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Deviation Point Curriculum Learning for Trajectory
Outlier Detection in Cooperative Intelligent

Transport Systems
Usman Ahmed, Gautam Srivastava, Youcef Djenouri, and Jerry Chun-Wei Lin∗

Abstract—Cooperative Intelligent Transport Systems (C-ITS)
are emerging in the field of transportation systems, which can be
used to provide safety, sustainability, efficiency, communication
and cooperation between vehicles, roadside units, and traffic
command centres. With improved network structure and traffic
mobility, a large amount of trajectory-based data is generated.
Trajectory-based knowledge graphs help to give semantic and
interconnection capabilities for intelligent transport systems.
Prior works consider trajectory as the single point of deviation
for the individual outliers. However, in real-world transportation
systems, trajectory outliers can be seen in the groups, e.g.,
a group of vehicles that deviates from a single point based
on the maintenance of streets in the vicinity of the intelligent
transportation system. In this paper, we propose a trajectory
deviation point embedding and deep clustering method for
outlier detection. We first initiate network structure and nodes’
neighbours to construct a structural embedding by preserving
nodes relationships. We then implement a method to learn
the latent representation of deviation points in road network
structures. A hierarchy multilayer graph is designed with a biased
random walk to generate a set of sequences. This sequence is
implemented to tune the node embeddings. After that, embedding
values of the node were averaged to get the trip embedding.
Finally, LSTM-based pairwise classification method is initiated
to cluster the embedding with similarity-based measures. The
results obtained from the experiments indicate that the proposed
learning trajectory embedding captured structural identity and
increased F-measure by 5.06% and 2.4% while compared with
generic Node2Vec and Struct2Vec methods.

Index Terms—Trajectory analysis, outlier detection, data min-
ing, road traffic management, smart city application.

I. INTRODUCTION

Cooperative Intelligent Transport Systems (C-ITS) help to
provide sustainability, improve safety and comfort by taking
advantage of the communications and cooperation of the par-
ticipants. Traffic management systems are the key to intelligent
and modern traffic in Urban centres. The core component in
the C-ITS includes the traffic managements system connected
with roadside units and vehicles. Due to mobility, the traf-
fic management systems generate a large amount of traffic
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data. Primarily that data includes city road networks and
trajectories. This huge set of trajectories often comes from
the sensors networks integrated with C-ITS. Livability and
sustainability of the urban domain require accurate and timely
knowledge of urban transportation system is essential [1].
For instance, it helps to understand the different paths of a
road segment and provide the most reliable information of its
traffic management systems to facilitate optimization goal, i.e.,
low-carbon transportation [2]. Smart cities use methods like
Global Positioning System (GPS) receivers, road sensors, and
in-vehicle sensors for monitoring traffic conditions [3]. Each
moving object produces trajectories, as results in producing
an unlimited number of sequence points. The sequence points
are used by the high-performance computing resources to
analyze the traffic flow. The sequential points data gathering
at every road intersection have a higher telecommunication
bandwidth and computation capacity to structure the data for
monitoring tasks. This data collection and monitoring process
become even trickier in network dynamics, e.g., the time
variants available bandwidths. Trajectory databases have a
lot of real-world applications with respect to mobile traffic
networks [4]–[6] and intelligent transportation systems [7]–
[10]. Detecting abnormal trajectories has high implications in
traffic flow analysis. The topic of this research also revolves
around trajectory outlier detection based on dynamic graphs.
The outlier detection technique aims to determine the unusual
observations from the normal observations [11]. The basic
purpose is to extract inconsistent observation from the normal
flow [12, 13]. Current methods consider the single view of
the outliers in a sub or whole trajectory. Instead of individual
outliers, a group of outliers also exists in the sub trajectory or
the whole trajectory. Useful and derived patterns are used to
detect group trajectory outliers or for deviation points extrac-
tion of individuals and groups of trajectory outliers. The novel
urban traffic monitoring schemes should be less demanding
on the deployable traffic detectors and intelligently adapts
to the limited and resource-efficient environments. Instead
of monitoring the massive links or network tomography, a
smaller number of paths should be compared with that reduces
complexity. In addition , network tomography helps to analyze
road segments to its neighbour’s road segments.

A. Motivation
The motivation behind the proposed work is formulated in

Fig. 1, where Taxis 1,2,3,4 using the same route for the des-
tination. However, Taxis 5 and 6 deviate from the same point
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(a) Single instance (b) Group outlier example 1 (c) Group outlier example 2

Fig. 1: Trajectory outlier detection motivation example

instead of having the same source and destination point as the
rest of the Taxis. Traditional methods used the user threshold
values to find the similarity of the trajectory outliers [11,
14, 15]. The similarity score is calculated of each trajectory
and then the fixed user threshold values decide whether the
trajectory is an outlier. They do not examine the structure
differences between each trajectory. In Fig. 1(b), Taxis 5 and
6 deviate from the same deviate point but follow two different
trajectories. However, in Fig. 1(c), the two Taxis deviate from
the same point and also follow the same trajectory. Detecting
deviation points based on the trajectory analysis helps C-ITS
discover useful knowledge about the follow and deviations
points. Detecting the individuals and deviation points of the
individuals (Fig. 1(a)) helps to identify the potential Taxi
frauds and individual deviation point (IDP). This helps the
C-ITS decision-makers apply appropriate measures and thus
better identify potential frauds by placing the perfect posi-
tioned surveillance cameras.

Detection of group trajectory in Figs. 1(b) and 1(c), allows
the C-ITS to detect Taxi outliers. The deviation from the
same point and following different trajectories have substantial
implications to avoid circumstances on the main trajectory,
such as traffic jams rather than Taxi fraud. However, a group
of Taxis outlier with different deviation points with the same
trajectory might partner in the taxi fraud. Network structure
and temporal information are important in trajectory outlier
detection. The major problem in traditional methods [11, 14,
15] is that the existing Taxis fraud detection algorithms detect
a group of trajectory outliers and spatio-temporal deviation
points identification.

B. Contributions

Previous works address the individual trajectory outlier
detection method where Group of trajectory outlier (GTO)
detection is done based on the deviation points. This paper
designs and implements the structural embedding method to
assess the structural trajectory similarity between nodes. Two
nodes with a similar local structure based on their trajectory
will be considered similar. The context is used to build and
learn the latent representation for the trajectory of nodes. After

embedding the extraction method, we introduce the curriculum
learning method to detect the outliers in the extracted trajec-
tory embeddings using a self-supervised way. In particular, we
have the following key contributions:

1) We introduce a trajectory embedding method based on
the structural similarity to describe the identifiability of
the trajectory-based network connected over C-ITS.

2) We propose a curriculum learning-based self-supervised
learning algorithm to obtain the deviation point-based
trajectory outliers.

3) The embedding structures method helps to detect tra-
jectory outliers and deviation points with increased F-
measure by 5.06% and 2.4% while compared with
Node2Vec and Struct2Vec methods.

The rest of the paper is arranged as follows. Section
II describes the connected works. Section III describes the
problem definition and methodology. Section IV discusses the
outcomes. Section V describes the finding of the work. Section
VII concludes by providing a summary and Section VI future
work recommendations.

II. LITERATURE REVIEW

Trajectory and outlier detection methods are broken down
into two categories, i.e., offline and online methods. The
huge data volumes and complex semantics structure in outlier
detection have imposed significant technical challenges. Zhang
et al. [20] proposed a graph-based method for detecting multi-
levels of Taxi trip outliers in a large-scale urban traffic network.
The efficient spatial analysis helps to find the shortest path and
centralities measures. The method makes use of the shortest
path computation algorithm and a spatial join algorithm. The
contraction hierarchy of these algorithms is implemented to
snap, pickup, and drop-off locations. Kong et al. [16] used the
local outlier factor to index score for anomaly detection. Zhu
et al. [21] proposed the algorithm to detect time-independent
outliers. The method utilizes the route of the same source and
destination point. A threshold value is set to determine the
outliers and normal trajectory. The outliers trajectory extractor
from the isolation-based anomalous trajectory algorithm has
distinct properties. Zhongjian et al. [18] proposed a group
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TABLE I: Comparison of the application and method used in the trajectory analysis.

References Year Trajectory Data Application Methods
Chao et al. [14] 2013 Yes No iBoat - adaptive window based
Xiangjie et al. [16] 2018 Yes Yes Statistical learning
Zhipeng et al. [17] 2013 Yes No Density-based trajectory outlier detection
Zhongjian et al. [18] 2017 Yes No Clustering
Jiali et al. [12] 2018 Yes Yes Outlier detection over distributed trajectory streams)
Jiali et al. [19] 2017 Yes No TF-outlier and MO-outlier detection upon trajectory stream)
Hosseinpoor et al. [13] 2018 Yes Yes Dempster-shafer - degrees of uncertainty

route method that contains the central points-based clusters.
The central points are used as usual routes. The distance-
based method is used to compute the trajectories scores.
The trajectories that exceed a similarity threshold are termed
outliers. Zhou et al. [22] identifies Taxi fraud by matching the
patterns in the taximeter database, i.e., where each trajectory
point is metered or unmetered. The method used the stochastic
gradient model.

A. Online methods

Online methods detect the sub-trajectory that are signif-
icantly different. Chen et al. [14] proposed the adaptive
working window method to detect the Taxi detours. Yu et
al. [23] also proposed a sub-trajectory-based outlier detection
method. The method used a neighbour set of sub-trajectory to
calculate the similarity scores. Wu et al. [24] introduced the
probabilistic model that used the entropy-based inverse rein-
forcement learning method. The method transforms mapped
trajectories into historical trajectory actions. The method used
probability threshold values to identify sub-trajectory. Mao et
al. [19] introduce trajectory fragmentation-based method. Two
consecutive points make up each fragment of a trajectory. The
local trajectory helps to identify the fragment outliers. Yu et
al. [25] applied the slice-based outliers method to define sub-
trajectory. Slice uses the direction of the route to determine
line segments. If the number of neighbours of a trajectory slice
is less than a given threshold, it is considered a slice outlier.

B. Group Outlier Detection

There are a few solutions presented to the problem of group
outlier detection. Chalapathy et al. [26] suggested using a deep
generative model to get values for group outliers. The standard
back-propagation algorithm is used to estimate the input data
by group reference function. Tang et al. [27] proposed a
contextual outlier detection using a similarity-sharing group
of points. These points share similarities in some areas and
might differ to some others. The contextual outliers are derived
using a statistical significance test that is greater than a certain
threshold.

Li et al. [28] suggested the assignment of feature weights
on each group outlier and the use of chain rule entropy to
determine the connection between different groups. Contextual
outlier detection in high and sparse dimensional spaces was
performed using parallel computing. Other techniques com-
bine individual outliers into similar clusters [27, 29]. Each
cluster is then termed as a group of outliers. Soleimani et

al. [29] suggested a supervised learning approach that com-
bines anomalous patterns when the membership of outliers is
previously unknown. This approach has found its applications
in document modeling, where non-uniform topics can be
detected from a collection of documents.

Human abnormal data is also based on the learning algo-
rithm. The studies used the data mining method to find the cor-
related patterns for abnormal behaviour and then applied the
convolution neural network to learn collective behaviour [11].
Another method used the group trajectory to detect the out-
liers based on the pruning density method [30]. The moving
object and their behaviour are also analyzed that detect the
outlier over distributed trajectory streams [15]. The method
used the behaviour and local neighbour to explore trajectory
distributions [15]. The hidden and abnormal patterns are also
analyzed [31] that used the spatial and temporal features of
the moving object to detect the abnormality.

The literature studies addressed above are shown in Table I,
in which it contains a different trajectory detection methods.
However, there is no study conducted that detects deviation
points in a group of trajectory outliers. The methods were
made to detect the individual outliers and sub-trajectory-based
outliers. All methods used the concept of group outlier based
on the set of candidate groups rather than individuals where the
distribution-based methods are used. However, the distribution
does not correspond to real-world data. This paper used the
structural trajectory representation and then used the deep
unsupervised clustering method to detect trajectories having
outliers and deviation points.

III. PROBLEM STATEMENT

A trajectory is the sequence of a point represented by
the geographical location (longitude, latitude, and time). For
trajectory outlier detection, some preliminary definitions are
discussed below.

Definition 1: (Trajectory Database): A set of raw trajec-
tories is a database represented as T = {T1, T2, . . . , Tm},
where each trajectory Ti is a set of sequences represented as
a time-ordered points (p1, . . . , pn), and each point represents
geographical location and is considered as a node in graph
construction.

Definition 2: (Mapped Trajectory Database): A set rep-
resents the sequences of spatiotemporal regions Λ =
{Λ1, . . . ,Λm}, in which each mapped trajectory Λi represents
a region, and (R1, . . . , Rn) can be retrieved by mapping every
point in Ti to its closest region Ri.

The mapped trajectory is used as the instance to train the
embedding vectors.
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Fig. 2: The designed general framework.

Definition 3: (Trajectory Dissimilarity): Two trajectories in
a given graph, d (Λi,Λj), is measured by using the learning
based method.

The trajectory candidate is a directed graph that represents
the potential candidate for having a group of trajectory outliers.
These trajectories are measured by using dissimilarity mea-
sures. We used the average method to calculate the structure
of the group of nodes that appeared in the trajectory.

Definition 4: (Trajectory Candidates): It is a set of reference
graph that is given to trajectory outlier detection algorithm, and
denoted as G+ =

{
Λ+
1 ,Λ

+
2 . . .Λ+

l

}
.

Definition 5: (Group Trajectory Outlier (GTO) detection):
It extracts the set of trajectories that represents the deviates
from the starting point x with at least one trajectory in G, and
x is highly ordering all remaining starting points in G.

A. Deviation point representation clustering

This work proposed the trajectory embedding method that
maps the trajectory data into latent representation. The tra-
jectory embedding maps graph nodes to the vector into
real numbers in multidimensional space. To extract valuable
insights about the nodes and their edges, we used multi
hops ring structure-based method to preserve the structural
representation. The learnt embedding vectors are then used
to combine by the group trajectory outlier clustering method.
The purpose of structurally preserve trajectory embedding is
to expand the knowledge based on the k hops. So that we can
detect the deviation points, which helps the adaptive clustering
method to detect a group of trajectories based on the deviation
points. The flowchart of the developed model is mentioned
in Fig. 2. The input is unlabeled trajectory data, where we
first train the proposed trajectory embeddings based on the
structure and deviation points. The feature labels are generated
for the pairwise classification models. We then calculate the
cosine similarity and assign a label for each trip. We selected

and omitted training samples for each batch. We utilize the
labeled data for the binary pairwise classification model to
reduce its error. After that, we iteratively perform the samples
for model training. Clustering favours the trip that has the
structure similarity and same deviation points of the label
features.

Fig. 3: Illustration of the Cooperative Intelligent Transport
System where road network and end-to-end trajectory are
monitored. It has five road segments to monitor while only
four cameras (i.e., monitoring nodes) are deployed.

B. Graph Construction

The road network is mentioned in Fig. 3 as a directed
acyclic graph G = (V,L), where trajectories of the vehicle
are monitored by following the road segments. V and L
respectively showed the set of road node and segments. As
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illustrated in Fig. 3, we have V = {v1, v2, v3, v4, v5, v6}
and L = {ℓ1, ℓ2, ℓ3, ℓ4, ℓ5}. Some nodes are monitored by
cameras networks called as monitoring nodes η. When nodes
originates a trajectory and follows road segments, deviation
point trajectory are monitored in D. For example in Fig. 3,
we used η = 4 monitoring nodes, and get the trajectory of
the different trips D = {d1, d2, d3, d4}, respectively. When a
trajectory ℓj with respect to nodes vk ), its deviation point
can be monitored asdi, we then mark their route relationship
by ℓj ∈ di and vk ∈ di). We considered the trajectory as
a sequential directed acyclic graph G where location points
represent space and time. In this research, we exclude the
round trip travels. The edge between each node represents
intermediate points, as explained in the Fig. 3, where trajectory
is represented from the D = {d1, d2, d3, d4} intermediate
nodes.

C. Trajectory structural embedding

After the road network, latent learning representation is used
for nodes that consists of the following operations.

1) A node’s structural similarity between vertex pairs is
determined. We used the hierarchy-based multi-edge
deep neural network, which helps assess the structural
trajectory similarity at each level.

2) The weighted multilayer graph is constructed where
each node is represented at every layer. The layer of the
deep neural network responds to the hierarchy features
that represents trajectory similarity. The edge weights on
every road segments lines within each layer are inversely
proportional to its structural similarity.

3) We used biased random walk on the multilayer hierarchy
graph to generate the road segments sequences. The
sequences are the set of road segments that are more
trajectory structurally similar.

4) We used the SkipGram method to get a latent represen-
tation by giving the context mentioned above.

We used the ordered degree sequence of a set S ⊂ V of
nodes. Let Tk(x) nodes represents the hop count of k distances
in G. For instance, T1(x) denotes the set of neighbors of vertex
x at distance of 1. Tk(x) denotes the trajectory growth of nodes
at distance k. By comparing the ordered degree sequences of
the trajectory nodes from both x and y (two nodes in the
node network), we impose a hierarchy to measure structural
similarity. We denote the learning function fk(x, y) represents
the trajectory structural distance between x and y. We consider
their neighbourhoods k (all road network nodes at a distance
less than or equal to k. The function is defined in Equation 1.

fk(x, y) = fk−1(x, y) + g (s (Tk(x)) , s (Tk(y)))

k ≥ 0 and |Tk(x)| , |Tk(y)| > 0
(1)

The function of Equation 1 is only defined when both x
or y have the edge at a distance k. The distance between
ordered degree sequences can be measured by the fk(x, y).
Using the trajectory growth at a distance, k helps compute the
degree sequences of nodes at the same distance from x and
y. We used Dynamic Time Warping (DTW) to calculate the

distance between two ordered degree sequences. This method
helps extract useful distances that cope better with sequences
of different sizes and loosely compress sequence patterns
[18, 20]. The DTW helps to find optimal alignment between
the trajectory growth sequences of x and y, given a distance
function d(x, y) for each element in the sequences, DTW
matched the sequence in the way that the sum of the distances
between match elements is minimized [32]. Since trajectory
growth is represented by a node’s degree sequences with a
neighbour, we then used the distance function mentioned in
Equation 2.

d(a, b) =
max(x, y)

min(x, y)
− 1 (2)

Two identical nodes with ordered sequences will have zero
distance (x = y then d(x, y) = 0). To construct the contexts,
the multilayer weighted graph encodes the nodes as deviation
points trajectory. G = (V,L) is the road network connected at
the k∗ hops diameter. We define the multilayer graph by using
the k -hop neighbourhoods of the nodes. The weight of the
nodes is assigned by using the function defined above. The

edge weight
(

n
2

)
edges in a layer is given by Equation 3.

wk(x, y) = e−fk(x,y) (3)

For weighted edges, we have nk∗ vertices and at most

k∗
(

n
2

)
+ 2n (k∗ − 1).

The multilayer graph generates the contextual information
for the trajectory deviation point. The structural similarity
based on the trajectory deviation points nodes required ab-
solutely no label information. We used a biased random walk
that moves around the multilayer graph with random choices
and weighted sequences. The random walk first decides to
move around or stay at each layer with probability (q > 0)
the random walk stays in the current layer). The probability
of node u to node v in layer k for staying in the current layer
is given by Equation 4.

pk(x, y) =
e−fk(x,y)

Zk(x)
, (4)

where Zk(x) is the normalization factor for vertex x in layer
k, which is simply given by Equation 5.

Zk(x) =
∑
v∈V
v ̸=x

e−fk(x,y) (5)

The random walk method prefers to step only those nodes
that are trajectory deviation point-based structurally similar.
This will result in the context of a node u in structurally
similar nodes without their label information and position in
the network. The node x in V starts the random walk in its
corresponding vertex at layer 0; the walks have a fixed shorter
length (number of steps). The process is repeated for a certain
number of times and giving rise to multiple independent walks
(multiple contexts for node x). We used the Skip Gram method
for representation learning. The generated sequence is used
(biased random walks in a multilayer graph). The skip-gram
method aims to maximize the context in a sequence, where
a node’s context is given by window size w centre to it. We
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also used the hierarchical softmax, where conditional symbol
probabilities are used by binary tree classifiers. Each node is
assigned by a specific path in the classification tree in V . In
this setting, the definition is then given in the Equation 6.

P (vx | vy) =
h∏

k=1

C (n (vx, k) , vy) , (6)

where C is a binary classifier presented in every node in the
tree.

D. Binary pairwise classification model

To cluster the sequence of trajectory represented as trips, we
trained the binary pairwise deep neural network. A recurrent
neural network (RNN) with a gated unit is used. The LSTM
network preserved the memory for long-distance information
and performed well for sequential tasks. We used the element-
wise average method in the designed model. Equation 7 is then
used to determine the learning function F for relation R.

F (vx,vy) =

{
1 ( if vx and vy satisfy R)
−1 (otherwise) (7)

Variable R represents trajectory based on deviation points. If
the trip follows normal trajectory, they are grouped; otherwise,
they are grouped as abnormal. In this research, each trip
consists of different nodes. The obtained embedding was dis-
cussed in the previous section. Then, we used the embedding
average method to represent a collection of nodes as a single
trip for each trip. The binary pairwise classification model
used the label features from trajectory averaging. Then, by
using cosine similarity, we select the more structurally similar
together cosine similarity trips. We used the optimization
method based on the degree to reduce the search space and
run a bigger network [32]. g (vx,vy;w) can be formulated in
Equations 8 and 9, respectively.

g (vx,vy;w) = f (vx;w) · f (vy;w) (8)

Rxy :=

 1, if lx · ly ≥ u(λ)
0, if li · ly < l(λ), i, j = 1, · · · , n
None, otherwise,

(9)

where u(λ) and l(λ) are used to control the selection of similar
and dissimilar samples. “None” represents the omitted training
samples (vx,vy, Rxy). We attempt to control clustering pro-
duction with curriculum learning by increasing the samples
per batch [33]. The reason is that trajectories that are very
similar together having a very high likelihood to be selected
in the training samples. Then RNN progress in finding the
optimized trip feature labels is performed gradually by taking
the batch of difficult samples. In the clustering process, λ is
gradually increased. Moreover, u(λ) = l(λ) is satisfied iff
all the samples are used for training. Algorithm 1 explains
the details of each step, where trips with nodes information
are given, training embedding fw and λ are calculated based
on the gradient values (Algorithm 1, Input). u(λ) and l(λ)
are sample controlling methods (Algorithm 1, Input). We start
with m samples. After that, the first small batch with average

embedding is selected (Algorithm 1, Lines 1 to 4), we then
calculate similarity to get the label of the trips (Algorithm 1,
Line 5). After that, we apply the gradient method for updating
(Algorithm 1, Line 6). We used the Argmax method to get
the clustering classes for the final prediction of the output
deviation points for the testing samples (Algorithm 1, Lines 8
to 10).

Algorithm 1 Deep clustering using trajectory embedding

INPUT: T = {ti}ni=1, λ, u(λ), l(λ), n represents number
of trajectory, w represents embedding size, m represents
numbers of instances per batch.

OUTPUT: Cluster label ci of ti ∈ Trip
1: while K ≤ {1, 2, ,̇ nm} do
2: Select training samples from T ;
3: Apply average method using the embedding;
4: Calculate similarity using Eqs. 8 and 9;
5: Update λ by using the gradient descent algorithm;

6: end while
7: while Ti ∈ Trip do
8: {li} = F (Ti;w);
9: {ci} = argmaxh(lih);

10: end while
11: Return Cluster label ci.

(a) ROC-AUC

(b) F-measure

Fig. 4: Performance comparison of the intelligent dataset with
deep clustering method.
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IV. EXPERIMENTAL RESULTS

Rigorous experiments have been executed to assess the
proposed algorithm on different trajectory databases in four
steps. In all experiments, the period was set to 5 minutes.
A 64−bit computer was used for the serial implementation,
which features a core interval i7 processor running Windows
10 and 16 GB of RAM. We have injected simulated GTOs
in our experiments because the trajectory data sets available
are not relatable in real-world scenarios. The properties of our
simulated dataset are Injecting Individual trajectory outliers:
Noise was added frequently with a probability p ∼ U(0.8, 1.0)
and a given threshold for generating individual trajectory
outliers. For the Injecting GTOs, noise was added several
times to the individual trajectory outliers with a probability
p ∼ U(0, 1.0) and a threshold. The initial noise points for
trajectory outliers are regarded as deviation points and labeled.

(a) ROC-AUC

(b) F-measure

Fig. 5: Performance comparison of the climate dataset with
deep clustering method.

We used Random Forest, Naı̈ve Bayes, K-nearest neigh-
bour, and decision tree for comparison [34]. The random forest
used the ensemble of the decision tree model and divided each
tree for random features. The decision tree used the tree-based
structure containing roots, nodes, and leaf nodes. The decision-
making ability is applied to the internal nodes. Classification is
performed based on the first nodes. The naive-based classifier
used the probabilistic model, which takes feature probability
and calculates likelihood to classify instance class. KNN used
the neighbour feature vector values to predict the output
class. It is instance-based learning, also known as the lazy
learning method. The following experimentation makes use

of F-measure and ROC-AUC, which are usually used for the
evaluation of the outlier detection methods.

(a) ROC-AUC

(b) F-measure

Fig. 6: Performance comparison of the environment dataset
with deep clustering method.

A. Data Description

We used three datasets, i.e., Intelligent Transportation, Cli-
mate Change, and Environment. The intelligent transportation
dataset has the real trajectories derived from 01/07/2013 to
30/06/2014 of 442 Taxi in Porto, Portugal, and the database
from the ECML PKDD 2015 competition 1 has been used
in these evaluations. Further information about this trajectory
database can be found in [35]. The climate change dataset
has Atlantic hurricanes track [35], which holds the parameters
of latitude, longitude, maximum sustained surface wind, and
minimum sea-level pressure of hurricane trajectories in the
USA six hourly intervals for the period from 1851 to 2018.
The number of trajectories of this dataset is 52, 775. The envi-
ronment data used Starkey Projects, where animal movement
data is also included in the dataset, displayed using the radio-
telemetry locations of elk, deer, and cattle, collected from 1989
to 1999. The locations have been saved at 30-minute intervals.
It has 100 trajectories and more than 40, 000 different points.
This is a sparse dataset.

B. Results

Several experiments have been executed by using the F-
measure and ROC-AUC performance measure. It has been

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
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TABLE II: The results for the intelligent transport, environment, and climate datasets.

Dataset Intelligent Transport Environment Climate
Classifier F-measure ROC-AUC F-measure ROC-AUC F-measure ROC-AUC
Random forest 0.75 0.79 0.77 0.81 0.80 0.82
Decision Tree 0.68 0.71 0.70 0.73 0.67 0.68
Naı̈ve base 0.65 0.66 0.67 0.68 0.64 0.69
KNN 0.61 0.62 0.63 0.64 0.65 0.65
Deep clustering method 0.84 0.85 0.83 0.84 0.86 0.87
Node2vec with logistic regression [36] 0.81 0.83 0.79 0.81 0.83 0.84
Struct2vec with logistic regression [32] 0.83 0.84 0.81 0.82 0.84 0.85

Fig. 7: The embedding visualization. class 1 : normal trajectory, 2 : abnormal trajectory

observed from the results that the trajectory databases (intelli-
gent transportation and environment), deep clustering method
model outperformed classification. Although both models us-
ing the same embedding, the deep clustering-based model
can achieve optimized results. We learn a latent representa-
tion of the trajectory network using the proposed method,
struc2vec [32] and node2vec [36] using the grid search
method. This method does not require any labels. The latent
representation for each node becomes a feature for the pairwise
classification method for the proposed clustering method. At
the same time, we used logistic regression for the struc2vec
and node2vec learning methods. The traditional classifier used
the trained embedding for the classification of the trajectories.

Fig. 4 and Table II illustrated the F-measure and ROCAUC
of the traditional classifiers. The results illustrate that the pro-
posed dynamic method outperforms the other heuristic regard-
ing the F-measure. It is valid for trajectory databases. How-
ever, solutions formed based on the traditional classification
performed better by the embedding method. The illustrations
also show that solutions exhibited high performance based on
the clustering approach model, and it required additional time
as two deep nets were trained.

Similarly, climate data also be used to classify trajectory
as mentioned in Fig. 5 and Table II. The proposed model has
reached good accuracy. The climate dataset has more deviation
points that result in more error rates for trajectories. In the
climate dataset, deep clustering achieved the highest ROCAUC
of 0.86. This illustrates that having more deviation points can
help the learning algorithm perform better due to the structural
similarity of the embedding. The struc2vec and node2vec also
performed better and achieved 0.83 and 0.84 F-measures.

In Fig. 6 and Table II, we used an environmental dataset and
analyzed the proposed method. The proposed method achieves

0.83 accuracy, whereas the struc2vec method achieved 0.81 F-
measure. This result is more evident for solutions formulated
on deep clustering learning. The proposed method was able
to group the correct class by using train embedding. The
knowledge graph can further be used to increase the training
instances.

We visualized the trajectory embedding to its clustering
class 1 : normal, 2 : abnormal shown in Fig 7. The node2vec
and struc2vec fail to group in the latent space trips that are
structurally similar (mirrored nodes). The proposed method
can learn the features that correctly identify the deviation
points and node identity. Mirror pairs or nodes representing
the same trips stay close in the latent space, and averaging the
trip nodes represents the complex structural hierarchy in the
representation of groups.

V. DISCUSSION

The conventional trajectory outlier detection methods detect
individual trajectory outliers, whereas the algorithms in this
paper detect group trajectory outliers. Introducing approaches
from different fields has helped to improve the detection
of a group of trajectory outliers. The concepts applied in-
clude node-based clustering, feature analysis, evolutionary-
based optimization method, and stack-based learning. The
GTO solutions discussed in this paper can be an application
where numerous trajectories are involved, like the smart city
application and urban analysis. This paper uses trajectory
deviation point structural embedding to detect GTO. However,
there is still room for improvement and more exploration
in this area. Applying data mining and machine learning
approaches to application domains requires methodological
refinement and adaptation [29]. We recommend that advanced
techniques can be used for GTO, such as incorporating tradi-
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tional outlier detection techniques (i.e., Local Outlier Factor).
New tools and simulation techniques should be developed for
better visualization and understanding of the GTOs. GTOs
should be used in other fields such as climate change analysis.
Hurricanes can be analyzed using GTOs to find a group
of hurricane trajectories that deviates from normal hurricane
trajectories. This can help save many by pointing out areas
that are more likely to get affected by hurricanes.

VI. FUTURE WORK

We will use the proposed method with an attention network
to handle missing ground truth labels in the future. With the
usage of active learning along with the proposed model, data
labeling and handling missing values are to be solved. This
method can be further extended to labeled and benchmark
public trajectory outlier detection problems. The improved
embedding can also be used to evaluate the internal ranking for
the trajectory outliers. Some extensions of the proposed model
can be applied in the fields of intelligent transport systems:
trajectory outliers correlations, the dissimilarity between-group
trajectories, processing large and big trajectory under con-
straints with the usage of reduced embedding vectors.

VII. CONCLUSION

Deviation points in trajectory data is a concept of symmetry
in the network. The concept is strongly related to impor-
tant problems in social sciences. In this paper, a trajectory-
based embedding method is designed where node structure
concerning its neighbours is considered. The concept of the
hierarchical metric is initiated by the order of the degree
sequence of nodes. The weight of the multilayer graph with
similarity metrics generates the context. We show that struc-
tural embedding in the deviation point analysis and group-
based trip analysis plays a vital role. The clustering method
then uses node embedding to adopt and cluster the nodes
according to the latent representation. The learning method
adopts a dynamic network behaviour. Experimental results
show that the trained model outperforms traditional classifiers
and other embeddings with an F-measure of 0.87. In the
future, a network-based node structural similarity method
will include betweenness, closeness, and cliques analysis for
further analysis and discussion.
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