9,319 research outputs found

    Organizational speed as a dynamic capability: Toward a holistic perspective

    Get PDF
    Current research on organizational speed has been disjointed, which has left organizational speed as an underdeveloped area of study. In this essay, we expand the view of organizational speed as a multidimensional gestalt-like construct that may influence firm performance and competitive advantage. We offer a capability-based definition of organizational speed and identify and review the building blocks of organizational speed. We propose new avenues and questions for future research based on our perspective

    An ES process framework for understanding the strategic decision making process of ES implementations

    Get PDF
    Enterprise systems (ES) implementations are regarded costly, time and resource consuming and have a great impact on the organization in terms of the risks they involve and the opportunities they provide. The steering committee (SC) represents the group of individuals who is responsible for making strategic decisions throughout the ES implementation lifecycle. It is evident from recent studies that there is a relationship between the decision making process and ES implementation success. One of the key elements that contribute to the success of ES implementations is a quick decision making process (Brown and Vessey, 1999; Gupta, 2000; Parr, et al., 1999). This study addresses the strategic decision-making process by SC through its focus on four research questions (1) How can the strategic decision-making process in the implementation of ES be better understood, during each phase of the ES implementation lifecycle? (2) What is the process by which the SC makes strategic decisions? (3) How are fast decisions made? and (4) How does decision speed link to the success of ES implementation? Process models of ES implementation will provide a framework to investigate the strategic decision making process during each phases of the ES implementation lifecycle. Patterns in the decision making process will be explored using strategic choice models. This study develops a research model that focuses on the decision making process by steering committee to explore research questions. It concludes with identifying contributions to both IS research and business practitioners

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    APPROXIMATION OF LIMIT STATE SURFACES IN MONOTONIC MONTE CARLO SETTINGS

    Get PDF
    International audienceThis article investigates the theoretical convergence properties of the estimators produced by a numerical exploration of a monotonic function with multivariate random inputs in a structural reliability framework.The quantity to be estimated is a probability typically associated to an undesirable (unsafe) event and the function is usually implemented as a computer model. The estimators produced by a Monte Carlo numerical design are two subsets of inputs leading to safe and unsafe situations, the measures of which can be traduced as deterministic bounds for the probability. Several situations are considered, when the design is independent, identically distributed or not, or sequential. As a major consequence, a consistent estimator of the (limit state) surface separating the subsets under isotonicity and regularity arguments can be built, and its convergence speed can be exhibited. This estimator is built by aggregating semi-supervized binary classifiers chosen as constrained Support Vector Machines. Numerical experiments conducted on toy examples highlight that they work faster than recently developed monotonic neural networks with comparable predictable power. They are therefore more adapted when the computational time is a key issue

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Where creativity comes from: the social spaces of embodied minds

    Get PDF
    This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality. This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality
    • 

    corecore