
CIRQUID: Complex Information Retrieval QUeries

In a Database

Djoerd Hiemstra1, Arjen P. de Vries2, Henk Ernst Blok1,

Maurice van Keulen1, Willem Jonker1 and Martin L. Kersten2

1University of Twente

PO Box 217, 7500 AE Enschede

The Netherlands

2CWI

PO Box 94079, 1090 GB Amsterdam

The Netherlands

Abstract

The CIRQUID project plans to design and build a DBMS that seemlessly integrates
relevance-oriented querying of semi-structured data (XML) with traditional querying of
this data. The project is funded by the Netherlands Organisation of Scientific Research
(NWO project number 612.061.210).

1 Introduction

The World-Wide Web has boosted the development of data management techniques for semi-
structured textual data, emphasizing content and structure. On the one hand, content-based
(ranked) retrieval of textual documents has become widely accepted by internet search engines
like Google and AltaVista. On the other hand, XML has become the standard document
model allowing structure and (text) content to be represented in a combined way. Currently,
much attention is paid to querying such documents. The development concerning XML query
languages progresses towards combined querying of both the content and structure elements.
Query processing technology has not fully kept pace with this development.

Current XML Query languages like XQuery lack one of the most important requirements
of content-based retrieval: The relevance-oriented ranking of retrieval results. Ranking is of
the utmost importance if large textual collections are queried. The average text query on
the web results in thousands of documents that contain the words. Ranking algorithms sort
retrieved sets of thousands of documents in decreasing order of the estimated probability
of relevance, saving the user valuable time in examining the retrieved set in search for the
relevant information.

As an example, consider the following simple query: Find the 10 most relevant news items
for which an image caption and the body text are about “Balcony scene of royal wedding”. An
information retrieval system would typically treat a news item as one textual object, so such
a system would not take advantage of the structural conditions in the query. On the other
hand, the query could be easily expressed in XQuery, except for “the 10 most relevant” part,
which suggests a ranking of the retrieved results. What is needed is a system that is able to
do both efficiently.
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In this project, we will develop ranked retrieval algorithms for semi-structured data by fo-
cusing on improving processing support for combined querying of both structure and content.
In particular, we restrict ourselves to retrieval of text content.

2 Problem statement

Until recently, text content for ranked retrieval was usually represented as a ‘bag of words’,
and a ‘bag of words’ is all that can be handled with well-known theoretical information
retrieval models like Salton’s vector space model [48] or Robertson et al.’s probabilistic model
[46]. However, the recently proposed language modeling approach to information retrieval
(LMIR) [44, 26] suggests some exciting new ways to look at texts that go beyond the ‘bag
of words’ representations, i.e., by combining content representations in a non-trivial way.
Language models are an emerging and promising direction in information retrieval research:
two entire sessions were devoted to this topic at the SIGIR 2001 conference [13]. Because of the
language models’ possibilities to reason about complex document representations, we believe
that language models are specifically promising for reasoning about semi-structured textual
data and XML [27, Section 4.8]. The further development of language models requires much
data manipulation for obtaining experimental evidence for these claims. Therefore, research in
information retrieval based on language models is expected to greatly benefit from rethinking
the design of retrieval systems.

Combined querying of structure and text content can be realized in several ways. One
of the options is coupling dedicated systems. However, this option is prone to be highly
inefficient when data grows to realistic sizes, which are typically huge. Since each individual
part of the query has to be processed by a separate system, either each system contains
much processing redundancy, or much work is left for the integrating application level. So,
integrating information retrieval functionality in a DBMS remains as a major class of possible
solutions which can be divided in three subclasses:

• Expressing the entire combined retrieval algorithms in terms of the high-level query
language as provided by a standard (commercial) DBMS.

• Exploiting the extension mechanisms of modern DBMSs for providing special-purpose
text retrieval functionality.

• Flexible and transparent integration of information retrieval functionality in a query
engine.

Unfortunately, current database state-of-the-art has serious deficiencies, making integra-
tion of information retrieval with database technology either too inefficient or too limited.
The first option above, expressing the retrieval algorithm in a high-level query language,
typically suffers from efficiency problems, due to missing application knowledge at the query
optimization level in combination with the high complexity of the query expression. The
second option, exploiting the extension mechanism, usually approaches information retrieval
processing in a black-box manner. This results in similar inefficiencies as in the first option,
a system coupled at application level: extension modules often lead to redundant processing
and additional work left for the integrating layer [59]. Furthermore, interconnecting and co-
ordinating functionality between modules may lead to additional problems which are usually
hard to overcome.
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The third option, transparently integrating information retrieval functionality in a DBMS,
has the potential resolving these deficiencies. To realize this potential, developments in both
information retrieval and database technology are required. Furthermore, on the database
side, this requires adaptations on physical and logical levels.

Our proposal addresses the following three closely intertwined research questions:

1. How can we transparently integrate language model information retrieval primitives in
the logical algebra layer of a DBMS to provide capabilities for combined querying of
both structure and text content?

2. How can we provide physical storage, processing, and optimization support for these
logical information retrieval and structure querying primitives?

3. How can we extend database query optimization technology to overcome the typical
efficiency bottlenecks described above to support combined querying of both structure
and text content?

The remainder of this document proposes a research track giving insight into answering these
research questions, as a contribution to advancing both database technology and information
retrieval research.

3 Research method and envisioned results

The research plan is divided in two major parts: database architecture and optimization.
The database architecture part addresses the first two research questions. We conjecture

that a traditional three level design of DBMSs – distinguishing a physical, a logical, and a
conceptual level – provides the best opportunity for balancing flexibility and efficiency. We
will concentrate on the core database primitives, facilitating physical data independence and
logical data independence. Physical and logical data independence should be ensured by
defining requirements for the storage and retrieval of XML data (both structure and text
content) at both the physical and logical level. From these requirements, a small number of
text retrieval primitives will be defined. These primitives are oriented toward bulk processing,
defining a physical algebra and a logical algebra for text retrieval. These will be embedded in
existing algebras for structured querying, involving both the ordered and unordered collection
types.

Essential for the third research question regarding optimization is the design of rules that
define the equivalence between algebraic formulas at the logical level. Recall that black-box
approaches are prone to redundant processing. A transparent definition of logical operators
would enable a query optimizer to minimize these redundancies. Since this typically occurs
where more than one structure/object is involved, we call this inter-object optimization. Also
essential is a cost model at the physical level, guided by application knowledge provided by
the logical level, to support the proper choice of optimization rules at the logical level.

More concretely, we envision the following three research goals corresponding to our three
research questions:

1. to design and develop as a database extension, a logical algebra for basic ranked retrieval
operations, including basic operations for the combination of complex representations,
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2. to design and develop as a database extension a physical algebra for the efficient storage
and ranked retrieval of XML data, and

3. to design and develop rules for inter-object optimization.

Conceptual Layer

Physical Layer (Monet)Extension

Extension

Algebra for
language model
IR extensions

rewrite rules

Extension Logical Layer (Moa)

Relational storage of XML

Optimisation

XML & IR

Figure 1: Database internals.

Figure 1 visualizes the prototype database architecture. In the next sections, we elaborate
on each of these topics.

3.1 Transparent DBMS information retrieval primitives

A new promising direction in the field of information retrieval is the use of statistical lan-
guage models. Statistical language models were introduced in 1998 by Ponte and Croft [44],
Hiemstra [26], and Miller et al. [41] as a new approach to information retrieval. The language
models, which are based on discrete hidden Markov models, do no require the use of com-
plex tf.idf term weights. As such, they provide a previously unavailable way to reason about
ranking of retrieval results.

Language models have been developed at the University of Twente for cross-language
information retrieval, relevance feedback and manually formulated Boolean-structured queries
[28, 29], adaptive filtering [27] and web search [35]. As suggested in [41, 1, 35], language models
also open exciting new possibilities for combining different content-representations of semi-
structured data. In theory that is, because none of these publications actually reported that
they were able to implement none trivial versions of such a system. Implementing general
purpose solutions to these problems takes a lot of effort without DBMS-support for text
retrieval.

This part of the project has to bridge the gap between information retrieval and database
principles. The language models will be used to define a small number of retrieval primitives,
i.e., content-based text queries referring to regular path expressions, content-based versions
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of proximity operators for ‘near’ and ‘adjacent’ words, and content-based versions of the
traditional Boolean AND, and OR operators to combine the information. New operators
should meet the following database requirements:

• adhere to collection-based processing,

• adhere to data independence, and

• adhere to semantic granularity of the logical algebra.

This should lead to a transparent implementation that allows for inter-object query optimiza-
tion.

3.2 Physical support for complex text queries

Database research at CWI is focused on the database internals, and in particular the effect
of changes in both the hardware platforms on which database systems run (much bigger,
but (relatively) ever slower memory) and the applications that require database support (in
particular, small number of expensive queries instead of high numbers of cheap queries). These
changes are studied using the Monet database kernel, developed especially to experiment
with implementation techniques for novel application domains on parallel and distributed
processing platforms.

Monet has been applied as backend for the storage and retrieval of XML documents in
a generic way, that is much more efficient for associative querying than flat XML querying
[50]. The database uses a decomposition of the XML structure into binary relational tables.
The scheme supports traditional querying of semi-structured data; however, querying does
not result in a ranking of the retrieved results, and full-text querying still requires inefficient
scans over large parts of the textual data.

This project proposes to build upon this work by decomposing the XML content (the
so-called parsed character data, or PCDATA in XML) into tables as well, similar to the way
Monet has functioned as backend for information retrieval experiments, see e.g. [60, 58, 57].
To improve the efficiency of such a decomposition, the proposed research investigates the
use of techniques from inverted file index structures, e.g., the use of compression techniques
discussed in [63], as well as the application of new data structures, in particular the suffix
array (see [65]).

Two classes of queries that cause particular difficulty for traditional database systems
are containment and proximity queries, such as ‘find all text fragments between given tags
containing a personname and the keyword president within 10 words from each other’. As
discussed in detail by [67], a database system is often less efficient on containment queries
than the equivalent information retrieval system, unless the DBMS is extended with new
physical operators (like the multi-predicate merge join proposed there).

Not all improvements for such algorithms require the implementation of new operators
at the kernel level. For example, the algorithm presented in [61] for efficient k-NN query
processing (where k is large, e.g., more than 100) is expressed perfectly as an (efficient) query
plan in the common relational operators, and the same holds for approximate string matching
using the strategy outlined in [21].

Strategies that can be expressed as highly specialized query plans using ‘standard’ rela-
tional operators have a particular advantage over new kernel operators: their implementation
is open and therefore allows for better cooperation with a query optimizer. For example, in
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a query for photographs from 1999 with a specific color layout, the constraint ‘from 1999’
can be pushed through the query plan specified by the k-NN query strategy defined in [61],
while this would be infeasible had the k-NN search been a physical operator. This style of
physical support is thus of a particular interest, as no query processor could be expected to
figure such optimizations on its own, but the number of alternatives for the query optimizer
to choose from is not severely restricted.

The envisioned results are better query processing techniques for the types of queries
that are currently not handled well by relational database systems. The proposed research
is focused on the discovery of several such strategies for containment and proximity queries,
supported by new physical operators if necessary. A research question is whether the tradi-
tional set-oriented view on physical operators is sufficient, or an ordered physical algebra is
more attractive for these types of queries.

3.3 Logical query optimization

As argued in Section 2, a modern database query optimizer should be able to reason over
queries that contain clauses over data structures that are typically implemented in differ-
ent extensions of the DBMS. Current, state-of-the-art optimizer technology can deal with
extensions in isolation. We call this intra-object query optimization [4]. By designing an
inter-object optimizer layer that is able to bridge the typical orthogonality of database ex-
tensions at the logical level, the query optimizer is extended to handle pairs or even groups
of interacting extensions.

Advanced IR
subquery on the
text content of

a selection of tags

Some other IR
subquery on the
text content of

some other
selection of tags

Combined ranking function

Example of query with combined
IR and structural subqueries

Abstract representation of inter−object
optimized white−box evaluation of above query

Abstract representation of black−box
evaluation of above query

h

h

f g

Operands containing text content

g

Operands containing text content

f

Figure 2: Optimization opportunities for inter-object optimization in a white-box approach.
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The example shown in Figure 2 illustrates how otherwise redundant processing might be
avoided by ‘opening’ the black box. On the left-hand side, ‘f’, ‘g’, and ‘h’ represent complex
black-box operators (internals shown for explanatory purposes). Consider again the example
query from the introduction. In this case ‘f’ and ‘g’ would represent the search in image
captions and body texts, respectively, and ‘h’ would represent the restriction that both occur
in the same news item and the selection of the top-10. The right-hand side of the figure
demonstrates how parts of the black-boxes can be processed together reducing redundancy.
It also shows that operators can be reordered vertically due to the transparency of ‘f’, ‘g’,
and ‘h’, for example pushing a selection in ‘h’ through ‘f’ and ‘g’. Note that the black-box
approach would typically first retrieve all matching image captions and retrieve all matching
body texts, then impose the restriction that they need to be in the same news item, and finally
select the top 10. Transparency of ‘f’ and ‘g’ allows both the ‘same news item’ restriction
and the top-10 selection to be partly pushed down by the query optimizer, thus reducing the
size of intermediate results.

In the above, examples of two classes of inter-object optimization can be distinguished:

parallel Combine common processing tasks in parallel branches of the query operator tree
(e.g., combining common parts of ‘f’ and ‘g’).

sequential Combine and reorder processing tasks that occur sequentially in the query (e.g.,
pushing a selection in ‘h’ through ‘f’ and ‘g’).

We envision a three layered optimizer architecture at the logical level:

1. A global optimizer kernel layer that deals with only very basic optimization issues.

2. An inter-object optimizer layer that is spawned by the top layer to handle parts of
the query that require different complex operators to cooperate. This layer should be
extensible such that optimization functionality for new combinations of extensions can
be added when required.

3. An intra-object optimizer layer, similar to the E-ADT approach used in PREDATOR

[51]. This layer should be extensible as well, to allow adding new optimizer functionality
as new extensions are added to the DBMS.

The extensibility of the query optimizer at the logical level is crucial. It allows adaptation
of the query optimization capabilities of the system, similar to the need to have an extension
mechanism in a DBMS to cope with new media types. It also allows for proper embedding
and exploitation of application knowledge in the query optimizer.

We envision this application knowledge to be used to provide hints to the lower physical
optimizer and its cost model. A text retrieval optimizer extension might, for instance, give
hints about which selectivity model to use to the cost model at the physical level [5, 6]. By
generating different alternative physical expressions and offering them to the physical cost
model for a cost prediction, including a selectivity hint, the logical optimizer can then choose
which variant to send to the physical layer for further processing and execution.

Additionally, the logical optimizer extension for text retrieval might exploit quality in-
formation learned from user feedback [7]. This information, like the choice of the selectivity
model for cost prediction, is typical application dependent knowledge. At the logical level
this information is still available, in contrast with the physical level, thus allowing for more
sophisticated optimization decisions.
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3.4 Discussion

To allow experimental validation of the concepts to be developed, a prototype database system
is needed. A similar prototype database system has been developed with as logical layer Moa

and as physical layer Monet [34]. Both layers are well attuned to each other. Furthermore,
both systems have been designed with the purpose to support problems like this project has
in mind. From a practical point of view, access to the internals of the systems is an advantage.

Such a prototype database system needs a conceptual layer with an accompanying query
language as well, for example XQuery including an extension for ranked retrieval as proposed
in [18].

4 Related work

This section addresses related work from the fields of Database research and Information
Retrieval research.

4.1 The integration of information retrieval and databases

In Section 2 we mentioned three ways to realize combined querying of structure and text
content by integrating information retrieval techniques in a DBMS. Here we provide a brief
overview of related work regarding these three classes.

In the first case, the entire combined retrieval algorithms is expressed in terms of the high-
level query language, e.g., SQL, as provided by a standard (commercial) DBMS. This means
that existing elements of a query language are used to express the entire ranking algorithm.
This is an easy means to realize information retrieval functionality but, as we argued above,
has several major drawbacks. Examples in literature can be found in [24, 23, 22, 16]. The
case where the extension mechanism of a DBMS is exploited can be divided in two different
situations [53]: the extension acts as a wrapper for an external dedicated information retrieval
system or the extension contains an entire retrieval system, e.g., the commercial Excalibur
text datablade [15] for the Informix DBMS [31]. Furthermore, two ways exist to provide
information retrieval functionality: either capture the entire retrieval procedure by one single
function or provide several functions that together provide the requested functionality [17, 19].
The last approach can be characterized as the ‘back-to-basics’ approach. Many completely
different results are known that belong to this class. An early example of such an approach
is the AIM system and related projects [14, 43]. Another well-known system is MULTOS [3].
The Mirror project [59] proposed the division of information retrieval processing parts over
the three typical architectural DBMS layers to improve efficiency.

Several key principles behind the problem of integrating information retrieval in a DBMS
are described in [62]. In [26] the language modeling approach was introduced. Van Zwol and
Apers [68, 69] describe the integration of querying structure and multi media data in the
context of searching the web and XML document collections. When optimizing text retrieval
queries not only execution performance plays a role, but quality is as least as important. Pre-
diction of the quality implications is therefore an interesting issue [7]. Managing uncertainty
in database design is addressed in [12].
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4.2 Language models for information retrieval

Although hidden Markov models have been successfully used for e.g. automatic speech recog-
nition for over 20 years now [33], their use was only recently proposed for text retrieval
[44, 26, 41] and image retrieval [54]. Inspired by the speech recognition community, the text
approach is called a language modeling approach to information retrieval. The approach al-
lows for high-quality retrieval results without the need for complex term weighting algorithm
like the familiar tf.idf weights (see e.g. [47]). As such, they have really contributed to our
understanding of content-based retrieval. Because of the basic understanding of the under-
lying algorithms, the models are easily extended to support multiple query representations
[2, 28, 64], and multiple content-representations [41, 1, 35, 36], which makes them the ideal
candidate for developing general purpose primitives for the combined querying of content and
structure.

4.3 Physical support for complex text queries

As has been observed, most previous attempts at integrating database technology and infor-
mation retrieval techniques have followed the approach of extending the DBMS with a more or
less complete information retrieval system. A notable exception to this rule is the recent work
by Zhang et al. [67], who propose to extend the DBMS with new join operators for process-
ing containment queries efficiently. In the field of data structures and theoretical computer
science however, many papers address the problem of solving proximity queries efficiently,
and even the more general class of regular expression matching, also on large archives, see
e.g. [37]. We plan to base new physical operators on existing techniques using suffix arrays,
comparable to the approach taken in [21] for approximate string matching with q-grams.

As discussed, complex access structures are better designed as query plans expressed in
more basic physical operators than as black-box complex physical operators. In [61] a case
study is presented in image retrieval where this argument has been proven true. In [40]
the claim is supported that Monet’s physical operators exploit better the modern CPU’s
(which have relatively high amounts of cache). De Vries [56] details a notion of content
independence, as a design analogon to data independence, which allows the separation of
retrieval model from queries posed to the database. Schmidt et al. [49] present how to
map complex XML documents to binary tables in Monet, resulting in highly efficient query
processing for associative queries. The canonical Monet publication [8], details the specific
design features and advantages for complex structured data provided by Monet.

4.4 Query optimization

Query optimization has played a central role in database research for a long time. Good
overviews can be found in any standard database text book. At the logical level algebra
properties like commutativity and associativity are used in transformation rules that are
specializations of the common rule to limit the intermediate results as soon and as much as
possible. Typical examples are rules to push selections and the most restrictive joins down
the operator tree. To allow the optimizer to choose the cheapest of the possible equivalent
expressions, it requires a simple cost model that can predict the cardinalities of intermediate
results. Such a cardinality estimate draws heavily on a selectivity model. As such, selectivity
estimation has been subject to extensive research [9, 66, 42, 30, 39, 11, 32, 20, 45, 10].
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In [25, 38] predicate reordering techniques have been proposed that are even more so-
phisticated. NF2 databases require a more sophisticated optimizer in general since the NF2

paradigm allows nesting of relations [52]. This also holds for OO databases. As mentioned
in Section 2 the modern day DBMS extension mechanism poses new demands to the query
optimizer. The PREDATOR project [51] proposed the E-ADT approach allowing the ADT
programmer to add optimizer functionality for the ADT as well. We call this approach the
intra-object optimization approach.

5 Conclusion and acknowledgements

The CIRQUID project bridges the gap between structured query capabilities of XML query
languages and relevance-oriented querying. Current techniques for XML querying, originating
from the database field, do not support relevance-oriented querying, but techniques for ranking
documents, originating from the information retrieval field, typically do not take document
structure into account. Ranking is of the utmost importance if large collections are queried,
to assist the user in finding the most relevant documents in a retrieved set.

The ideas and plans addressed in this report will be experimentally validated by building
one or more prototype databases systems, which will be evaluated on benchmark testbeds.
The project will run from from end 2002 to begin 2007. We are very grateful to the Nether-
lands Organization for Scientific Research (NWO) for making the project possible. Many
thanks go to Peter Apers for useful comments and advice.
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