2,470 research outputs found

    Structural Properties of an Open Problem in Preemptive Scheduling

    Get PDF
    Structural properties of optimal preemptive schedules have been studied in a number of recent papers with a primary focus on two structural parameters: the minimum number of preemptions necessary, and a tight lower bound on `shifts', i.e., the sizes of intervals bounded by the times created by preemptions, job starts, or completions. So far only rough bounds for these parameters have been derived for specific problems. This paper sharpens the bounds on these structural parameters for a well-known open problem in the theory of preemptive scheduling: Instances consist of in-trees of nn unit-execution-time jobs with release dates, and the objective is to minimize the total completion time on two processors. This is among the current, tantalizing `threshold' problems of scheduling theory: Our literature survey reveals that any significant generalization leads to an NP-hard problem, but that any significant simplification leads to tractable problem. For the above problem, we show that the number of preemptions necessary for optimality need not exceed 2n12n-1; that the number must be of order Ω(logn)\Omega(\log n) for some instances; and that the minimum shift need not be less than 22n+12^{-2n+1}. These bounds are obtained by combinatorial analysis of optimal schedules rather than by the analysis of polytope corners for linear-program formulations, an approach to be found in earlier papers. The bounds immediately follow from a fundamental structural property called `normality', by which minimal shifts of a job are exponentially decreasing functions. In particular, the first interval between a preempted job's start and its preemption is a multiple of 1/2, the second such interval is a multiple of 1/4, and in general, the ii-th preemption occurs at a multiple of 2i2^{-i}. We expect the new structural properties to play a prominent role in finally settling a vexing, still-open question of complexity

    On the periodic behavior of real-time schedulers on identical multiprocessor platforms

    Full text link
    This paper is proposing a general periodicity result concerning any deterministic and memoryless scheduling algorithm (including non-work-conserving algorithms), for any context, on identical multiprocessor platforms. By context we mean the hardware architecture (uniprocessor, multicore), as well as task constraints like critical sections, precedence constraints, self-suspension, etc. Since the result is based only on the releases and deadlines, it is independent from any other parameter. Note that we do not claim that the given interval is minimal, but it is an upper bound for any cycle of any feasible schedule provided by any deterministic and memoryless scheduler

    Preemptive Multi-Machine Scheduling of Equal-Length Jobs to Minimize the Average Flow Time

    Full text link
    We study the problem of preemptive scheduling of n equal-length jobs with given release times on m identical parallel machines. The objective is to minimize the average flow time. Recently, Brucker and Kravchenko proved that the optimal schedule can be computed in polynomial time by solving a linear program with O(n^3) variables and constraints, followed by some substantial post-processing (where n is the number of jobs.) In this note we describe a simple linear program with only O(mn) variables and constraints. Our linear program produces directly the optimal schedule and does not require any post-processing

    The Complexity of Mean Flow Time Scheduling Problems with Release Times

    Full text link
    We study the problem of preemptive scheduling n jobs with given release times on m identical parallel machines. The objective is to minimize the average flow time. We show that when all jobs have equal processing times then the problem can be solved in polynomial time using linear programming. Our algorithm can also be applied to the open-shop problem with release times and unit processing times. For the general case (when processing times are arbitrary), we show that the problem is unary NP-hard.Comment: Subsumes and replaces cs.DS/0412094 and "Complexity of mean flow time scheduling problems with release dates" by P.B, S.

    Optimal Algorithms for Scheduling under Time-of-Use Tariffs

    Get PDF
    We consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the sum of (weighted) completion times. It is not difficult to derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan on unrelated machines. The problem of minimizing the total (weighted) completion time is considerably harder, even on a single machine. We present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time-slots to be used for scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for.Comment: 17 pages; A preliminary version of this paper with a subset of results appeared in the Proceedings of MFCS 201

    Better Unrelated Machine Scheduling for Weighted Completion Time via Random Offsets from Non-Uniform Distributions

    Full text link
    In this paper we consider the classic scheduling problem of minimizing total weighted completion time on unrelated machines when jobs have release times, i.e, RrijjwjCjR | r_{ij} | \sum_j w_j C_j using the three-field notation. For this problem, a 2-approximation is known based on a novel convex programming (J. ACM 2001 by Skutella). It has been a long standing open problem if one can improve upon this 2-approximation (Open Problem 8 in J. of Sched. 1999 by Schuurman and Woeginger). We answer this question in the affirmative by giving a 1.8786-approximation. We achieve this via a surprisingly simple linear programming, but a novel rounding algorithm and analysis. A key ingredient of our algorithm is the use of random offsets sampled from non-uniform distributions. We also consider the preemptive version of the problem, i.e, Rrij,pmtnjwjCjR | r_{ij},pmtn | \sum_j w_j C_j. We again use the idea of sampling offsets from non-uniform distributions to give the first better than 2-approximation for this problem. This improvement also requires use of a configuration LP with variables for each job's complete schedules along with more careful analysis. For both non-preemptive and preemptive versions, we break the approximation barrier of 2 for the first time.Comment: 24 pages. To apper in FOCS 201

    Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

    Full text link
    We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems
    corecore