Overview of Query Optimization in XML
Database Systems

Riham Abdel Kader Maurice van Keulen

November 12, 2007

Contents

Introduction

1 Optimization in Relational Database Systems
1.1 Search Space
1.1.1 Algebraic Rewriting
1.1.2 Choice of Physical Operators
1.2 Cost Model
1.2.1 Statistics
1.2.2 Cardinality and Cost Estimation
1.3 Plan Enumeration
1.3.1 Deterministic Algorithms
1.3.2 Randomized Algorithms
1.3.3 Genetic Algorithms L.

2 Existing XML Database Systems
2.1 Evaluating XQueries over Stored Data
2.1.1 Native XML Database Systems
2.1.2 Memory-resident XML Database System
2.1.3 Relational XML Database Systems
2.2 Evaluating XQueries over Streaming XML Data.

3 Optimization in XML database Systems
3.1 Equivalence Rewriting Based Optimization
3.1.1 Syntax Rewriting
3.1.2 Algebraic Rewriting
3.2 Cardinality estimation and Cost Model
3.2.1 Cardinality Estimation
322 CostModels
3.3 Plan Enumeration and Selection

4 Open Problems
4.1 Equivalence Rewriting oL
4.1.1 XPath Rewriting L.
4.1.2 Element Construction Optimization

13
14
14
16
16
17

19
19
19
21
22
22
24
25

4.1.3 User Defined Recursive Function Optimization 27

4.2 Cardinality Estimation and Cost Model 27
4.3 Plan Selection 28
Conclusion 29

Bibliography 30

ii

Introduction

In the second half of the 20*" century, the need for a standard for database
management systems was growing. In 1970, Edgar Codd has laid down the
foundation to databases, known as the relational model in which data repre-
sented as tuples is stored in tables called relations. One of the main aspects
in this model is the use of algebraic operators to manipulate the data. Other
types of database management systems, like Object-Oriented and Native XML,
have later emerged aiming at supporting storage and querying facilities for other
kinds of data. In general, the approach adopted by relational, Object-Oriented
and XML database engines for answering a user query is depicted in Figure 1.
As shown in the figure, a user

query is first parsed and mapped to User Query

its equivalent algebraic representation
called logical plan or query plan. This
plan is then optimized by applying ’Parsing, Validation and Translation‘
several optimization techniques and
strategies. The output of this phase Logical Plan
is an execution plan also known as
physical plan. The next phase con-
sists of mapping the execution plan to Execution Plan
a sequence of statements which will in
turn be processed as a final step to-

‘ Query Optimizer ‘

’Query Code Generator ‘

wards the generatlon of 'results. ' Generated Code
The logical plan, which has either
a tree or a graph structure, consists ’Code Processor‘

of a connected sequence of algebraic
operators. The set of all operators

defined by a database system forms Results
what is called the database’s logical _ .
algebra. A clearly and precisely de- Figure 1: Query processing steps

fined logical algebra in any database

system is the single mechanism to guarantee the soundness and completeness of
any query evaluation. Moreover, optimization in database systems is easier in
the presence of a logical algebra. A logical algebra is implemented in a physical
algebra where each logical operator is implemented by one or more physical
operators. Examples of logical operators are: Select, Project, Join, Union, In-

tersection, etc. Some possible physical implementations of, for instance, the Join
operator are Nested loop, Sort-merge, and Hash-based. The difference between
these physical operators is in the way they implement the intended functional-
ity of the Join, resulting in a difference in the amount of resources (I/O cost,
CPU resources, etc) consumed by each. One of the tasks of the optimizer is to
map, based on some collected statistical data and cost estimation techniques,
each logical operator in the plan to one of its corresponding physical imple-
mentations such that the execution time of the plan is minimized. Generally
speaking, the optimization step is defined as the process by which the optimal
or suboptimal plan is chosen for executing the user query.

The hardest step in the query execution process is the optimization phase.
This report tries to give a closer overview of the state of the optimization process
in the context of XML database systems. With this aim in mind, we first
briefly summarize the traditional optimization techniques used in the relational
model. We then review the different proposed systems for processing XML
data. Finally, we present the research done in the field of optimizing the query
execution in XML databases. We conclude this report by enumerating some
of the problems still faced in the optimization process in the context of XML
database systems.

Chapter 1

Optimization in Relational
Database Systems

As mentioned in the Introduction,
every user query submitted to a
database system is converted to a log-
ical plan which is then mapped to a
physical plan. The aim is to choose
the most favorable physical plan given
some underlying statistics. It is the
task of the optimizer component to
make this choice, by applying several
optimization steps which are depicted
in Figure 1.1.

The optimizer enumerates alter-
native plans by applying some rewrit-
ing rules to the original one, and picks
the optimal plan according to statis-
tical data distributions and cost esti-
mation. One requirement of the op-
timization process, in the case of ad-

hoc queries, is that it should be fast, i.e.

Logical Plan

’ Equivalence Rewriting ‘

]

EqP, EqP, -~ EqP,

\ J

’ Cost Estimation ‘

[

{ { }
CostP; CostPs --- CostPy,

‘ Optimal Plan Selection ‘

l

Optimal Execution Plan

Figure 1.1: Optimization steps

it should represent only a small

percentage of the time needed to execute a query.

This section describes each optimization step and gives a brief overview of
the optimization techniques adopted in relational database systems. The ideas
in Section 1.1 and Section 1.2 are based on information gathered from the two

books [35, 39).

1.1 Search Space

The logical plan to which a user query is translated is in most cases not the opti-
mal one. For this reason, the optimizer rewrites the original plan into equivalent
query plans which will have a faster execution time. By equivalent query plans,
we mean query plans that have a different ordering of their operators (and
sometimes a different number of operators) and that still return the same re-
sult. The enumeration of plans is done in two different steps: algebraic rewriting
and choice of physical operators.

1.1.1 Algebraic Rewriting

The algebraic rewriting consists of substituting a subtree 1" of logical operators
by an equivalent one 7” which might have an equal number of operators as
T with a different ordering, or a different number of operators. There are
many rules for transforming an algebraic expression into an equivalent one,
some of which are based on commutativity and/or associativity properties of the
operators in the expression. A very small portion of equivalence transformations
are listed below:

e Cascade of 0 opredinprea2(R) = Opredi (Opreaz(R)).

e Cascade of m: 7aur, (R) = Tattr, (Tattry (- (Tater, (R))...)), if for all ¢,
attr; C attr;11 and attr; is a subset of the attributes of the relation R.

o Commuting o with m: opred(Tair(R)) = Tatir (Opred(R)), if attr includes
all attributes used in pred.

e Commutativity of > (or x): RS =5 R.
e Associativity of > (or x): Rt (S<T) = (R1S)xT.

e Pushing o through x: opred(R X S) = R tpreq S, if pred contains a
condition comparing attributes from R to attributes from S.

o Commuting o with <0 oprea(R MXyreqr S) = Oprea(R) DNyprear S, if pred
contains conditions on only attributes in R.

The large number of existing equivalence rules results in the possibility of
generating for a given logical plan a large number of equivalent plans of which
some are faster. Enumerating a large number of plans and then performing
a search operation to find the optimal one among them, slows down the op-
timizer, and hence violates the requirement stating that the time used by the
optimization phase to optimize ad-hoc queries should be a small fraction of the
total time to process the query. Moreover some of the algebraic rewriting rules
are not optimizations if applied by themselves. For example, cascading a Select
operator might not lead to a better plan. If, however, it is combined with the
rule for pushing Select operators through Joins, it will result in faster plans.
For these reasons, several heuristics based on general observations are proposed

and are adopted by database management systems. These heuristics aim at
restricting the number of rules to be chosen for rewriting a given plan and thus
reduce the size of the generated search space. Some basic heuristics are listed
below:

e Break a cascade of Select (o) operators and push o as far down in the
query tree as possible.

e Break a cascade of Project (w) operators and push 7 as far down in the
query tree as possible.

e If possible, always merge a Cartesian Product (x) and a Select (o) oper-
ator into a join operator.

e Plans are generally restricted to left deep plans.

e Reorder Joins such that the ones that generate the smallest intermediate
result sizes are executed first.

e Group operators in the plan that can be executed by a single scan of the
relation to reduce the number of relation scans.

One of the main heuristics used by optimizers is to reduce as early as pos-
sible the size of intermediate relations generated by the operators in the plan.
This is accomplished by executing Select and Project operators as early as pos-
sible to reduce the number and size of the generated tuples and by executing
operators with the lowest selectivity before other operators. This is, however,
only a heuristic: in some cases pushing selection or projection down to a certain
relation in the plan might eliminate the possibility of using an index in the join
processing which might result in a suboptimal plan. Therefore another heuristic
is to generate plans that preserve the possibility of using built indices and that
construct as much as possible the smallest intermediate results.

1.1.2 Choice of Physical Operators

The logical plans produced from the algebraic rewriting phase do not indicate
how the operators in each of these plans are to be executed. Each logical
operator in the database is implemented into several different physical operators.
The physical operator determines the way the data on disk is accessed and the
way it is manipulated and processed.

After the logical plans are generated, the optimizer will substitute each logi-
cal operator by one of its corresponding physical implementations such that the
resulting physical plan is the most efficient. Although not as big as the num-
ber of equivalent plans possibly generated by the algebraic transformations, the
number of choices for translating a logical plan into a corresponding physical
one is still big. First, there are a number of methods in which stored data can be
accessed from disk, including a simple scan of the relation, a scan over an index,
an index-based predicate lookup. Second, as mentioned in the Introduction, the

functionality of each logical operator can be implemented in several alternative
ways.

The choice of the physical implementation of a logical operator depends on
several factors: the existence of an index or a hash table, sortedness of the
input relations, etc. The Join operator, for example, will be replaced by a
sort-merge implementation if the input relations are known to be sorted by the
joined attributes, and will be substituted by a hash-based algorithm if the joined
attributes are hashed using the same hash function.

It is also possible to replace a sequence of logical operators by one physical
operator. For example, a Select and a Project operator can be executed in a
single algorithm instead of two separate ones and a Join can be combined with
a Select and a Project into one physical operator. This reduces the number
of generated intermediate tables and the number of times the data is accessed,
which results in decreasing the processing time of the plan.

Generated physical plans can be classified in two categories: pipelined and
materialized plans, depending on whether they contain a blocking operator. In
a non-pipelined plan, all tuples are held by at least one blocking operator in
the plan, before being processed and output to the next operator. The Sort
operator is an example of such a blocking operator as it needs to compare all its
input tuples before outputting them in the required order. Once sorted, these
tuples are then routed to the next operator. In some cases, if the intermediate
result input to or generated by the blocking operator is large, then it needs to be
materialized. In a pipelined plan, tuples are not held by any operator and every
tuple is directly routed to the next operator as soon as the current operator has
finished processing of the tuple. Typically, pipelined plans are a better choice if
faster response time is needed. In general, they are preferred since they do not
require any materialization of results.

The generation of alternative plans is, as discussed above, based on heuristics
thus the optimizer can not decide which one of the plans is the best. Therefore
the optimizer will need to examine every plan assigning a cost to each and then
picking the one that satisfies the required optimization criteria which is in most
cases fastest execution time. To accomplish this, a cost model is defined with
which each operator and subsequently each plan is associated with a cost.

1.2 Cost Model

One important property of a physical operator is its execution cost accounting
for the resources used by the operator to produce its result. The cost components
are:

e CPU cost: which represents the cost of performing operations (i.e. com-
putation, searching, sorting) on the data buffers in memory.

e 1/O cost: is the cost for accessing secondary storage. It includes cost
for searching, reading, and writing disk blocks, and storing intermediate

results when these are too big to fit in memory. The access cost for a block
on disk depends on the data layout (files stored contiguously or scattered
on disk) and the access method (such as indexes, hashing).

e Communication cost: which consists of transferring the query and its re-
sults in a distributed environment.

To estimate the cost of the operator, the cost components are combined using
a predefined cost function, where a weight might be assigned to each resource
to reflect the value of its contribution towards the final cost. The costs of all
operators in the plan are then summed up to compute the cost of the whole
plan. The optimizer will then compare the cost of all generated plans and will
choose the one having the minimum cost. In reality it is not an easy task to
combine all cost components in a single function and to give a suitable weight
for each. Therefore in most databases the cost model is simplified and cost
functions only take into account the I/O cost (since, in non distributed systems,
it contributes the highest to the cost of the plan), i.e. the optimizer searches
for the plan with the minimal I/O cost.

To fairly compare all plans, the optimizer should assign cost estimates that
are as accurate as possible without spending much time in computing these
costs. We present in the next section the type of information that needs to be
collected and saved in order for the optimizer to accurately estimate the cost of
plans.

1.2.1 Statistics

The cost of operators highly depends on the size of their input relation(s).
Therefore the optimizer needs a way to estimate the cardinality of operator’s
input, in other words to estimate the selectivity of operators. The operator’s
selectivity is the ratio of the number of tuples output by the operator to the
number of input tuples. To accurately estimate the selectivity of operators,
some statistical information needs to be collected by the optimizer and saved
in the DBMS catalog for later use. Different kinds of statistics are gathered for
each relation R, we enumerate few of them here:

e Tuples(R): number of tuples in the relation R,
e Blocks(R): number of blocks needed to store relation R,
o TupleSize(R): size of tuple in the relation R.

Some statistics are also gathered for some attributes A in the relation R. The
most used ones are listed below:

o DistinctValues(R, A): number of distinct values of attribute A in relation
R,

e Maz(R, A): maximum value of attribute A in relation R,

e Min(R, A): minimum value of attribute A in relation R.
Moreover the catalog might also save for each relation information about:
e its primary key if it has one.
e the way its tuples are stored: unordered, ordered, contiguously, sparsely,
e the names of indexed or hashed attributes,

e built hash tables and indices and their type (primary, secondary, or clus-
tering index).

Statistics are most of the time estimates and not accurate reflection of the
database state. In fact tuples might be deleted, inserted and modified frequently
and updating the catalog after every change to the database state can be ex-
pensive.

The usage of the statistics to estimate the selectivity of operators is based on
some assumptions made by the optimizer. Although these assumptions, in most
cases, do not hold in reality, they are adopted to make the selectivity estimation
process faster and easier. Some of the used assumptions are:

e Uniform distribution of attribute values,

Independence of attribute values,

Constant number of tuples per page,
e Random placement of tuples among pages.

The value distribution of attributes directly affects the selectivity of oper-
ators in the query plan and assuming it is uniform might lead to inaccurate
selectivity estimates. One more accurate method to capture the value distri-
bution of a certain attribute and hence to better estimate the selectivity of
operators is to build a histogram on that specific attribute. A histogram on
attribute = divides the values of x into k buckets where each of the bucket
corresponds to a range of values such that the height of the bucket determines
the number of attributes included in the range. The larger k is, the higher the
histogram accuracy. The values within a bucket are, however, assumed to be
uniformly distributed. Correlations among attributes can also be captured by
building a two dimensional histogram. This is, however, very large, therefore
in many systems a two dimensional histogram is substituted by some statistical
information such as the number of distinct pairs of values or a combination of
an histogram on the first column and the associated distinct number of values
in the second column [10].

1.2.2 Cardinality and Cost Estimation

Using the statistics collected on base data, the optimizer will assign for each
operator in the generated plans a selectivity value. The cardinality estimation
of the input relation(s) of all operators can thereafter be computed: by, starting
from the base tables, incrementally multiplying the selectivity of each operator
to the cardinality of its input table(s).

As mentioned earlier, the computation of the cost of each operator is, in
most database systems, simplified such that it takes into account the I/O cost
only. In such a setting the operator’s cost function consists of the cardinality
of its input relation(s) since the number of I/O operations that the operator
will perform is dependant on the cardinality estimation of its input table(s).
The cardinality estimation is one essential parameter for estimating the number
of disk accesses but not the only one. Other important factors that affect the
number of I/O accesses carried by an operator are the physical layout of data
and indices on disk and the amount of memory available for buffering disk
pages. Therefore although the operator’s cost is reduced to its I/O cost, the
multiplicity of parameters involved in the computation of the I/O cost renders
this operation a difficult and complex one.

Once the cost of every operator is derived, the cost of the plan is then
computed by summing up the operators’ cost. The different plans can then be
compared and the one with the minimum estimated cost is chosen for execution.
It should be mentioned that generating accurate plan cost estimations remains
one of the hardest operations and open issues in the optimization process.

1.3 Plan Enumeration

A plan enumeration algorithm is designed to efficiently explore the search space
of equivalent plans to pick an optimal one based on cost estimations. Early
database systems restricted their search space by using certain heuristics, one of
which is to consider only left-deep plans. With the increase of query complexity
and the power of computers, the search space was expanded to bushy trees and
plans containing cross products and other kinds of operators, resulting in better
and more complex plans. More sophisticated plan enumeration techniques were
then proposed and integrated in optimizers. One main focus of plan enumeration
algorithms is to find a good solution for the join ordering problem. The proposed
enumeration algorithms tackling this problem can be categorized into three
classes [50]:

e Deterministic algorithms,
e Randomized algorithms,

e Genetic algorithms.

1.3.1 Deterministic Algorithms

Algorithms in this class build a good plan step by step in a deterministic manner,
either by employing some heuristics or by performing an exhaustive or pruned
search of the space.

Dynamic programming [10]: One of the algorithms proposed in this class
is based on dynamic programming. It searches for a left-deep plan in a bottom-
up fashion starting with single relations and adding increasingly join operations
and relations. In the first round, the algorithm enumerates alternative plans
with all possible scans for every joined relation. In the subsequent loops, it
constructs in the kth iteration a set of k-joins plans by considering the set of
(k — 1)-joins plans and extending each of these plans with a join operation.
The set of alternative plans is pruned at each iteration by removing every plan
that has a cheaper equivalent one. Two plans are considered equivalent if they
join the same set of relations and the sort order of their result is the same. A
plan is interesting even if its cost is not minimal as long as its output is sorted
or has an index since this can reduce the cost of subsequent operations such
as sort-merge join, duplicate elimination, and grouping. Finally, the algorithm
will return a set of partial solutions consisting of at least one optimal solution.
A disadvantage of this dynamic programming approach is the high memory
consumption making the optimization of queries consisting of 10 joins and more
very expensive.

Minimum selectivity algorithm [50]: Another algorithm in this class is
based on the minimum selectivity heuristic which considers plans characterized
by low cardinality intermediate results as good solutions. This algorithm builds
a left-deep plan by recursively selecting the join with the smallest selectivity
factor such that the size of the input to the next join is reduced as much as
possible. The algorithm starts by picking the relation with the smallest cardi-
nality and adds it to the plan. The relation whose join with the chosen relation
has the smallest selectivity factor is then selected and appended to the plan.
The process repeats by finding the relation that joins, with a lowest selectivity
factor, with any of the previously selected relations. The algorithm terminates
when all relations are added to the plan.

1.3.2 Randomized Algorithms

Randomized algorithms view plans as points in the search space where a cost
is associated with each point. Two points are connected if and only if they can
be transformed into one another by exactly one move. The algorithms perform
a random walk through the space via a series of moves according to certain
rules and terminates when no more moves are applicable or the time limit is
attained. Iterative Improvement and Simulated annealing are two examples of
randomized algorithms.

10

Iterative improvement [52]: This algorithm starts from a random point
in the space and selects one random neighbor. If the cost associated with the
selected neighbor is smaller than the current state’s cost and the selected point
is considered a local minimum then the move is completed, otherwise another
random neighbor is picked. This process is repeated starting from the new state
until a number of moves is performed or a time limit is exceeded. The point
with the lowest cost encountered so far is the selected plan.

Iterative improvement does not attempt to determine the neighbor with the
lowest cost before performing its next move. In fact, the number of neighboring
points is high and it will be very impractical to compare all the neighbors of
a state to identify the local minimum. For this reason only a subset of all the
neighboring points are compared and the one with the lowest cost and whose
cost is lower than the current state’s cost is declared local minimum.

One disadvantage of this algorithm is that it can be caught in a high-cost local
minimum. Since it only accepts moves that lead to a lower cost, the chosen plan
might be unacceptable if the search space contains a large number of high-cost
local minima.

Simulated annealing [52]: Simulated annealing overcomes the problem pre-
sented by Iterative Improvement by accepting moves that increase the cost and
thus avoids being trapped in a high-cost local minimum. This algorithm is
based on the annealing process of crystals from liquid solutions which explains
the reason why some physics terminology is often associated with it. Simulated
annealing proceeds the same way as Iterative Improvement but it also accepts
a non-improving move with a certain probability. This probability depends on
the increase between the current and the new state’s cost and another prede-
termined parameter called temperature. The lower the increase in the cost and
the higher the temperature, the higher the probability to accept the move. The
value of the parameter temperature is repetitively decreased during the plan
enumeration process.

1.3.3 Genetic Algorithms

The ideas presented in this section originate from the work presented in [50].

Genetic algorithms are based on Darwin’s principles of survival of the fittest.
It simulates the natural biological evolution process: the fittest members of a
generation are the one to survive and their offsprings will inherit their features.

One of the main characteristics of a genetic algorithm is that it works with
a set of solutions (the population) instead of considering a single one. Another
characteristic is that solutions should be coded as strings called chromosomes
using a suitable encoding. For example, the following left-deep tree (((Rg >
R4) > R3) 1 Ry) can be represented as “2431”7. Each solution is associated
with a fitness measure that reflects its cost.

The algorithm starts with a random population of solutions from which off-
springs are generated by random crossover and mutation. The fittest members

11

of the newly generated offsprings will be selected to become parents and will be
propagated to the next generation. The subsequent population will be derived
from them, and the process is repeated. The algorithm terminates after a pre-
defined number of generations or when no further improvement can be made.
The chosen plan is the fittest solution in the last generation.

A basic genetic algorithm usually defines 3 operators: selection, crossover
and mutation. The performance of a genetic algorithm depends on how these
operators are defined. The selection operator chooses the fittest members of
a population and propagates them to the next generation. The most common
type of selection is the roulette wheel where every individual is given a prob-
ability proportionate to its fitness. Solutions are then selected based on these
probabilities. The crossover operator generates offsprings by combining a num-
ber of the fittest members of the population. It is equivalent to the biological
process of a parent passing some of its genetic characteristics onto its offsprings.
The mutation operator applies a random alteration to a random set of members
of the population. The objective from using this operator is to introduce new
features not present in any member of the population and to ensure diversity
among the generation. The mutation operator prevents from falling into a local
optimum.

12

Chapter 2

Existing XML Database
Systems

The eXtensible Markup Language (XML) [8] is defined and standardized by the
W3C as a simple and flexible text format to exchange data in distributed systems
and over the Web. Elements in an XML document can be nested within each
other, resulting in a tree-like structured representation. This tree representation
is what is known as the memory-resident Document Object Model (DOM) where
a node represents an element, an attribute, or text data. Beside the tree-based
representation, an XML document can also be linearly viewed as a stream of
tokens. Simple API for XML (SAX) [21] parses an XML document as tokens
and is invoked by callbacks to handle the parsed tokens.

Several languages have been defined for selecting and transforming XML
data, of which XPath [4], XQuery [5], and XSLT [33] are standardized by W3C.
XPath expressions are defined against a node-labeled tree view of an XML
document where an XPath represents a traversal over the nodes in this tree
along its axes. XPath expressions consist generally of a series of steps where
a step is an axis identifier and a node test (example: “//site/regions//item”).
This XPath searches for all site elements descendant of the root of the document,
then for all regions nodes children of the site elements, and finally returns all
item nodes descendant of the retrieved regions elements. The subexpression
“//site” is a step where “//” is an axis of type descendant and site is a node
test. The evaluation of an XPath expression returns either a sequence of atomic
nodes or a sequence of nodes with their subtree. One important requirement is
that the nodes in the returned sequence should be ordered in document-order
unless the user explicitly disregards order.

While XPath can only perform selections on an XML document, XQuery
supports richer operations (e.g., selections, joins, projections and aggregations).
In fact, XQuery is defined as a superset of XPath and path expressions in
XQuery are based on the XPath syntax. The basic building block of XQuery
is the FLWOR expression (an acronym for for ... let ... where ... order by ...

13

return ...). XQuery also allows the generation of new XML documents. This
facility is provided by the Element Constructor which permits the construction
of new elements and attributes with their data and structural relationships.

There have been several proposals for systems to evaluate an XQuery against
stored or streaming XML documents. These processing systems differ in several
aspects, two of which are the storage layout adopted and the type of data-model
and algebra chosen. In the following, we review some of the most known and
used systems and briefly describe the specifications of each.

2.1 Evaluating XQueries over Stored Data

Current systems for processing XQueries over stored XML documents can be
classified into three categories: native, memory-resident, and relational ap-
proaches. Systems belonging to the same category differ in the data model
and algebra they define. We present a more detailed description of each of the
categories.

2.1.1 Native XML Database Systems

A native XML database system is designed and structured according to the
semi-structured data model and its specialized querying languages. The defined
model should at least include elements, attributes, PCDATA and take into ac-
count document order. Examples of native XML research prototypes are Tim-
ber [30] and Natiz [18]. Each one of these systems provides its own XML-specific
storage manager that is capable of storing and indexing XML documents. The
evaluation of an XQuery starts by generating its logical query execution plan,
then optimizing the plan which is finally sent to the query processor that exe-
cutes it through accesses to the storage manager. Beside the storage manager
and the query processor, Natiz supports also all familiar features of a DBMS
transactional manager, such as recovery and concurrency control. On the other
hand, Timber allows the modification of the XML document (i.e. node/content
deletion, insertion, and update). The two systems adopt a different type of
algebra and a different approach for processing XPath expressions.

The algebra used by Timber for processing XML documents is called Tree
Algebra for XML (TAX) [31]. As its name implies, it is a tree-based algebra
that manipulates sets of ordered labeled trees rather than sets of tuples. Each
operator in TAX takes as input one or more collections of data trees, and gen-
erates a collection of data trees as output. The core of the TAX operators is
a pattern tree which consists of a node-labeled and edge-labeled tree and is
used as a mean to identify nodes and attributes of interest while evaluating a
query. Figure 2.1 shows an example of a pattern tree representing an XPath
expression. The edges of the pattern tree can be of type child or descendant.
The double frame indicates the node to be returned from the evaluation of the
pattern tree. The functionality of the TAX operators is to match their core
pattern tree against the input of collection of trees and return a set of subtrees,

14

called witness trees, that have a structure identical to that of the pattern tree.
The authors in [31] admit that the biggest challenge in defining a tree algebra
for XML is the flexibility and heterogeneity properties of this language. That
is data trees in an XML document might have a complex and variable struc-
ture due to missing and/or repeated sub-elements, whereas an algebra requires
the manipulation of objects having a homogeneous structure. This and other
kinds of difficulties were overcome by introducing new types of pattern trees:
the Generalized Pattern Trees [11], and the Tree Logical Classes (TLC) [42].

regions

item ‘

’ incategory ‘ “

Figure 2.1: Pattern Tree of the path “//site/regions//item|/incategory|/listitem”

The approach used by Timber for processing an XPath expression is join-based;
i.e. the pattern tree equivalent to the XPath is mapped to a sequence of join
operators and executed as such. For example the path “//regions//item” is
translated to a join between the retrieved sequences of “regions” and “item”
elements. This join operator, named Structural join [2], is not a normal rela-
tional join although it is very similar to it. In fact this join is made tree-aware,
that is, it can use the properties of the XML structure to optimize the execution
of the XPath expression. Another method for executing a path is by processing
its equivalent pattern tree using a Holistic Twig join operator [9]. The tech-
nique uses a chain of linked stacks to represent partial solutions to every node
in the pattern tree. These solutions are then composed to obtain the result of
the path.

Query processing in the Natiz native XML database system is based on a
tuple-based algebra [18]. The data model consists of a set of ordered sequences
of tuples where each tuple consists of a sequence of attribute values which can
be a number, a string, an XML node, a text node, an XML attribute node, or a
sequence of tuples. This last type, sequence of tuples, introduces the possibility
of having nested tuples. The work in [7] provides a complete algebra for the
XPath language as a first step towards an XQuery algebra which in turn is
described in [38]. It presents translation rules to translate any XPath expression
into an algebraic sequence of operators by decomposing the path into location
steps, where each step is translated into an Unnest-Map operator, and then
connecting these operators by a d-join operator. Unlike Timber, the processing
in Natix is navigation-based; i.e. solutions are computed by starting from a
context node and navigating some part of the XML document (e.g the node’s
subtree), and analyzing encountered nodes each one at a time.

15

Examples of other native XML database systems are: eXist [15], Oracle
Berkeley DB XML [41], and X-Hive [58].

2.1.2 Memory-resident XML Database System

A memory-resident database system relies on main memory for data storage.
It eliminates access to disk by loading the data, storing and manipulating it in
memory. The Galax system [16], an open source implementation of XQuery,
does not provide a storage manager, instead it operates on memory-resident
XML documents. The main goal of Galaxr developers is completeness: they
handle XPath expressions, FLWR expressions, user defined functions, and over-
loaded built-in functions. Researchers can use Galaz as a platform for experi-
menting with a complete XQuery implementation. Galaz builds the in-memory
DOM tree representation of the queried XML document before evaluating an
XQuery against that document. The fact that this system performs the query
evaluation against memory-resident XML documents renders this system unable
to handle the processing over large documents.
The algebra for the Galaz system is presented in [47] where a complete alge-
bra for XQuery that integrates both a tuple-based and a tree-based algebra is
proposed. The advantage of this algebra is that it combines XML values and
tuples, enabling the use of traditional optimization techniques developed for
the relational paradigm. An XML value is defined in this system as an ordered
sequence of items where an item is an atomic value or a node (i.e., element,
attribute, comment). A tuple is a record with fields containing XML values. A
large set of operators is defined and classified into three categories: XML Oper-
ators; Tuple Operators; and XML-Tuple Operators. The first set manipulates
XML values only, the second set only handles tuples, and the third set consists
of boundary operators capable of supporting both kinds of data. The work in
[47] also describes rules on how to compile path expressions, type expressions,
and FLWR expressions into an algebraic representation.

Saxon [49] and Qizx [46] are also memory based XML systems which have
a java-based implementation.

2.1.3 Relational XML Database Systems

Some other research prototypes [6, 13, 53] prefer reusing mature relational tech-
nology instead of designing and building a native XML system from scratch.
Relational technology is reused by mapping the XML data model into the rela-
tional model and storing XML documents in a relational database. In order to
process XML queries in this context, two approaches can be used; the query is
either directly mapped into a logical plan of relational operators, or translated
first into an SQL expression and then compiled to a relational algebra, before be-
ing sent to the database engine for execution. However, several challenges such
as efficiently evaluating XPath and XQuery expressions and reconstructing the
document-order of the returned XML elements can arise from this mapping. To

16

overcome these shortcomings, the relational algebra is usually extended with
some XML-specific operators.

MonetDB/XQuery [6], a system built over a relational main-memory engine,

supports the processing of XQueries by compiling an XQuery into a DAG of
relational operators. It defines a number encoding for XML data: the XPath
accelator structure [24, 28]. Based on this structure, an XML document is
mapped into a two-dimensional plane representation by assigning to each node in
the document a pre-order and a post-order rank. With this numbering scheme,
every node in the XML document divides the plane into four disjoint regions,
each corresponding to one of the XPath axes: preceding, descendant, ancestor,
and following. Thus the process of selecting nodes from the document consists
of simple selection predicates on the pre/post-order ranks, easily indexed and
optimized by an RDBMS. Updates to the database are also supported in the
MonetDB/XQuery system.
As one can already predict, MonetDB/XQuery adopts the relational algebra as
its processing algebra. However it extends it by two new operators [23]: the node
construction operator and the staircase join operator. The former is used to
support the element construction facility provided by XQuery, while the latter
is adopted to accelerate the evaluation of XPath location steps. The staircase
join operator [26, 27] represents a single XPath step and is built upon the XPath
accelerator structure. It uses the pre/post numbering to exploit additional tree
properties and thus is tree-aware. This extra tree knowledge allows the staircase
join to reduce its search space without missing any matching node. The staircase
join is also extended by a loop-lifted version [6] to efficiently evaluate XPath
expressions nested in for loops.

As mentioned above, other proposals first translate XPath and XQuery ex-
pressions into SQL queries and then map the SQL statements into an algebraic
relational representation. The work in [53] proposes three order-encoding meth-
ods to represent XML order in relational databases, and defines rules to translate
ordered XPath expressions into SQL queries by generating an SQL fragment for
each location step in the XPath. Finally, these fragments are concatenated into
a single SQL expression. The authors in [13] introduced a compositional trans-
lation from a subset of the XQuery language into a set of SQL view definitions.
The SQL query is then compiled into a relational algebra and executed.

2.2 Evaluating XQueries over Streaming XML
Data

Several systems were also proposed to process XQueries against streaming XML
documents. We give, in this section, a brief overview of some of them.

Tukwila [29], an XML query engine, targets mostly the data integration of
several streaming XML documents. Raindrop [51], an XQuery subscription sys-
tem, is another framework that supports query evaluation over streaming XML
documents. Both systems support a pipelined execution of an XQuery. The

17

main contribution of these approaches is the integration of both the automata-
based and the algebra-based approaches for query evaluation. The automaton
approach is a state-transition model well suited for matching regular expres-
sions over a certain alphabet. Since basic XPath expressions can be viewed as
regular expressions and the tokens generated by the streaming documents as
the alphabet, the automaton model was adopted to structurally match XPath
expressions against the input XML data. This automaton model, however, can
not handle queries that are more complex than XPath and does not provide a
good support for sophisticated query optimization techniques. In contrast, the
algebraic model can handle the expressive power of complex queries and offers
a good foundation for query optimization. The algebraic paradigm, however,
expects a well-defined data model on which it can operate, and tokens derived
from an XML stream do not meet this requirement since a token looses its se-
mantics and structure when presented alone without the context provided by
other tokens in the stream. For these reasons, it was thought to use these two
paradigms together when processing XQueries over streaming XML data since
they do complement each other. The data model used by such an approach
consists of XML tokens as the source data and tuples as the intermediate data.
The first level of operators in the logical plans are automata-based operators.
These operators act as wrappers over the nested structure of the XML docu-
ments, that is they hide this nesting from the other operators in the plan. They
manipulate the tokens generated by the streaming documents, match XPath
expressions, construct tuples for the selected XML elements and subtrees, and
then forward these tuples to the algebraic operators in the plan.

The XML Stream Machine (XSM) [36] is a transducer-based system for
processing XQueries over XML streams. Transducers are similar to finite state
machines in that they perform actions based on their current state and a given
input. This system evaluates an XQuery by first translating it into a network of
XSMs linked via internal buffers and then reducing this network into one single
XSM by recursively applying the XSM composition operation. The aim of this
reduction is to diminish the number and the size of the intermediate buffers and
minimize the computation performed for each token generated by the stream.
Execution code is then automatically generated for the optimized XSM that can
then be efficiently processed.

Other systems for processing streaming XML data are TurboXPath [54],
BEA/XQRL [20], and FluXQuery [34].

Although some optimization techniques for processing XML queries over
stored documents can also be used in the streaming context, optimization of
queries over streaming data requires a different set of techniques like: load
shedding, adapting to changes in a stream’s rate, collecting different types of
statistics Our presentation of the XML optimization techniques in the
following sections will not cover those techniques specific to streaming data as
this is outside the scope of this report.

18

Chapter 3

Optimization in XML
database Systems

After presenting the most common optimization techniques used in relational
databases, and describing some of the existing XML database systems, we are
now ready to give an overview of optimization in the XML context.

3.1 Equivalence Rewriting Based Optimization

We have described in section 1.1.1 some rules that rewrite a relational alge-
braic expression to an equivalent one. In XML, equivalence rewriting can be
accomplished at two different levels: XQuery core level which is equivalent to
syntactical rewriting, and algebraic level.

3.1.1 Syntax Rewriting

Figure 1 states that queries submitted to a database system are mapped to
logical plans. For XPath and XQuery queries, this is not always the case. There
exists an extra intermediate step where a user query is first converted into a
core language before being translated into a logical plan. The XQuery core
language defined in [14] is a proper subset of the XQuery language and consists
of a set of simple expressions to which the more complex XQuery expressions
are rewritten. The process by which this mapping is accomplished is called the
normalization phase. The need for normalizing a certain query lies in the fact
that static type analysis and dynamic evaluation rules defined by W3C in [14]
are described in terms of the core language, and thus are better applied on the
core expression representation of the query. Optimizing an XPath or XQuery
query by syntactically rewriting it, is applied either on the query itself or on
its equivalent core expression. The papers described in this section present
optimization techniques based on syntactic rewriting rules.

19

Backward Axes Removal Several XML processing systems can not handle
XPath expressions with reverse axes, such as parent, ancestor, preceding, etc.
Moreover, some types of systems (e.g., streaming systems) are not efficient in
evaluating this group of axes. An example of an XQuery core level equivalence
rewriting is the technique described in [40]. It tries to overcome the first problem
and to optimize the processing in the second situation by defining two sets of
equivalence rules to rewrite an XPath expression involving reverse axes to an
equivalent reverse-axis-free one. One set of rules rewrites the XPath to an
expression including a join operator while the other set rewrites the XPath to
one containing more location steps.

Order and Duplicate Elimination One important requirement with op-
timization potential is that nodes returned from XPath or XQuery evaluation
should be in document-order unless the user explicitly disregards order. The
XQuery standard specifies that an XPath is translated to an XQuery core ex-
pression such that every step in the XPath is followed by a distinct-docorder
operator. This operator maintains not only the document order but also the
uniqueness of the nodes throughout the path evaluation. Although having these
operators after each step keeps the intermediate results duplicate-free, it might
slow down the system’s performance. An alternative is to sort and eliminate
duplicates only at the end of the path evaluation but this will result in per-
forming unnecessary and redundant work which may also degrade the system’s
performance. The technique proposed in [17] decides after which steps in the
plan to keep these expensive operators and after which they can be safely re-
moved, such that the evaluation time of the plan is minimized. Properties like
ordered, and duplicate free are assigned to a path expression if its evaluation
returns a set of nodes that conforms to these properties. The described tech-
nique is an automaton-based algorithm called DDO which, given a starting set
of nodes having a certain property, can infer the property of the set resulting
from applying a certain XPath axis. By inferring the properties of the result, it
can be decided if the presence of a sort and/or duplicate elimination operator is
necessary after this step. Although this proposal can handle all XPath axes, it
is limited by one constraint: the input to the start state in the automaton can
only be a singleton node.

Other systems tackle the order and duplicate-free problem at a lower level.
The duplicate elimination and order problem in MonetDB/XQuery, for instance,
is partially solved inside the staircase join itself [27]. This operator is imple-
mented such that it generates results sorted in document order and free of
duplicates. Order is preserved by using the pre/post numbering of nodes, while
distinctness is guaranteed by pruning out the elements from the input context
nodes for which the application of the axis step in question will return identical
results. Structural joins [2] for example, used in Timber, are also implemented
such that they return the result sorted either in reverse or in document order
depending on the used variant. If the result is output in document order then no
sort operator is needed. Holistic Twig joins [9], also implemented in Timber for

20

evaluating XPath expressions, output a result sorted in document order. These
two classes of operators, however, do not guarantee a duplicate-free result.

3.1.2 Algebraic Rewriting

Since only a subset of the heuristics applied in relational database systems
(section 1.1.1), like predicate push down, can be imported to the XML context,
investigation in new strategies is definitely needed. In this section, we give an
overview of the rewriting rules at the algebraic level in XML systems.

Join Reordering Join reordering is a very important and widely used opti-
mization technique in databases that use an algebra with joins, thus it is very
natural to study its application in the XML context. In relational databases,
join reordering is a highly studied problem and as we have seen in section 1.1.1
and in section 1.3 several rewriting rules and enumeration algorithms were pro-
posed for reordering join expressions. One fundamental difference for ordering
joins between relational and XML systems lies in the fact that XQuery returns
its generated result in document order and thus manipulates order-preserving
joins. These types of joins are associative but not commutative, which reduces
the number of alternative plans that can be generated by the optimizer. More-
over, adopting the general heuristic used by optimizers in relational database
systems that only considers left-deep trees will limit the search space even more.
These two constraints enforced in the process of generating alternative plans in-
crease the chance of missing the optimal or suboptimal plan. The work presented
in [37, 57] tackles the problem of join reordering in the Natix and Timber sys-
tems. The proposed solution is to extend the search space by considering plans
that are not left-deep and using joins that are not order-preserving since order
can be recovered at a relatively small cost by adding a sort operator at the ap-
propriate position in the plan. The conclusion made by the authors is that for
optimizing the evaluation of XQueries contrary to relational database systems,
exploring a larger search space increases the optimizer’s chance to find a better
plan.

Plan Simplification The work on algebraic equivalences in the context of
MonetDB/XQuery is presented in [25]. The paper argues that plans gener-
ated by Pathfinder are large in size which makes the application of classical
rewriting techniques (see section 1.1.1) rather difficult and limited. The used
operators, however, are simple and restricted variants of relational operators
which allows the use of inference rules to infer properties for intermediate results
and operators, like key, cardinality, denseness, and functional and multivalued
dependencies. Given the inferred properties of a single operator in the plan,
predefined equivalence rules simplify it by pruning for example some obsolete
input columns, and/or replace it with a simpler less expensive operator (e.g.,
replace a join with a projection). The multivalued dependency property is used
to detect the presence of an invariable item sequence e inside a loop, which does
not depend on the loop variable, and hence can be removed from the loop.

21

Pattern Tree Minimization In several XML database systems, pattern
trees represent the basic structure to express and match path queries against
the stored data. Therefore the efficiency of the query processing depends on
the efficiency of matching the pattern tree which in turn depends among oth-
ers on the size of the tree. The work in [3] optimizes XQueries by minimizing
the size of its equivalent pattern trees. It proposes three polynomial time algo-
rithms CIM, CDM and ACIM to eliminate redundant nodes in the pattern tree.
CDM and ACIM are used in the presence of integrity constraints (IC') on the
underlying data while CIM is employed when no early knowledge of the data
is available. CIM is based on containment mappings and generates the unique
equivalent minimal tree of a given pattern tree. Its polynomiality originates
from two properties: a node is redundant only if its children are and the order
of elimination of redundant nodes is immaterial. The application of ACIM and
CDM is restricted to a certain class of ICs limited to required child, required
descendant and required co-occurrence and under which the equivalent minimal
query is unique. ACIM consists of first augmenting the pattern tree with redun-
dant nodes and edges satisfying the given ICs and then applying CIM. To make
ACIM faster, CDM is first applied to generate a locally minimal equivalent pat-
tern tree by annotating each node with information content and propagating
this information up the pattern tree. Their approach, however, does not con-
sider value-based conditions and other type of constraints like required parent
or ancestors.

3.2 Cardinality estimation and Cost Model

An accurate cost model is needed for an optimizer to choose the best plan.
Cardinality estimation greatly affects the accuracy of the cost model. Therefore
a lot of research was devoted to the problem of cardinality estimation of XPath
expressions in XML databases.

3.2.1 Cardinality Estimation

The main difference in cardinality estimation between relational (section 1.2)
and XML databases lies in the fact that path queries specify structure con-
straints in addition to value constraints. Thus the optimizer should collect
statistics about both value distribution and structural relationships between
elements. This section describes techniques developed to summarize XML doc-
uments into synopses. Synopses are evaluated based on the following criteria:
Is the synopsis’ construction algorithm expensive? What XQuery/XPath sub-
set does the synopsis cover? Does the synopsis produce accurate estimations?
Does the synopsis support updates to the database? Does the synopsis support
value constraints? Is the synopsis recursion-aware? Does it also estimate the
distribution of the data?

An early work on selectivity estimation of simple path expressions found
in [12] estimates the number of twig matches in a node-labeled tree by using

22

a summary data structure referred to as Correlated Subpath Tree (CST). The
problem of cardinality estimation on twigs is reduced to the problem of estimat-
ing substring selectivity. The proposed technique stores count statistics about
frequently occurring subpaths and maintains the correlation among the sub-
paths sharing the same root. The disadvantages of this approach are that the
whole CST must be built before being pruned, and it does not handle wildcards.

The work in [1] proposes two different synopses, path trees and Markov ta-
bles, to summarize XML documents. A path tree represents the structure of
an XML document where path tree vertices are associated with the cardinality
of these nodes in the document. Markov tables store cardinality statistics for
subpaths of lengths up to a certain value. The selectivity of longer paths is es-
timated by combining the cardinality statistics of several subpaths. Path trees
and Markov tables may grow large and hence can be summarized by compress-
ing some non frequent vertices and subpaths and replacing them by wildcards
nodes and *-paths correlated with information about the deleted statistics. This
technique supports only simple linear path queries.

StatiX [22] is a framework providing selectivity estimation for XQueries in
the presence of an XML schema by transforming the schema such that statistics
are collected at different levels of granularity. The approach uses a histogram to
maintain information on both the structure and values in the XML document.
The application of this technique, however, is restricted to a small subset of the
XQuery grammar.

The technique proposed in [56] builds a two-dimensional position histogram
based on the start and end labels assigned to nodes using a certain numbering
scheme. The histograms are used to estimate the result sizes of path expressions
that use descendant and/or ancestor steps only and can not be adopted for more
general path expressions.

The Bloom histogram synopsis proposed in [55] provides efficient and accu-
rate cardinality estimation for XPath expressions and supports updates on the
underlying XML database by reflecting any change in the document through
updates to the dynamic summary component. This approach, however, can
handle only simple path expressions.

The XSketch synopsis proposed in [43] estimates the selectivity of complex
XPath expressions over graph-structured XML data by capturing the key struc-
tural information (i.e., label path and branching) in the graphs. The construc-
tion algorithm of the XSketch synopsis employs a heuristic based on greedy
forward selection. It generates a label-split graph from the XML tree by merg-
ing all XML nodes with the same label into one vertex, and then successively
refines the graph by exploiting localized backward and forward stability prop-
erties in the graph. The synopsis is built using a sample of path queries which
makes it dependent on the generated set. The work in [44] augments each node
in the structural XSketch synopsis with distribution information on the element
values in the XML graph to estimate the cardinality of path queries that also
contain value-based constraints.

TreeSketch [45], another synopsis developed by the same authors, also em-
ploys a structural clustering technique. Unlike XSketch, it is based on count-

23

stability which is a refinement of forward stability. The construction of the
synopses starts by building a count-stable summary graph of an XML data tree
and then incrementally merges element clusters that are closely similar in their
subtree structure until the memory budget is met. XSketch and TreeSketch
present two shortcomings: the construction time of the synopsis is high and
updating it is also expensive. TreeSketch, however, has one advantage over XS-
ketch: it is orders of magnitude more accurate in estimating results cardinality
and needs less time to construct.

The work in [19] describes another synopsis for XML documents to estimate
the selectivity of path expressions. Their approach supports branching XPath
queries including all axis types. The construction of the synopsis lies in translat-
ing the XML document to an SLT (Straight Line Tree) grammar by using a tree
compression algorithm. An XPath query is then converted into tree automata
which in combination with the ST grammar can be used to estimate the results
of the query. The authors claim their approach has several advantages over the
existing approaches: the construction of the synopsis is less expensive, it can
handle updates, produces better estimates and handles all XPath axis.

Except for [19, 55], all existing approaches can not handle updates to the
underlying database. Only two of the proposals described above [22, 43] support
XPath queries with value constraints. None of the existing approaches perform
well on recursive data sets, that is if they are recursion-aware, and none can
provide an estimation on the result’s distribution.

3.2.2 Cost Models

Developing cost models for operators must take into consideration, among other
parameters, the physical layout of data, the way this data is retrieved from
disk, the amount of memory available, and the algorithm implementing the
operators’ functionality. The fact that XML operators are much more complex
due to the nature of the XML data renders the prediction and modeling of
the data access a hard process. Therefore constructing an accurate cost model
for XML query processing is far more difficult than developing cost models for
relational databases as described in section 1.2. Most research on cost-based
XML optimization has only focused, as we have seen in the previous section, on
the problem of cardinality estimation. Comet, described in [59], is one of the
few approaches known for defining a cost model for XML.

Comet is a statistical learning technique that can be used to model the CPU
cost of complex XML operators. First a set of queries and data features critical
in determining the cost of the operator need to be identified, then using statistics
and analytical formulas feature values are estimated. Finally Comet employs
the transform regression method to learn the functional relationship between the
feature values and the operator’s cost. The resulting cost function is then used
to estimate the cost of the operator and can be updated through a process of
query feedback to adapt to changes in query workload and system environment.
However this approach can only estimate the CPU cost of operators and can
not be used for determining I/O cost.

24

3.3 Plan Enumeration and Selection

Similar to the relational plan enumeration algorithms presented in section 1.3
whose main focus in on enumerating different join orders, execution plan enu-
meration in Timber consists of enumerating the join orders in the plan. The
work in [57] proposes five cost-based enumeration techniques which explore the
space of execution plans by reordering join operators and guarantee the choice
of the optimal or suboptimal plan. The difference between the proposed al-
gorithms is the number of plans generated for choosing the optimal one, (i.e.,
the time spent on the enumeration of plans), and the certainty of picking the
optimal plan at the end. The first two algorithms, Dynamic Programming and
Dynamic Programming with Pruning, enumerate respectively all or a subset of
equivalent plans and make sure the optimal one is chosen. The next two algo-
rithms apply some pruning techniques to decrease the search space but might
fail in finding the optimal plan. The fifth algorithm reduces the search space by
only considering fully-pipelined plans. The latter three algorithms trade off the
optimality of the chosen plan for the time spent on enumeration. The authors
conclude that the choice of the enumeration algorithm should depend on the
query being executed: if the query is not too expensive, then the fully-pipelined
algorithm can find a good plan in a short time. If the query’s execution is slow
then it is best to use the Dynamic Programming with Pruning algorithm to
produce the optimal plan.

The work in [32] proposes three different plans for evaluating XPath ex-
pressions each using one type of navigational primitive. The first technique
translates every location step in the path to an Unnested-Map operator while
the second and third group operations requiring expensive I/O access to the
disk into a single operator, either a XScan or a XSchedule operator. The two
operators are responsible for scheduling and managing inter-cluster operations
such that the time spent accessing the physical layer is minimized, i.e., reduc-
ing the number of times a page is loaded from hard disk, and optimizing the
order in which pages are accessed. XSchedule employs an asynchronous 1/0
while XScan involves a sequential scan to the data. The notion of partial path
instances which represent the incomplete evaluation of XPath expressions due
to pending I/0 is introduced. It facilitates the separation between cheap and
expensive I/O operations, and helps in avoiding random physical accesses: only
nodes belonging to the same cluster are looked up, while access to other clus-
ters is deferred and grouped into the XScan or XSchedule operator. The results
show that XSchedule and XScan almost always outperform the simple method,
while XSchedule outperforms XScan if the query is highly selective.

25

Chapter 4

Open Problems

Although a considerable amount of work has been done in the optimization of
XML queries, several issues are still unresolved. We enumerate, in this section,
some of the existing open problems.

4.1 Equivalence Rewriting

4.1.1 XPath Rewriting

As XPath is a central expression in XQuery, its evaluation performance has
a big impact on the overall performance of the XQuery itself. Therefore one
possibility to optimize the evaluation of XQueries is by rewriting XPath expres-
sions into equivalent more efficient ones. Some work for syntactically rewriting
XPath expressions, e.g. [40], has already been done; however, rewriting at this
level presents three disadvantages. First it can only find rewritings that are ex-
pressible in XPath, hence missing some possible more efficient execution plans.
Moreover, it is harder for the optimizer to use and benefit from the available
statistics. Finally, even if statistical knowledge is used, applying the defined
heuristic at this level, then translating the XQuery core plan to an algebra, and
afterwards applying algebraic optimization rules might lead to unpredictable
plans. The work in [48] showed that in some situations the decisions taken by
query optimizers can be very unpredictable and the assumptions it makes do
not always hold. Consequently we think a better choice that presents several
advantages is to exploit the XPath symmetries at the algebra level where the
application of rewriting rules can be synchronized with other optimization rules.

4.1.2 Element Construction Optimization

It is common in XQuery to query XML fragments that were constructed by the
query itself. The fact that element construction is an expensive operation that
often requires the copying of a complete XML subtree, gives rise to the XQuery
optimization question: how can we remove or reduce, if possible, intermediate

26

XML fragment construction or push computation through the construction pro-
cess. We illustrate this problem with the following simple XQuery example:

declare function local:foo($e as element()) as element()

<a>{$e}
b
local:foo(Hello World!)//b

In this example, the construction of the XML element <a> is unnecessary,
consequently the call to the function foo and the navigation to the b elements
can be removed. A query rewriter module would like to find such unnecessary
constructions and navigation and eliminate them. But if the navigation in the
previous example attempts to access in the results returned by the foo function
the element a, then this optimization is not possible and will lead to wrong
results. It is also an open question whether it is better to perform this rewriting
at the XQuery core or at the algebra level.

4.1.3 User Defined Recursive Function Optimization

XQuery is employed not only as a query language but also as a programming
language, therefore it is not surprising to see that in different types of applica-
tions recursive functions are being defined by users to query XML data. Several
research proposals have tackled the problem of optimizing user-defined func-
tions in XQuery; however, little work focused on recursive functions. One of the
techniques used to minimize the overhead of user-defined functions is inlining
(i.e., replacing the function call by the function code). This approach can be
adopted for a specific class of recursive functions only in the presence of schema
information, and can not be applied in all other cases since it is undecidable a
priori when to break the recursion as this, in general, depends on the value of
the passed data which can not be checked by the rewriter. A question arises
here: can we perform this optimization at the algebra level and if so which re-
cursive XQuery function definitions can be represented algebraically and what
are the possible techniques to optimize these generated plans.

4.2 Cardinality Estimation and Cost Model

To make sure the rewriting phase will result in generating faster plans, the deci-
sions made during the rewriting process should be based on collected statistics
and a cost model. Since the accuracy of cardinality estimation greatly impacts
the accuracy of the plan’s cost estimation, a lot of research has been done to
develop synopses to estimate the cardinality for XPath expressions. Each tech-
nique described in Section 3.2.1 has its own shortcomings, and thus there is a
need for a better, compact synopsis that meets the following criteria: returns
accurate estimations, covers a large subset of XQuery and not only XPath ex-
pressions, handles efficiently updates to the document and recursive data, is

27

constructed at a low price, and supports queries with value constraints. Fur-
thermore it is beneficial to complement the proposed approach for cardinality
estimation with a technique that estimates the distribution of the returned data,
which will result in more accurate predictions of the result size of subsequent
operations. In fact this information is highly valuable for operators whose car-
dinality estimation greatly depends on the distribution of their input data like
for example aggregation, and selection.

An accurate cost model is essential for selecting a good query plan. Little
research has been done for modeling the cost of operators in XML database
systems. The only proposed approach known to us that addresses this issue is
Comet [59]; however, it only estimates CPU costs. Hence, a suitable cost model
that takes into account both the CPU and I/O costs of operators in an XML
database is needed.

4.3 Plan Selection

At compile time, several parameters such as size of input, selectivity and avail-
able resources are estimated by the optimizer in order to make its choice of the
plan to be executed. The accuracy of these estimations is not always guaranteed
and hence the static plan chosen by the optimizer is not always optimal or close
to optimal. A technique called dynamic plan selection, which has been proposed
in the context of relational database systems, postpones the selection of the best
plan to runtime. According to our knowledge, no research has been done on this
topic in the context of XML databases. Since predicting input cardinality and
operator selectivity is even harder for XML than relational data, we think one
interesting approach is to see to which extent dynamic plan selection can be
applied for XML. With this technique, the plan generated by the optimizer will
contain several subplans connected by a special operator (e.g., a choice oper-
ator), where a choice between the equivalent subplans is made at runtime. In
fact, MonetDB/XQuery presents a good platform to experiment with this ap-
proach since it supports materialization of intermediate results. The choice to
shift to a better and semantically equivalent subplan can be made by consid-
ering, among other things, the size of intermediate results. Several questions
arise when adopting this technique, three of which are: how is the dynamic
plan created? Which optimization decisions are postponed to runtime? How
effective is this technique in practice?

28

Conclusion

We gave, in this report, an overview of query optimization techniques in XML
database systems. To achieve this objective, we started by familiarizing the
reader with the traditional optimization techniques employed in the context of
relational database systems, and by enumerating and describing some of the
existing XML database systems. A lot of work has been done for optimizing
plans in relational systems and the techniques presented in this document are
only a small subset. Despite many years of effort, there still exist significant
open problems to be tackled. We have also reviewed some existing optimization
techniques in XML databases such as syntactic and algebraic rewriting, cost
modeling, and plan selection. Studying the techniques proposed for optimizing
queries in XML database systems indicates that a lot of work has to be done in
this field to reach the maturity of its relational counterpart. We have identified
some problems in the XML context that present a potential for optimization,
of which we mention XPath rewriting, element construction and user defined
recursive function optimization. The need for an accurate cost model and an
efficient plan enumeration algorithm is also identified. It is worth to mention
that the big variety in existing XML engines regarding their storage model,
data model and algebra increases the difficulty in defining XML optimization
techniques that can be adopted by all systems.

29

Bibliography

1]

Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Esti-
mating the Selectivity of XML Path Expressions for Internet Scale Ap-
plications. In 27th International Conference on Very Large Data Bases
(VLDB’01), pages 591-600, 2001.

S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Sri-
vastava. Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. 18th International Conference on Data Engineering (ICDE’02),
2002.

Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh
Srivastava. Minimization of Tree Pattern Queries. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
497-508, 2001.

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez,
Michael Kay, Jonathan Robie, and Jerome Simeon. XML Path Language
(XPath) 2.0. hitp://www.w3.org/TR /zpath20/, 2007.

Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,
Jonathan Robie, and Jerome Simeon. XQuery 1.0: An XML Query Lan-
guage. http://www.w3.org/ TR /zquery/, 2007.

Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan
Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery Proces-
sor Powered by a Relational Engine. Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2006.

Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido Mo-
erkotte. Full-Fledged Algebraic XPath Processing in Natix. 21st Interna-
tional Conference on Data Engineering (ICDE’05), 2005.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, FEve Maler,
and Franois Yergeau. Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/2006/REC-zml-20060816/, 2006.

30

[9]

[10]

[12]

[18]

[19]

[20]

Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins:
Optimal XML Pattern Matching. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 310-321, 2002.

S. Chaudhuri. An Overview of Query Optimization in Relational Systems.
In Proceedings of the ACM Symposium on Principles of Database Systems,
pages 34-43, 1998.

Zhimin Chen, H. V. Jagadish, Laks V. S. Lakshmanan, and Stelios Pa-
parizos. From Tree Patterns to Generalized Tree Patterns: On Efficient
Evaluation of XQuery. 29th International Conference on Very Large Data
Bases (VLDB’03), 2003.

Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas, S. Muthukrishnan,
Raymond T. Ng, and Divesh Srivastava. Counting Twig Matches in a Tree.
In 17th International Conference on Data Engineering (ICDE’01), pages
595-604, 2001.

David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Ozsu. A
Comprehensive XQuery to SQL Translation Using Dynamic Interval Cod-
ing. Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, 2003.

D. Draper, P. Frankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics.
W3C working draft, http://www.w3.org/ TR /xquery-semantics/, 2004.

eXist Open Source Native XML Database. http://exist.sourceforge.net/.

Mary Fernandez, Jerome Simeon, Byron Choi, Amelie Marian, and Gargi
Sur. Implementing XQuery 1.0: The Galax Experience. 29th International
Conference on Very Large Data Bases (VLDB’03), 2003.

Mary F. Fernandez, Jan Hidders, Philippe Michiels, Jéréome Siméon,
and Roel Vercammen. Optimizing Sorting and Duplicate Elimination in
XQuery Path Expressions. In 16th International Workshop on Database
and Expert Systems Applications (DEXA’05), pages 554-563, 2005.

T. Fiebig, S. Helmet, K.-C. Kanne, G. Moerkotte, J. Neumann, and
R. Schiele. Anatomy of a Native XML Base Management System. 28th
International Conference on Very Large Data Bases (VLDB’02), 2002.

Damien Fisher and Sebastian Maneth. Structural Selectivity Estimation for
XML Documents. In 23rd International Conference on Data Engineering
(ICDE’07), 2007.

Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Ric-
cardi, Till Westmann, Michael J. Carey, and Arvind Sundararajan. The
BEA streaming XQuery processor. 30th International Conference on Very
Large Data Bases (VLDB’04), 13(3):294-315, 2004.

31

[21]
[22]

23]

[24]

[25]

[28]

[29]

[30]

[31]

[32]

Simple API for XML. http://www.saxproject.org/.

Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Prasan Roy, and
Jérome Siméon. StatiX: Making XML Count. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 181—
191, 2002.

T. Grust and J. Teubner. Relational Algebra: Mother Tongue - XQuery. In
Twente Data Management Workshop on XML Databases and Information
Retrieval (TDM 2004), 2004.

Torsten Grust. Accelerating XPath location steps. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
109-120, 2002.

Torsten Grust. Purely Relational FLWORs. In 2nd International Workshop
on XQuery Implementation, Experience and Perspectives (XIME-P’05),
2005.

Torsten Grust and Maurice van Keulen. Tree Awareness for Relational
DBMS Kernels: Staircase Join. In Intelligent Search on XML Data, pages
231-245, 2003.

Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps. In 29th International
Conference on Very Large Data Bases (VLDB’03), 2003.

Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating
XPath evaluation in any RDBMS. ACM Transactions on Database Systems
(TODS’04), 29:91-131, 2004.

Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. An XML Query
Engine for Network-Bound Data. 28th International Conference on Very
Large Data Bases (VLDB’02), 2002.

H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nier-
man, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu,
and C. Yu. TIMBER: A Native XML Database. 28th International Con-
ference on Very Large Data Bases (VLDB’02), 2002.

H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava Divesh, and
Keith Thompson. TAX: A Tree Algebra for XML. 8th Workshop on Data
Bases and Programming Languages (DBPL’01), 2001.

Carl-Christian Kanne, Matthias Brantner, and Guido Moerkotte. Cost-
Sensitive Reordering of Navigational Primitives. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 742—
753, 2005.

32

[33]

[34]

Michael Kay. XSL Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/2007/REC-zslt20-20070123/, 2007.

Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard
Stegmaier. FluXQuery: An Optimizing XQuery Processor for Streaming
XML Data. In Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB’04), pages 1309-1312, 2004.

Michael Kifer; Arthur Bernstein; Philip M. Lewis. Database Systems: An
Application Oriented Approach. Addison-Wesley, 2005.

B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A Transducer-
Based XML Query Processor. 28th International Conference on Very Large
Data Bases (VLDB’02), 2002.

Norman May, Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte.
XQuery Processing in Natix with an Emphasis on Join Ordering. In Pro-
ceedings of the 1st International Workshop on XQuery Implementation,
Experience and Perspectives (XIME-P’04), pages 49-54, 2004.

Norman May, Sven Helmer, and Guido Moerkotte. Nested Queries and
Quantifiers in an Ordered Context. Proceedings of the 20th International
Conference on Data Engineering (ICDE’04), pages 239-250, 2004.

Ramez Elmasri; Shamkant B. Navathe. Fundamentals of Database Systems.
Addison-Wesley, 2004.

Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry. XPath: Look-
ing Forward. In Proceeding of the EDBT Workshop on XML Data Man-
agement (XMLDM), pages 109127, 2002.

Oracle Berkeley DB XML. http://www.oracle.com/database/berkeley-
db/xml/index.html.

Stelios Paparizos, Yuqing Wu, Laks V. S. Lakshmanan, and H. V. Jagadish.
Tree Logical Classes for Efficient Evaluation of XQuery. ACM SIGMOD
International Conference on Management of Data, 2004.

Neoklis Polyzotis and Minos N. Garofalakis. Statistical Synopses for Graph-
Structured XML Databases. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 358-369, 2002.

Neoklis Polyzotis and Minos N. Garofalakis. Structure and Value Synopses
for XML Data Graphs. In Proceedings of the 28th International Conference
on Very Large Data Bases (VLDB’02), pages 466—477, 2002.

Neoklis Polyzotis, Minos N. Garofalakis, and Yannis E. Ioannidis. Ap-
proximate XML Query Answers. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 263-274, 2004.

33

[46]
[47]

[48]

[49]
[50]

[51]

[54]

[55]

[58]

Qizx. http://www.axyana.com/qizxopen/.

Christopher Re, Jerome Simeon, and Mary Fernandez. A Complete and
Efficient Algebraic Compiler for XQuery. 22nd International Conference
on Data Engineering (ICDE’06), 2006.

Naveen Reddy and Jayant R. Haritsa. Analyzing plan diagrams of database
query optimizers. In 31th International Conference on Very Large Data
Bases (VLDB’05), pages 1228-1240, 2005.

Saxonica: XSLT and XQuery Processing. http://www.saxonica.com/.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and
Randomized Optimization for the Join Ordering Problem. The Interna-
tional Journal on Very Large Data Bases, 6(3):191-208, 1997.

Hong Su, Jinhui Jian, and Elke A. Rundensteiner. RAINDROP: A Uniform
and Layered Algebraic Framework for XQueries on XMLStreams. Inter-
national Conference on Information and Knowledge Management (CIKM),
2003.

Arun N. Swami and Anoop Gupta. Optimization of Large Join Queries. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 817, 1988.

I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita,
and C. Zhang. Storing and Querying Ordered XML Using a Relational
Database System. Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 204215, 2002.

Attila Barta Vanja Josifovski, Marcus Fontoura. Querying XML streams.
The International Journal on Very Large Data Bases, pages 197-210, 2005.

Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. Bloom His-
togram: Path Selectivity Estimation for XML Data with Updates. In Pro-
ceedings of the 30th International Conference on Very Large Data Bases
(VLDB’04), pages 240-251, 2004.

Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Estimating Answer
Sizes for XML Queries. In Proceedings of the 8th International Conference
on Extending Database Technology (EDBT’02), pages 590-608, 2002.

Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Structural Join Or-
der Selection for XML Query Optimization. In Proceedings of the 19th
International Conference on Data Engineering (ICDE’03), pages 443-454,
2003.

X-Hive. http://www.x-hive.com/products/db/index.html.

34

[59] Ning Zhang, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun
Zhang. Statistical Learning Techniques for Costing XML Queries. In Pro-

ceedings of the 31th International Conference on Very Large Data Bases
(VLDB’05), pages 289-300, 2005.

35

