order and duplicate-free problem
at a lower level. The duplicate elimination and order prob-
lem in MonetDB/XQuery, for instance, is partially solved
inside the staircase join itself [10]. This operator is imple-
mented such that it generates results sorted in document
order and free of duplicates. Order is preserved by using
the pre/post numbering of nodes, while distinctness is guar-
anteed by pruning out the elements from the input context
nodes for which the application of the axis step in question
will return identical results. Structural joins [2] for exam-
ple, used in Timber, are also implemented such that they
return the result sorted either in reverse or in document or-
der depending on the used variant. If the result is output
in document order then no sort operator is needed. Holistic
Twig joins [3], also implemented in Timber for evaluating
XPath expressions, output a result sorted in document or-
der. These two classes of operators, however, do not guar-
antee a duplicate-free result.

2.1.3 Join Reordering
Join reordering is a very important and widely used op-

timization technique in databases that use an algebra with
joins, thus it is very natural to study its application in the
XML context. One fundamental difference for ordering joins
between relational and XML systems lies in the fact that
XQuery returns its generated result in document order and
thus requires the use of order-preserving joins. These types
of joins are associative but not commutative, which reduces
the number of alternative plans that can be generated by the
optimizer. Moreover, adopting the general heuristic used by
optimizers in relational database systems that only consid-
ers left-deep trees will limit the search space even more.
These two constraints enforced in the process of generating

alternative plans increase the chance of missing the optimal
or suboptimal plan. The work presented in [12, 21] tackles
the problem of join reordering in the Natix and Timber sys-
tems. The proposed solution is to extend the search space
by considering plans that are not left-deep and using joins
that are not order-preserving since order can be recovered
at a relatively small cost by adding a sort operator at the
appropriate position in the plan. The conclusion made by
the authors is that for optimizing the evaluation of XQueries
contrary to relational database systems, exploring a larger
search space increases the chance to find a better plan.

2.1.4 Plan Simplification
The work on algebraic equivalences in the context of Mon-

etDB/XQuery is presented in [9]. The paper argues that
plans generated by Pathfinder are large in size which makes
the application of classical rewriting techniques rather diffi-
cult and limited. The used operators, however, are simple
and restricted variants of relational operators which allows
the use of inference rules to infer properties for intermedi-
ate results and operators, like key, cardinality, denseness,
and functional and multivalued dependencies. Given the in-
ferred properties of a single operator in the plan, predefined
equivalence rules simplify it by pruning for example some
obsolete input columns, and/or replace it with a simpler
less expensive operator (e.g., replace a join with a projec-
tion). The multivalued dependency property is used to de-
tect the presence of an invariable item sequence e inside a
loop, which does not depend on the loop variable, and hence
can be removed from the loop.

2.2 Cardinality Estimation and Cost Model
An accurate cost model is needed for an optimizer to

choose the best plan. Cardinality estimation greatly affects
on the accuracy of the cost model. Therefore a lot of re-
search was devoted to the problem of cardinality estimation
of XPath expressions in XML databases.

2.2.1 Cardinality estimation
The main difference in cardinality estimation between re-

lational and XML databases lies in the fact that path queries
specify structure constraints in addition to value constraints.
Thus the optimizer should collect statistics about both value
distribution and structural relationships between elements.

An early work on selectivity estimation of simple path ex-
pressions found in [4] estimates the number of twig matches
in a node-labeled tree by using a summary data structure
referred to as Correlated Subpath Tree (CST). The problem
of cardinality estimation on twigs is reduced to the problem
of estimating substring selectivity. The proposed technique
stores count statistics about frequently occurring subpaths
and maintains the correlation among the subpaths sharing
the same root. The disadvantages of this approach are that
the whole CST must be built before being pruned, and it
does not handle wildcards.

The work in [1] proposes two different synopses, path
trees and Markov tables, to summarize XML documents.
A path tree represents the structure of an XML document
where path tree vertices are associated with the cardinality
of these nodes in the document. Markov tables store cardi-
nality statistics for subpaths of lengths up to a certain value.
The selectivity of longer paths is estimated by combining the
cardinality statistics of several subpaths. Path trees and

Markov tables may grow large and hence can be summa-
rized by replacing some non frequent vertices and subpaths
by wildcards nodes and *-paths correlated with information
about the deleted statistics. This technique supports only
simple linear path queries.

StatiX [8] is a framework providing selectivity estimation
for XQueries in the presence of an XML schema by trans-
forming the schema such that statistics are collected at dif-
ferent levels of granularity. The approach uses a histogram
to maintain information on both the structure and values in
the document. The application of this technique, however,
is restricted to a small subset of the XQuery grammar.

The technique proposed in [20] builds a two-dimensional
position histogram based on the start and end labels as-
signed to nodes using a certain numbering scheme. The
histograms are used to estimate the result sizes of path ex-
pressions that use descendant and/or ancestor steps only
and can not be adopted for more general path expressions.

The Bloom histogram synopsis proposed in [19] provides
efficient and accurate cardinality estimation for XPath ex-
pressions and supports updates on the underlying XML database
by reflecting any change in the document through updates to
the dynamic summary component. This approach, however,
can handle only simple path expressions.

The XSketch synopsis proposed in [14] estimates the selec-
tivity of complex XPath expressions over graph-structured
XML data by capturing the key structural information (i.e.,
label path and branching) in the graphs. The construction
algorithm of the XSketch synopsis employs a heuristic based
on greedy forward selection. It generates a label-split graph
from the XML tree by merging all XML nodes with the same
label into one vertex, and then successively refines the graph
by exploiting localized backward and forward stability prop-
erties in the graph. The synopsis is built using a sample of
path queries which makes it dependent on the generated set.
The work in [15] augments each node in the structural XS-
ketch synopsis with distribution information on the element
values in the XML graph to estimate the cardinality of path
queries that also contain value-based constraints.

TreeSketch [16], another synopsis developed by the same
authors, also employs a structural clustering technique. Un-
like XSketch, it is based on count-stability which is a refine-
ment of forward stability. The construction of the synopses
starts by building a count-stable summary graph of an XML
data tree and then incrementally merges element clusters
that are closely similar in their subtree structure until the
memory budget is met. XSketch and TreeSketch present
two shortcomings: the construction time of the synopsis is
high and updating it is also expensive. TreeSketch, however,
has one advantage over XSketch: it is orders of magnitude
more accurate in estimating results cardinality and needs
less time to construct.

The work in [7] describes another synopsis for XML doc-
uments to estimate the selectivity of path expressions. The
approach supports branching XPath queries including all
axis types. The construction of the synopsis lies in trans-
lating the XML document to an SLT (Straight Line Tree)
grammar by using a tree compression algorithm. An XPath
query is then converted into tree automata which in combi-
nation with the SLT grammar can be used to estimate the
results of the query.

Except for [7, 19], all existing approaches can not handle
updates to the underlying database. Only two of the pro-

posals described above [8, 14] support XPath queries with
value constraints. None of these approaches perform well on
recursive data sets, that is if they are recursion-aware.

2.2.2 Cost Model
Developing cost models for operators must take into con-

sideration, among other parameters, the physical layout of
data, the way this data is retrieved from disk, the amount
of memory available, and the algorithm implementing the
operators’ functionality. The fact that XML operators are
much more complex due to the nature of the XML data ren-
ders the prediction and modeling of the data access a hard
process. Therefore constructing an accurate cost model for
XML query processing is far more difficult than developing
cost models for relational databases. Most research on cost-
based XML optimization has only focused, as we have seen
in the previous section, on the problem of cardinality estima-
tion. Comet, described in [22], is one of the few approaches
known for defining a cost model for XML.

Comet is a statistical learning technique that can be used
to model the CPU cost of complex XML operators. First a
set of queries and data features critical in determining the
cost of the operator need to be identified, then using statis-
tics and analytical formulas feature values are estimated.
Finally Comet employs the transform regression method to
learn the functional relationship between the feature values
and the operator’s cost. The resulting cost function is then
used to estimate the cost of the operator and can be updated
through a process of query feedback to adapt to changes in
query workload and system environment. However this ap-
proach can only estimate the CPU cost of operators and can
not be used for determining I/O cost.

2.3 Plan Enumeration and Selection
Plan enumeration in Timber consists of enumerating the

join orders in the plan. The work in [21] proposes five
cost-based enumeration techniques which explore the space
of execution plans by reordering join operators and guar-
antee the choice of the optimal or suboptimal plan. The
difference between the proposed algorithms is the number
of plans generated for choosing the optimal one, (i.e., the
time spent on the enumeration of plans), and the certainty
of picking the optimal plan at the end. The first two al-
gorithms, Dynamic Programming and Dynamic Program-
ming with Pruning, enumerate respectively all or a subset
of equivalent plans and make sure the optimal one is chosen.
The next two algorithms apply some pruning techniques to
decrease the search space but might fail in finding the op-
timal plan. The fifth algorithm reduces the search space
by only considering fully-pipelined plans. The latter three
algorithms trade off the optimality of the chosen plan for
the time spent on enumeration. The authors conclude that
the choice of the enumeration algorithm should depend on
the query being executed: if the query is not too expensive,
then the fully-pipelined algorithm can find a good plan in a
short time. If the query’s execution is slow then it is best
to use the Dynamic Programming with Pruning algorithm
to produce the optimal plan.

The work in [11] proposes three different plans for evalu-
ating XPath expressions each using one type of navigational
primitive. The first technique translates every location step
in the path to an Unnested-Map operator while the second
and third group operations requiring expensive I/O access to

the disk into a single operator, either a XScan or a XSched-
ule operator. The two types of operators are responsible for
scheduling and managing inter-cluster operations such that
the time spent accessing the physical layer is minimized, i.e.,
reducing the number of times a page is loaded from hard
disk, and optimizing the order in which pages are accessed.
XSchedule employs an asynchronous I/O while XScan in-
volves a sequential scan to the data. The results show that
XSchedule and XScan almost always outperform the simple
method, while XSchedule outperforms XScan if the query is
highly selective.

3. OPEN PROBLEMS
Although a lot of work has been done in the optimization

of XML queries, several issues are still unresolved. We enu-
merate, in this section, some of the existing open problems.

3.1 Equivalence Rewriting
XPath rewriting As XPath is a central expression in XQuery,
its evaluation performance has a big impact on the overall
performance of the XQuery itself. Therefore one possibility
to optimize the evaluation of XQueries is by rewriting XPath
expressions into equivalent more efficient ones. Some work
for syntactically rewriting XPath expressions, e.g. [13], has
already been done; however, we argue that exploiting this
rewriting at the relational algebraic level is a better choice
and presents several advantages.

Element construction optimization It is common in
XQuery to query XML fragments that were constructed by
the query itself. The fact that element construction is an ex-
pensive operation that often requires the copying of a com-
plete XML subtree, gives rise to the XQuery optimization
question: how can we remove or reduce, if possible, inter-
mediate XML fragment construction or push computation
through the construction process. We illustrate this prob-
lem with the following simple XQuery example:

declare function local:foo($e as element()) as element()
{ <a>{$e} };
local:foo(Hello World!)//b

In this example, the construction of the XML element
<a> is unnecessary, consequently the call to the function
foo and the navigation to the b elements can be removed. A
query rewriter module would like to find such unnecessary
constructions and navigation and eliminate them. But if the
navigation in the previous example attempts to access in the
results returned by the foo function the element a, then this
optimization is not possible and will lead to wrong results.
It is also an open question whether it is better to perform
this rewriting at the XQuery core or at the algebra level.

User defined recursive functions optimization XQuery
is employed not only as a query language but also as a
programming language, therefore it is not surprising to see
that in different types of applications recursive functions
are being defined by users to query XML data. Several
research proposals have tackled the problem of optimizing
user-defined functions in XQuery; however, little work fo-
cused on recursive functions. One of the techniques used
to minimize the overhead of user-defined functions is inlin-
ing (i.e., replacing the function call by the function code).
This approach can be adopted for a specific class of recur-

sive functions only in the presence of schema information,
and can not be applied in all other cases since it is undecid-
able a priori when to break the recursion as this, in general,
depends on the value of the passed data which can not be
checked by the rewriter. A question arises here: can we per-
form this optimization at the algebra level and if so which
recursive XQuery function definitions can be represented al-
gebraically and what are the possible techniques to optimize
these generated plans.

3.2 Cardinality Estimation and Cost Model
To make sure the rewriting phase will result in generat-

ing faster plans, the decisions made during the rewriting
process should be based on collected statistics and a cost
model. Since the accuracy of cardinality estimation greatly
impacts the accuracy of the plan’s cost estimation, a lot of
research has been done to develop synopses to estimate the
cardinality for XPath expressions. Each technique described
in Section 2.2.1 has its own shortcomings, and thus there is
a need for a better, compact synopsis that meets the fol-
lowing criteria: returns accurate estimations, covers a large
subset of XQuery and not only XPath expressions, handles
efficiently updates to the document and recursive data, is
constructed at a low price, and supports queries with value
constraints. Furthermore it is beneficial to complement the
proposed approach for cardinality estimation with a tech-
nique that estimates the distribution of the returned data,
which will result in more accurate predictions of the result
size of subsequent operations. In fact this information is
highly valuable for operators whose cardinality estimation
greatly depends on the distribution of their input data like
for example aggregation, and selection.

An accurate cost model is essential for selecting a good
query plan. Little research has been done for modeling
the cost of operators in XML database systems. The only
proposed approach known to us that addresses this issue is
Comet [22]; however, it only estimates CPU costs. Hence, a
suitable cost model that takes into account both the CPU
and I/O costs of operators in an XML database is needed.

3.3 Plan Selection
At compile time, several parameters such as size of input,

selectivity and available resources are estimated by the opti-
mizer in order to make its choice of the plan to be executed.
The accuracy of these estimations is not always guaranteed
and hence the static plan chosen by the optimizer is not
always optimal or close to optimal. A technique called dy-
namic plan selection, which has been proposed in the con-
text of relational database systems, postpones the selection
of the best plan to runtime. According to our knowledge, no
research has been done on this topic in the context of XML
databases. Since predicting input cardinality and operator
selectivity is even harder for XML than relational data, we
think one interesting approach is to see to which extent dy-
namic plan selection can be applied for XML. With this tech-
nique, the plan generated by the optimizer will contain sev-
eral subplans connected by a special operator (e.g., a choice
operator), where a choice between the equivalent subplans
is made at runtime. In fact, MonetDB/XQuery presents
a good platform to experiment with this approach since it
supports materialization of intermediate results. The choice
to shift to a better and semantically equivalent subplan can
be made by considering, among other things, the size of

intermediate results. Several questions arise when adopt-
ing this technique, three of which are: how is the dynamic
plan created? Which optimization decisions are postponed
to runtime? How effective is this technique in practice?

4. XPATH REWRITING
One open problem we currently investigate is the possibil-

ity of rewriting XPaths at the algebraic level. In this section
we describe the motivation of our work and the approach
we adopt to perform this rewriting in MonetDB/XQuery
while keeping our technique applicable to other relational
database systems.

4.1 Motivating Example
To illustrate the need and benefits of XPath rewriting,

we present a very simple motivating example. Consider
the XPath //a/b and an XML document that consists of
1,001,000 elements of type a of which 1000 have a child el-
ement b. The other 1,000,000 a elements are leaves. In
such a situation, it might be cheaper to execute the XPath
//b[./parent::a] instead of //a/b. We claim that this is
specifically true if the execution process of the XPath re-
quires all nodes a to be looked up before returning all its
children b. Experiments on processing two pairs of equiva-
lent XPaths over the XML document described above were
done using different systems and are shown in Table 1.

Our claim proved to be true in MonetDB/XQuery: it is
cheaper to retrieve 1,000 b elements and then check the par-
ents of type a than to retrieve 1,001,000 a elements and
then navigate to the b children. The difference in the Saxon
system is, however, not obvious nor remarkable. The other
two systems, Galax and Qizx, show different results where it
seems that the existence of a predicate in the XPath makes
its evaluation more expensive and this takes over the benefit
gained by first retrieving the b elements.

The results in this experiment lead to the following con-
clusion: the rewriting of XPath expressions to equivalent
more efficient ones is a good optimization technique that
should be based on some heuristics. Different systems need
different heuristics. For example, in MonetDB/XQuery it is
beneficial to rewrite the XPath such that the number of ele-
ments retrieved is minimized. Once the appropriate heuris-
tic is defined, the question that arises is how to perform this
rewriting such that, based on collected statistics, it increases
the system’s performance.

4.2 Rewriting Approach

4.2.1 XPath Level
Proposals for rewriting XPath expressions at the syntax

or core level, e.g. [13], has three disadvantages. First it can
only find rewritings that are expressible in XPath, hence
missing some possible more efficient execution plans. More-
over, it is harder for the optimizer to use and benefit from the
available statistics. Finally, even if statistical knowledge is
used, applying the defined heuristic at this level, then trans-
lating the XQuery core plan to an algebra, and afterwards
applying algebraic optimization rules might lead to unpre-
dictable plans. The work in [17] showed that in some situ-
ations the decisions taken by query optimizers can be very
unpredictable and the assumptions it makes do not always
hold. Consequently it is safer to exploit the XPath symme-
tries at the algebra level where the application of rewriting

δ

πiter,item

./((ctx.item<doc′.pre)&(ctx.item+doc.size≥doc′.pre))

uu II
./ctx.item=doc.pre

uuu II doc′

ctx doc

Figure 1: The relational equivalence of a descendant
Staircase Join operator

rules can be synchronized with other optimization rules.

4.2.2 Staircase Join Reordering
MonetDB/XQuery adopts a relational algebra extending

it with, among others, the staircase join operator [10] to
accelerate the evaluation of XPath location steps. Each step
in an XPath expression is translated into either one or a pair
of staircase joins. Therefore performing the rewriting at this
level consists of reordering the staircase join operators in the
plan. This might seem like a normal join reordering process
but in fact is not since a staircase join (although named a
join) does not share the same properties of a join:

• The staircase join is a right semijoin operator,
• It is not commutative nor associative [18].

Having these properties, staircase joins lack the flexibility
that normal joins have for being easily reordered in the plan,
hence the optimization possibilities offered by this approach
largely coincide with those at the XQuery core level.

4.2.3 Purely Relational Rewriting
Another way to achieve the XPath rewriting idea is to per-

form the process at the relational level. This is accomplished
by following several steps. The first consists of translating
XQuery core plans to relational plans free of staircase joins
by mapping XPath steps to a sequence of relational oper-
ators equivalent to a staircase join. The relational stair-
case join operator representing the descendant axis is shown
in Figure 1. The table ctx consists of the context nodes
from which we navigate to the next elements, and doc and
doc′ represent the queried XML document. Defining the se-
quences of relational operators equivalent for the other axis
types is easily accomplished by introducing simple modifi-
cations to the plan.

The second step reorders the relational operators in the
new plan by for example pushing selective operators down
and striving to some normal form. Finally the last step tries
to recognize the sequence of relational operators equivalent
to the staircase join and maps back the ones it finds to
staircase joins.

This approach has several advantages over the ones de-
scribed above. First it is possible to find plans that are not
expressible with the XPath syntax. A very simple rewrite
would transform the plan for the XPath /a//b into one con-
sisting of the path //b followed by a join-based ancestor step
which uses an index selection returning only a nodes on level
1. Second the XPath rewriting technique we propose is gen-
eral enough and can be applied to any relational database
system. Moreover if dynamic plan selection is supported
then the optimizer can rewrite the path expression into sev-
eral equivalent ones and defer the choice of the optimal one
to runtime.

MonetDB/XQuery Galax Qizx Saxon
//a/b 0.316 7.171 3.618 10.04

//b[./parent::a] 0.165 7.328 4.611 9.3

//b/parent::a 0.163 5.379 3.293 9.35
//a[./child::b] 0.541 11.247 5.308 10.09

Table 1: XPath Evaluation Time for Different XML Processing Systems

5. CONCLUSIONS
Although the topic of optimizing XQueries is getting a

lot of attention from the database community, many prob-
lems are still unresolved. In this paper we have given an
overview of some of the work accomplished in this field, and
have identified some open problems. Two promising areas
for optimization are element construction and user-defined
recursive functions. The former optimization technique is
to remove or reduce, if possible, unnecessary intermediate
XML fragment construction and/or to push computation
down the construction. The other optimization is to find
the classes of user-defined recursive functions that can be
compiled to algebraic operators and to define rewriting rules
that optimize the generated plans.

Although a lot of work has been done to develop a syn-
opsis for an XML document, the proposed techniques still
present some shortcomings. We have enumerated the prop-
erties that a synopsis should have and we argue that the
defined synopsis should return not only the cardinality of
the result but also its distribution. An accurate cost model
that takes into account both the CPU and I/O costs of op-
erators in an XML database is also needed. We also propose
to use a dynamic plan selection technique to delay some op-
timization decisions until runtime.

We are currently working on an approach to rewrite XPaths
at the relational algebraic level such that more efficient plans
that might not be expressible in XPath syntax can be de-
rived. We claim that our solution is general enough and can
be applied to other relational database systems, and it al-
lows the decision of which “XPath expression” (subplan) to
chose to be deferred to runtime. Moreover, this approach
will offer an extra proof that the relational model and alge-
bra are powerful enough to deal with all requirements that
querying XML documents poses.

6. REFERENCES
[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton.

Estimating the Selectivity of XML Path Expressions
for Internet Scale Applications. In VLDB, pages
591–600, 2001.

[2] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,
N. Koudas, and D. Srivastava. Structural Joins: A
Primitive for Efficient XML Query Pattern Matching.
Int. Conf. on Data Engineering (ICDE), 2002.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. In
SIGMOD Conference, pages 310–321, 2002.

[4] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas,
S. Muthukrishnan, R. T. Ng, and D. Srivastava.
Counting Twig Matches in a Tree. In ICDE, 2001.

[5] D. Draper, P. Frankhauser, M. Fernandez,
A. Malhotra, K. Rose, M. Rys, J. Simeon, and
P. Wadler. XQuery 1.0 and XPath 2.0 Formal

Semantics. W3C working draft,
http://www.w3.org/TR/xquery-semantics/, 2004.

[6] M. F. Fernández, J. Hidders, P. Michiels, J. Siméon,
and R. Vercammen. Optimizing Sorting and Duplicate
Elimination in XQuery Path Expressions. In DEXA,
pages 554–563, 2005.

[7] D. Fisher and S. Maneth. Structural Selectivity
Estimation for XML Documents. In ICDE, 2007.

[8] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. StatiX: Making XML Count. In SIGMOD
Conference, pages 181–191, 2002.

[9] T. Grust. Purely Relational FLWORs. In XIME-P,
2005.

[10] T. Grust, M. van Keulen, and J. Teubner. Staircase
Join: Teach a Relational DBMS to Watch its (Axis)
Steps. In VLDB, pages 524–525, 2003.

[11] C.-C. Kanne, M. Brantner, and G. Moerkotte.
Cost-Sensitive Reordering of Navigational Primitives.
In SIGMOD Conference, pages 742–753, 2005.

[12] N. May, S. Helmer, C.-C. Kanne, and G. Moerkotte.
XQuery Processing in Natix with an Emphasis on
Join Ordering. In XIME-P, pages 49–54, 2004.

[13] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking Forward. In EDBT Workshops, pages
109–127, 2002.

[14] N. Polyzotis and M. N. Garofalakis. Statistical
Synopses for Graph-Structured XML Databases. In
SIGMOD Conference, pages 358–369, 2002.

[15] N. Polyzotis and M. N. Garofalakis. Structure and
Value Synopses for XML Data Graphs. In VLDB,
pages 466–477, 2002.

[16] N. Polyzotis, M. N. Garofalakis, and Y. E. Ioannidis.
Approximate XML Query Answers. In SIGMOD
Conference, pages 263–274, 2004.

[17] N. Reddy and J. R. Haritsa. Analyzing plan diagrams
of database query optimizers. In VLDB, pages
1228–1240, 2005.

[18] R. Verhage. Relational Approach to XPath Query
Optimization. Master Thesis, University of Twente,
2005.

[19] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom
Histogram: Path Selectivity Estimation for XML Data
with Updates. In VLDB, pages 240–251, 2004.

[20] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating
Answer Sizes for XML Queries. In EDBT, pages
590–608, 2002.

[21] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural
Join Order Selection for XML Query Optimization. In
ICDE, pages 443–454, 2003.

[22] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman,
and C. Zhang. Statistical Learning Techniques for
Costing XML Queries. In VLDB, pages 289–300, 2005.

