3,166 research outputs found

    Finite-time behavior of inner systems

    Get PDF
    In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner systems is studied and it is shown how the singular value structure of a suitably defined operator provides relevant insight about system invertibility and achievable tracking performance. The results are used to solve various tracking problems both on finite as well as on infinite time horizons. A typical receding horizon control scheme is considered and new conditions are derived to guarantee stabilizability of a receding horizon controller

    An application of eigenspace methods to symmetric flutter suppression

    Get PDF
    An eigenspace assignment approach to the design of parameter insensitive control laws for linear multivariable systems is presented. The control design scheme utilizes flexibility in eigenvector assignments to reduce control system sensitivity to changes in system parameters. The methods involve use of the singular value decomposition to provide an exact description of allowable eigenvectors in terms of a minimum number of design parameters. In a design example, the methods are applied to the problem of symmetric flutter suppression in an aeroelastic vehicle. In this example the flutter mode is sensitive to changes in dynamic pressure and eigenspace methods are used to enhance the performance of a stabilizing minimum energy/linear quadratic regulator controller and associated observer. Results indicate that the methods provide feedback control laws that make stability of the nominal closed loop systems insensitive to changes in dynamic pressure

    Identification of flexible structures for robust control

    Get PDF
    Documentation is provided of the authors' experience with modeling and identification of an experimental flexible structure for the purpose of control design, with the primary aim being to motivate some important research directions in this area. A multi-input/multi-output (MIMO) model of the structure is generated using the finite element method. This model is inadequate for control design, due to its large variation from the experimental data. Chebyshev polynomials are employed to fit the data with single-input/multi-output (SIMO) transfer function models. Combining these SIMO models leads to a MIMO model with more modes than the original finite element model. To find a physically motivated model, an ad hoc model reduction technique which uses a priori knowledge of the structure is developed. The ad hoc approach is compared with balanced realization model reduction to determine its benefits. Descriptions of the errors between the model and experimental data are formulated for robust control design. Plots of select transfer function models and experimental data are included

    Flutter suppression using eigenspace freedoms to meet requirements

    Get PDF
    A constrained optimization methodology has been developed which allows specific use of eigensystem freedoms to meet design requirements. A subset of the available eigenvector freedoms was employed. The eigenvector freedoms associated with a particular closed-loop eigenvalue are coefficients of basis vectors which span the subspace in which that closed-loop vector must lie. Design requirements are included as a vector of inequality constraints. The procedure was successfully applied to develop an unscheduled controller which stabilizes symmetric flutter of an aeroelastic vehicle to a dynamic pressure 44 percent above the open-loop flutter point. The design process proceeded from full-state feedback to the inclusion of a full-order observer to the selection of an eighth-order controller which preserved the full-state sensitivity characteristics. Only a subset of the design freedoms was utilized (i.e., assuming full-state feedback only four out of 26 eigenvectors were used, and no variations were made in the closed-loop eigenvalues). Utilization of additional eigensystem freedoms could further improve the controller

    A decentralized linear quadratic control design method for flexible structures

    Get PDF
    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties

    Robustness results in LQG based multivariable control designs

    Get PDF
    The robustness of control systems with respect to model uncertainty is considered using simple frequency domain criteria. Results are derived under a common framework in which the minimum singular value of the return difference transfer matrix is the key quantity. In particular, the LQ and LQG robustness results are discussed

    Robustness and performance trade-offs in control design for flexible structures

    Get PDF
    Linear control design models for flexible structures are only an approximation to the “real” structural system. There are always modeling errors or uncertainty present. Descriptions of these uncertainties determine the trade-off between achievable performance and robustness of the control design. In this paper it is shown that a controller synthesized for a plant model which is not described accurately by the nominal and uncertainty models may be unstable or exhibit poor performance when implemented on the actual system. In contrast, accurate structured uncertainty descriptions lead to controllers which achieve high performance when implemented on the experimental facility. It is also shown that similar performance, theoretically and experimentally, is obtained for a surprisingly wide range of uncertain levels in the design model. This suggests that while it is important to have reasonable structured uncertainty models, it may not always be necessary to pin down precise levels (i.e., weights) of uncertainty. Experimental results are presented which substantiate these conclusions
    corecore