83,460 research outputs found

    Adversarial Deep Network Embedding for Cross-network Node Classification

    Full text link
    In this paper, the task of cross-network node classification, which leverages the abundant labeled nodes from a source network to help classify unlabeled nodes in a target network, is studied. The existing domain adaptation algorithms generally fail to model the network structural information, and the current network embedding models mainly focus on single-network applications. Thus, both of them cannot be directly applied to solve the cross-network node classification problem. This motivates us to propose an adversarial cross-network deep network embedding (ACDNE) model to integrate adversarial domain adaptation with deep network embedding so as to learn network-invariant node representations that can also well preserve the network structural information. In ACDNE, the deep network embedding module utilizes two feature extractors to jointly preserve attributed affinity and topological proximities between nodes. In addition, a node classifier is incorporated to make node representations label-discriminative. Moreover, an adversarial domain adaptation technique is employed to make node representations network-invariant. Extensive experimental results demonstrate that the proposed ACDNE model achieves the state-of-the-art performance in cross-network node classification

    Deviation Point Curriculum Learning for Trajectory Outlier Detection in Cooperative Intelligent Transport Systems

    Get PDF
    Cooperative Intelligent Transport Systems (C-ITS) are emerging in the field of transportation systems, which can be used to provide safety, sustainability, efficiency, communication and cooperation between vehicles, roadside units, and traffic command centres. With improved network structure and traffic mobility, a large amount of trajectory-based data is generated. Trajectory-based knowledge graphs help to give semantic and interconnection capabilities for intelligent transport systems. Prior works consider trajectory as the single point of deviation for the individual outliers. However, in real-world transportation systems, trajectory outliers can be seen in the groups, e.g., a group of vehicles that deviates from a single point based on the maintenance of streets in the vicinity of the intelligent transportation system. In this paper, we propose a trajectory deviation point embedding and deep clustering method for outlier detection. We first initiate network structure and nodes' neighbours to construct a structural embedding by preserving nodes relationships. We then implement a method to learn the latent representation of deviation points in road network structures. A hierarchy multilayer graph is designed with a biased random walk to generate a set of sequences. This sequence is implemented to tune the node embeddings. After that, embedding values of the node were averaged to get the trip embedding. Finally, LSTM-based pairwise classification method is initiated to cluster the embedding with similarity-based measures. The results obtained from the experiments indicate that the proposed learning trajectory embedding captured structural identity and increased F-measure by 5.06% and 2.4% while compared with generic Node2Vec and Struct2Vec methods.acceptedVersio

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning

    Graph Neural Network for Stress Predictions in Stiffened Panels Under Uniform Loading

    Full text link
    Machine learning (ML) and deep learning (DL) techniques have gained significant attention as reduced order models (ROMs) to computationally expensive structural analysis methods, such as finite element analysis (FEA). Graph neural network (GNN) is a particular type of neural network which processes data that can be represented as graphs. This allows for efficient representation of complex geometries that can change during conceptual design of a structure or a product. In this study, we propose a novel graph embedding technique for efficient representation of 3D stiffened panels by considering separate plate domains as vertices. This approach is considered using Graph Sampling and Aggregation (GraphSAGE) to predict stress distributions in stiffened panels with varying geometries. A comparison between a finite-element-vertex graph representation is conducted to demonstrate the effectiveness of the proposed approach. A comprehensive parametric study is performed to examine the effect of structural geometry on the prediction performance. Our results demonstrate the immense potential of graph neural networks with the proposed graph embedding method as robust reduced-order models for 3D structures.Comment: 20 pages; 7 figure
    • …
    corecore