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INTRODUCTION 

This paper, although much more tersely written, is similar in content to 
reference 1; however, additional results are presented herein. 

Since the early works (refs. 2 and 3 )  describing the freedoms in multivariable 
systems beyond eigenvalue assignment, a number of researchers have expanded 
and applied the eigenspace design approach (e.g. refs. 1, and 4 - 9 ) .  The 
contribution of reference 1 and this paper is to provide a systematic 
procedure for solving for eigenspace variables such that design requirements 
are met. The design requirements are expressed as inequality constraints 
which must be satisfied by a constrained optimization procedure. 

Results are presented which show an application of the procedure to the design 
of a control law to suppress symmetric flutter on an aeroelastic vehicle. In 
this example, the stability of the flutter mode is sensitive to change in 
dynamic pressure and eigenspace methods are used to enhance the performance 
properties of a "minimum energy" linear quadratic regulator (LQR) designed 
controller. Results indicate that the eigenspace methods coupled with order 
reduction can provide a low-order controller such that the closed-loop system 
stability is relatively insensitive to changes in dynamic pressure. However, 
some sacrifice of robustness with respect to error at the input occurred: this 
design example thus illustrates the necessity for tradeoff of conflicting 
requirements. 

A n  outline of the material presented in the paper follows. 

EIGENSPACE FREEDOMS 

DESIGN APPROACH 

PLANT DESCRIPTION 

STATE FEEDBACK 

FULL ORDER OBSERVER 

REDUCED ORDER CONTROLLER 
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EIGENSPACE DESIGN FREEDOMS 

Consider a linear time invariant system with m inputs u. For  the case of a 
full-state controller, one can place all controllable poles. hi; all eigen- 
vectors, vi. can be modified, including those associated with uncontrollable 
poles (refs. 2. 3 .  and 7 ) .  Each closed-loop eigenvector. vi. must. however, 
lie in the subspace, Wi. that is spanned by 

It has been assumed here that the eigenvalues are all distinct. The basis for 
Wi is computed using singular value decomposition techniques (refs. 10 and 
11). Thus, as shown below, a designer is free to choose m variables ci 
for each real eigenvalue (2m variables for each complex conjugate pair of 
eigenvalues). When the constraint that vivi = 1 is imposed, the number of 
free variables becomes m-1 for real eigenvalues (2(m-1) f o r  each complex 
conjugate pair o f  eigenvalues). Here vi is the conjugate transpose of vi. 

* 

* 

SYSTEM 
dx/dt AX + BU 

STATE FEEDBACK 
u = - K x  

FREEDOMS 

hi 

u is m by 1 

PLACE ALL CONTROLLABLE POLES 

MODIFY ALL EIGENVECTORS 

Ci  IS mxl AND Wi IS BASIS FOR 

(hi I. Af ' B 
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DESIGN APPROACH 

Given a linear model. the design process for development of a control law to 
suppress symmetric flutter begins with the assumption of the availability of 
full-state feedback. 
using linear quadratic regulator (LQR) theory (ref. 12). The minimum energy 
stabilizing solution is the solution which occurs when the performance of the 
controller is measured solely by the control deflection requirements (i.e., 
the state weighting matrix is zero)(ref 12). 

A minimum energy stabilizing feedback design is obtained 

The second step is to utilize a subset of the eigenvector freedoms to modify 
the full-state feedback design to minimize the sensitivity of the critical 
closed-loop pole to variation in a system parameter. This minimization is 
performed subject to design constraints. 

The third step is to relax the full-state feedback assumption and develop a 
full-order observer which approximately recovers the robustness character- 
istics of the reduced sensitivity full-state feedback design (ref. 13). 
Eigenspace techniques are employed in developing the observer (refs. 6 and 7). 

The eigenspace approach to observer design (refs. 6 and 7 )  is an alternate 
approach to that of reference 13. The two are equivalent in the limit in that 
each recovers the full-state robustness characteristics for plants with no 
right half plane transmission zeros. The eigenspace approach is more flexible 
in the sense that one can individually approach the limit f o r  selected 
observer poles as opposed to the simultaneous approach of reference 13. 

The final step is to reduce the full-order controller to an order that is low 
enough to be implementable. 

LQR DESIGN (MINIMUM ENERGY STABILIZING FEEDBACK) 

EIG ENVECTO R MODI Fl CAT10 N FOR REDUCE D SEN SIT1 VlTY 
(FULL-STATE FEEDBACK) 

OBSERVER DESIGN FOR LOOP TRANSFER RECOVERY (FULL- 
ORDER OBSERVER) 

CONTROLLER ORDER REDUCTION 
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EIGENSPACE TECHNIQUES TO MEET REQUIREMENTS 

The method is to choose a subset of the closed-loop eigenvectors to be 
modified and then to determine values for each selected vector 
a function of these variables is minimized. In this study the magnitude of 
the sensitivity of the flutter mode eigenvalue to variations in dynamic 
pressure is minimized subject to n8 constraints. In the equations below gUj 
and glj are upper and lower bounds, respectively, on the jth constrained 

variable gj (e.g. control saturation). The scalar variable, gj 2 0. is the 
violation of the jth constraint. The vector ui is a left eigenvector of the 
system matrix A. 

Cj such that 

- 

The constrained optimization process appends a weighted square of each 

constraint violation, gj .  to the function to be minimized ( P  is a positive 
definite diagonal weighting matrix). 
approaches infinity, [ S I 2  is minimized subject to the constraints provided 
that the number of constraints on a constraint boundary in this limit is less 
than the number of design variables (ref. 1 4 ) .  A nongradient optimizer was 
employed in this study (ref. 1 5 ) .  

- 

In the limit as each weight Pjj 

The constraints to be employed in this study are on root mean square (rms) 
values for control deflections, control rates. and incremental wing root 
bending moment, shear, and torque due to random gust inputs. In addition a 
constraint was imposed upon robustness of the control law with respect to 
error at the plant input. 

- PARAMETERIZATION OF ATTAINABLE EIGENVECTORS 
v. = W.C. , j = l,n 

I 1 1  

- SENSITIVITY UT (d Ndq) vi 
S=dhi/dq = 

u* v i i  

- CONSTRAINTS 

gj = max(oygj -9, g,.-gj) I j = W g  
i s  J 

- AUGMENTED PERFORMANCE INDEX 
Jp= lSI2+ Q T P a  

- NONGRADIENT OPTIMIZATION 
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CONTROL SURFACE AND SENSOR LOCATIONS 
(Symmetric Full Span) 

The mathematical model is based upon one that represents an actual aeroelastic 
drone vehicle (ref. 16). The actual vehicle has only one effective control 
surface for flutter suppression (the trailing-edge outboard surface shown in 
the planform view). For this study fictitious leading-edge and inboard 
trailing-edge controls have been added per semispan to provide three effective 
symmetric and antisymmetric flutter suppression surfaces. The surfaces are 
driven by high bandwidth actuators each having transfer functions 

180 (31412 
6c i 6i = 

(s  + 180) ( s 2  + 251s + (31412> 

where SCi is commanded deflection and S i  is actual. The poles for each 
actuator are separated slightly in the mathematical representation to improve 
numerical conditioning. 

Three 
devic 
there 

vertical accelerometers are located as indicated. These high bandwidth 
es have virtually no dynamics in the frequency range of interest and are, 
fore, modeled as unity gains. The sensor locations correspond to three 

of the four sensors on the actual wing. 
the wing design cycle as desirable for flutter suppression sensors based upon 
analytical studies (ref. 17). 

The locations were chosen early in 

sensor 1 
sensor2 
sensor 3 

*Trailing-edge inbo'ard (TEI); leading-edge inboard (LEI); trailing-edge 
outboard (TEO). 
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DESIGN MODEL 
(Symmetric Modes) 

The aircraft is designed to be symmetric about a plane perpendicular to the 
wings and to intersect them at the centerline. 
approximation for small perturbations from rectilinear flight, the symmetric 
and antisymmetric degrees of freedom are uncoupled. 
symmetric designs can be obtained separately. This study considers symmetric 
modes only. 

The underlying symmetric evaluation model contains 2 rigid body and 11 elastic 
modes. A lower-order linear time invariant state space design model was 
extracted from the evaluation model. The design model was chosen by a trial 
and error truncation of modes. The effect of a candidate truncation upon 
frequency responses of interest and upon the loci of eigenvalues with dynamic 
pressure was observed. 
deleted included the rigid-body modes, predominantly fuselage and tail modes 
and higher-order wing modes. If they are troublesome, rigid-body contri- 
butions to the actual sensor (accelerometer) outputs can be removed either by 
employing a high pass filter or by making use of measured linear and angular 
accelerations at the center of mass. 

Consequently, to a good 

Thus, symmetric and anti- 

Modes having little impact were deleted. The modes 

The resulting design model is twenty-sixth order. The uncontrollable gust 
states correspond to a Dryden filter representation with a gust scale length 
of 2500 ft. The rational function approximation (ref. 18) made to the 
unsteady aerodynamic forces included one lag term having a reduced frequency 
of  0.13. The B matrix is independent of the dynamic pressure. q. The u 
vector contains the three commanded control deflections and a white noise 
input into the Dryden filter. 

dx/dt A(q) x + BU 

Y = C(q) x 

5 MODES (SECOND ORDER) 

1 AERO LAG PER MODE 

3 THIRD-ORDER ACTUATORS 

2ND ORDER GUST 

10 

5 

9 

2 

26 STATES 
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DYNAMIC PRESSURE ROOT LOCUS 
(Uncontrolled Plant) 

600 
500 

4 0 0 .  

300 
200 

100 

A variation of the uncontrolled design model roots with dynamic pressure is 
shown. The variation corresponds to an altitude variation at a fixed Mach 
number of 0,775. With no feedback, the actuator poles are stationary near 
( - 1 8 0 .  0)  and ( - 1 2 0 .  k 2 8 0 ) .  

The circle symbol corresponds to the lowest dynamic pressure. The highest 
dynamic pressure point corresponds to a dynamic pressure 4 4  percent above that 
at flutter. The 4 4  percent increase in flutter dynamic pressure corresponds 
to what would be required if active controls were to provide the full 20 
percent margin above the design dive speed for a transport aircraft. 

The flutter is explosive (i.e.. the time to double amplitude decreases rapidly 
with increasing dynamic pressure). The interacting modes exhibit classical 
frequency coalescence. The zero dynamic pressure characteristics of the 
retained elastic modes in ascending frequency order are 1) wing bending. 2 )  
second wing bending with some torsion, 3) wing fore and aft bending with a 
torsional normal component, 4 )  wing torsion, and 5 )  a higher order wing mode 
exhibiting bending and torsion. 

The * on the figure depicts the point for which the controller was designed. 
This design point is approximately 1 1 . 5  percent above the uncontrolled flutter 
dynamic pressure. 

IMAGINARY 
RAD/SEC 

700, 

.................... ..........,.. ............... 

.............................................. 

Ye 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.................... . . . .  .; ................... a 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

................. .:. . . . . . . . . . . . . . . .  .c 

0 

m 
........... 

-1 00 I 
-300 -200 -1 00 0 100 

REAL 

I 8 44 



DYNAMIC PRESSURE ROOT LOCUS 
(Min Energy LQR Controller) 
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The locus of closed-loop roots with dynamic pressure for the minimum energy 
Linear Quadratic Regulator (LQR) full-state feedback controller shows that the 
closed-loop system remains stable only up to a point 20 percent above that of 
open-loop flutter ( 7 . 7  percent above the design point). 
robustness with respect to error at the input by repeating the LQR design at 
each dynamic pressure and scheduling the controller as a function of dynamic 
pressure: however. it is of interest here to see what tradeoffs are required 
to minimize the effect of dynamic pressure on the closed-loop stability 
characteristics. 

One could maximize 

REAL 
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DESIGN CONSTRAINTS 

UPPER BOUND 

LOWER BOUND 

The constraints to be imposed on the reduced sensitivity full-state feedback 
design will now be enumerated. The first two sets of constraints were that 
the rms control deflections and rates not exceed 5 deg and 372 deglsec, 
respectively, when the system was forced by a vertical gust field having a 12 
ft/sec rms gust velocity. The physical control limits were +15 deg and +740 
deglsec. Bending moment, shear, and torque rms incremental loads at the wing 
root were also constrained to remain near their values at a stable point 
(lowest dynamic pressure point on the previous root locus). Finally. the 
minimum singular value of the return difference matrix was constrained to be 

5 372 30,000 1,000 2,000 1. 

0 0 0 0 0 .6 

where G(s) is the plant transfer matrix and K ( s )  is the controller transfer 
matrix. This singular value is a measure of robustness due to multiplicative 
error at the input. Error occurrences at other points are important but are 
not addressed herein. The choice of Qmin > 0.6 allows an appreciable tradeoff 
to occur between omin and the sensitivity reduction objective. It is also 
representative of robustness levels that have been achieved in implementable 
designs (e.g. ref. 19). 

A value for n ( j o ) ,  the minimum singular value at the frequency W. near zero 
means that the nominal closed-loop system is near instability at that 
frequency. Thus. even a small difference between the true plant and its 
nominal representation can cause instability. For the minimum energy linear 

quadratic regulator (LQR) full-state feedback design of this paper a(jw) = 

o ( j o )  = Qmin = 1 at all frequencies. (Here o(jw) is the maximum singular 
value at the frequency w.) This fact can be seen by examining the 
development of the Kalman inequality (e.g. ref. 20. p. 7 - 3 ) .  When the state 
weightings are null (minimum energy controller) and the control weightings are 
unity, the equality holds. 

- - 

RMS GUST VELOCITY 12 FT/SEC 



DYNAMIC PRESSURE ROOT LOCUS 
(Reduced-Sensitivity Full-State Feedback) 

A full-state feedback design was obtained for which the critical eigenvalue 
had reduced sensitivity to dynamic pressure variation. This design satisfied 
the constraints at the design point. The design was achieved by utilizing the 
eigenvector freedoms associated with the two coalescent modes. Thus, there 
were 12 free variables (eight after mode normalization constraints). The 
resulting control law stabilizes the system over the full range of dynamic 
pressures. 
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SINGULAR VALUES OF (I + K(s)G(s)) 
(Reduced-Sensitivity Full-State Feedback) 

The locus of maximum and minimum singular values of the return difference for 
the reduced sensitivity state feedback controller shows the constraint of 0.6 
was met as prescribed. The figure illustrates the tradeoff that has occurred. 
(for comparison, as discussed earlier, the minimum energy LQR controller with 
unity control weightings has a minimum (and maximum) singular value of one at 
all frequencies). Further analysis is required to assess how conservative the 
unstructured singular values are: nevertheless. a minimum value of 0.6 
indicates a substantial capability for rejection of input disturbances. 

10 100 1000 

2 

SINGULAR 1 
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OBSERVER DESIGN 

Eigenspace techniques were also employed to obtain a full-order observer. The 
approach was to place observer poles near the finite plant transmission zeros 
and the corresponding observer eigenvectors at plant left zero directions 
(refs. 6 and 7). Poles in excess of the transmission zeros were placed far 
into the left half plane with arbitrary eigenvectors. The observer poles 
corresponding to the six transmission zeros at zero (from the three sensors 
being accelerometers) were displaced an arbitrary five units into the left 
half plane to avoid problems associated with implementation of pure 
integrators. In the equations H is the observer gain matrix, K, is the 
reduced-sensitivity full-state feedback gain matrix and the subscript " 0 "  

emphasizes that the controller is developed for the design point but then 
evaluated at off-design points. 

SYSTEM MODEL 

dWdt A X +  BU 

y = c x  

CONTROLLER 

dz/dt = Hy + (Ao- BOKM - H Co) z 
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DYNAMIC PRESSURE ROOT LOCUS 
(Reduced-Sensitivity Feedback Plus Full-Order Observer) 
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The locus of poles with dynamic pressure for reduced-sensitivity full-state 
feedback plus a full-order observer to estimate the states given only three 
accelerometer outputs shows that stability was also achieved for this case 
over the full dynamic pressure range. One can see by comparing this figure 
with the corresponding one for reduced-sensitivity full-state feedback that 
controller poles are located near (-5, 0 )  rad/sec. (-130. 0 )  rad/sec, a 
lightly damped complex conjugate pair near a frequency of 200 rad/sec and a 
complex conjugate pair near a frequency of 340 rad/sec. If the true plant 
pole/zero pair near 200 rad/sec is different than that of the design model. 
the closed-loop performance in this frequency region may be substantially 
degraded. Further discussion of this point is given below in the section 
describing the reduced-order controller performance with respect to the 
evaluation model of the plant. Other poles not shown here are further in the 
left half plane than the limits of the figure. A compilation of the full set 
of observer poles at the design point and a locus of all closed-loop poles 
with dynamic pressure are given in reference 1. 
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SINGULAR .VALUES OF (I + K(s)G(s)) 
(Reduced-Sensitivity Feedback Plus Full-Order Observer) 

A small degradation in minimum singular value resulted from adding the 
observer to estimate the states. 
about 0.5 as compared with 0.6 in the reduced-sensitivity full-state feedback 
case. 

The minimum singular value in this case is 

SINGULAR 
VALUES 

FREQUENCY. RAD/SEC 
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CONTROLLER ORDER REDUCTION 

The full-order controller was then reduced from 26th order down to eighth 
order. The process employed in the reduction was to determine which 
controller states had little impact upon controller performance. The 
controller was transformed to modal form. modes were truncated based upon 
small residues and/or large separation from the flutter frequency, and the 
resulting closed-loop root locus and minimum singular value of the return 
difference matrix were examined: this allowed determination of the highest 
frequency controller mode that should be retained. Relatively unimportant 
modes having eigenvalues with amplitudes greater than the highest frequency 
mode to be retained were temporarily included in the controller represen- 
tation. The input and output controller matrices were balanced and a second 
modal decomposition was performed. The temporarily included modes were then 
removed by residualization. For this case nine states were removed by 
truncation and nine states were removed by residualization. 

The resulting eighth-order controller has six poles clustered near ( - 5 ,  0 )  
rad/sec and one complex conjugate pair near a frequency of 200 radlsec. 

TRUNCATION 
MODAL DECOMPOSITION 
TRUNCATE MODES WITH SMALL EFFECT ON CONTROL 

RESIDUALIZATION 
BALANCED REALIZATION 
RESIDUALIZED FAST MODES 

REDUCED ORDER CONTROLLER 
EIGHTH ORDER 



DYNAMIC PRESSURE ROOT LOCUS 
(Evaluation Plant with Reduced Order Controller) 

This figure shows that stability is achieved over the full dynamic pressure 
range with an eighth-order controller. 
critical closed-loop pole to dynamic pressure is lower for this controller and 
the evaluation model of the plant than was found for the design model with 
reduced sensitivity full-state feedback. The retained controller poles were 
the six poles near ( - 5 ,  0 )  radlsec, and a very lightly damped complex 
conjugate pair of poles at a frequency near 200 radlsec. 

The latter controller poles which have associated zeros near but to the left 
of them in the left half plane are troublesome since they and the corre- 
sponding plant poles are severely underdamped. From a stability standpoint 
these controller poles can be removed for the nominal system: however, the 
singular value measure of robustness is then degraded substantially at this 
frequency. For this particular vehicle, one can argue for two reasons that 
the problem is not real but arises only due to a plant modeling deficiency. 

In fact, the sensitivity of the 

The first reason is that the vehicle has been wind tunnel tested with no 
problems occurring in this frequency range. The second reason is that the 
plant mode at this frequency is predominantly fore and aft bending with a 
small amplitude torsional component. The doublet lattice aerodynamic compu- 
tation produces no aerodynamic damping due to the fore and aft motion. Thus. 
the mode should probably be further in the left half plane than is the case 
for the mathematical model. In general. however, one would prefer to gain 
stabilize or perhaps notch out a high-frequency underdamped pole that remains 
essentially stationary. 

700 

500 

400 
IMAGINARY 300 
RAD/SEC 

200 

100 

-1 00 

. . . . . . . . . . . . . .  ,.. . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 4 
., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

?e 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m 

a 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

s , t  %a 
& t 

X 

X 

-300 -200 -I  00 0 100 

REAL 

853 



SINGULAR VALUES OF (I + K ( s ) G ( s ) )  
(Evaluation Plant Model with Reduced Order Controller) 

The minimum singular value of the return difference matrix for the eighth- 
order controller and the evaluation model of the plant is about 0 . 4 4  as 
compared with 0.5 for the full-order controller and the design model. 
a guaranteed margin and may be quite conservative. The spike seen at a 
frequency of 92 rad/sec is due to a mode in the evaluation model that was not 
accounted for in the design. 
remains unchanged in frequency over the dynamic pressure range. 
dealt with effectively with a notch filter. 

This is 

The mode is a predominantly fuselage mode that 
It could be 
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RMS PERFORMANCE 
(LQR and RSFSF) 

All of these results are for a Dryden gust spectrum with rms gust input of 12 
ft/sec. The rms control power performances for LQR at the design point are on 
the order of 10 to 25 percent of the constraint. 

For the reduced-sensitivity full-state feedback (RSFSF) design, i.e., the 
eigenspace reduced sensitivity design, the rms control effort at the design 
point varies from approximately 100 to 225 percent larger than for LQR for 
each of the outboard surfaces. Lower usage is made of the smaller, less 
effective, inboard trailing-edge control surface. An increase in rms output 
with increasing dynamic pressure is evident: the sharper increase between the 
last two points is due to the larger dynamic pressure difference here than for 
other pairs of points and, more importantly, to the low damping in the 
critical pole at the highest dynamic pressure condition. Small constraint 
violations occur at the highest dynamic pressure. 
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RMS PERFORMANCE 
(FOC and FOM/ROC) 

For the full-order controller (FOC) the utilization of the TEI control is 
further reduced as compared to the RSFSF results on the previous page. The 
TEO rms deflection is approximately quadrupled as compared with RSFSF except 
at the highest dynamic pressure; the LEO control deflection is also increased 
except at the highest dynamic pressure where it is reduced by over 30 percent 
The rms rates are somewhat reduced as compared to RSFSF for the LEO surface. 
Wing root torque is higher at lower dynamic pressure and lower at the highest 
dynamic pressure as compared to the RSFSF results. No constraint violation 
occurs for control rate but the TEO deflection constraint is violated at the 
two higher dynamic pressures. 

More violations occur when the eighth-order controller is coupled with the 
evaluation model of the plant (FOM/ROC). Little of the increased activity is 
due to controller reduction: this was found by comparing the design model 
full-order controller results (FOCI with the design model reduced order 
control results (not shown here). The increased activity of the FOMIROC as 
compared with the FOC is primarily a result of contributions to the output 
from the modes in the evaluation model that were absent in the design model. 
For the FOM/ROC case, rate violation occurs only for the TEO control at the 
highest dynamic pressure. The rms deflection violations are small except for 
TEO at the highest dynamic pressure. 

Load rms violations are also small except at the highest dynamic pressure. 
The loads computations are only approximate for the FOM case because modal 
load coefficients were only available for the five modes retained in the 
design model. 

\Dynamic Pressure, Ib/lt? 

deg/sec 

M, I n 4  
S, Ib 
T, in-It 

4.417 4.768 

TEO 144.5 160.1 
TEI 17.1 18.9 
LEO 96.0 104.9 

~~~~~t 25,129 26,259 

Torque 827.3 970.9 
Shear 465 488.7 

TEO 4.72 5.21 
TEI . I62 .183 
LEO 2.66 2.91 

TEO 181.3 203 
TEI 19.8 22 
LEO 106.4 118 

Moment 27,363 28,774 
Shear 503.8 533 
Torque I 962 I 1,155 

f 
5.141 5.537 6.639 

181.2 208.4 302.8 
21.2 1 24.1 1 28.9 

116.7 132.7 286.5 

231.9 270.3 416.1 
24.6 1 27.44 I 28.35 

133.8 154.8 225.29 

30,277 31,924 38,013 
1,398 564.41 1,718.9 599.21 3,423.3 728.9 

CONSTRAINTS: S,,, 5 deg, A,,,,, < 372 degkec 

M,,,c 30K In-lb 

Srms 1000 Ib, TrmS< 2000 In-lb 
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SUMMARY 

A constrained optimization methodology has been developed which allows 
specific use of eigensystem freedoms to meet design requirements. A subset of 
the available eigenvector freedoms was employed. The eigenvector freedoms 
associated with a particular closed-loop eigenvalue are coefficients of basis 
vectors which span the subspace in which that closed-loop vector must lie. 
Design requirements are included as a vector of inequality constraints. 

The procedure was successfully applied to develop an unscheduled controller 
which stabilizes symmetric flutter of an aeroelastic vehicle to a dynamic 
pressure 4 4  percent above the open-loop flutter point. Eigenvector freedoms, 
for fixed eigenvalue locations, of the two coalescent modes were employed to 
minimize the sensitivity of the critical closed-loop eigenvalue to dynamic 
pressure variation subject to control power, loads, and robustness 
constraints. The reduced sensitivity was achieved at the expense o f  reduced 
robustness to errors at the input. 

The design process proceeded from full-state feedback to the inclusion of a 
full-order observer to the selection of an eighth-order controller which 
preserved the full-state sensitivity characteristics. 

Only a subset of the design freedoms was utilized (i.e., assuming full-state 
feedback only four out of 26 eigenvectors were used, and no variations were 
made in the closed-loop eigenvalues). Utilization of additional eigensystem 
freedoms could further improve the controller. 

CONSTRAINED OPTIMIZATION METHODOLOGY DEVELOPED TO USE 
EIGENSYSTEM FREEDOMS TO MEET REQUIREMENTS 

SUCCESSFULLY USED EIGENVECTOR FREEDOMS TO LOWER 
SENSITIVITY TO DYNAMIC PRESSURE VARIATION 

REDUCED SENSITIVITY TO DYNAMIC PRESSURE ACHIEVED AT 
EXPENSE OF ROBUSTNESS AS MEASURED BY MINIMUM SINGULAR 
VALUE OF RETURN DIFFERENCE MATRIX 

EIGHTH ORDER CONTROLLER FOUND WHICH PRESERVED 
REDUCED SENSITIVITY CHARACTERISTICS 

UNUSED EIGENSPACE FREEDOMS COULD FURTHER IMPROVE 
CONTROLLER 

857 



REFERENCES 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Fennell. Robert E.: Adams. William M.. Jr.; and Christhilf, David M.: An 
Application of Eigenspace Methods to Symmetric Flutter Suppression. AIAA 
Paper No. 88-4099-CP. 

Moore, B. C.: On the Flexibility Offered by State Feedback in Multivariable 
Systems Beyond Closed-Loop Eigenvalue Assignment. IEEE Trans. Automatic 
Control, vol. AC-21. 1976. pp. 689-692. 

Srinathkumar, S.: Eigenvalue/Eigenvector Assignment Using Output Feedback. 
IEEE Trans. Automatic Control, vol. AC-23, 1978, pp. 79-81. 

Andry. A .  N.: Shapiro. E. Y.; and Chung. J. C.: Eigenstructure Assignment for 
Linear Systems. IEEE Trans. Aerospace and Electronic Systems, vol. AES-19. 
1983, pp. 711-729. 

Kautsky. J.; Nichols, N. K.; and Van Dooren, P.: Robust Pole Assignment in 
Linear State Feedback. Int. Journal of Control. vol. 5. 1985. pp. 1129-1155. 

Kazerooni. H.; and Houpt. P. K.: On the Loop Transfer Recovery. Int. Journal 
of Control, vol. 43. 1986. pp. 981-996. 

Garrard. W. L.: Liebst. B. S.; and Farm, J. A.: Eigenspace Techniques for 
Active Flutter Suppression. NASA CR-4071. 1987. 

Sobel. K. M.; and Shapiro, E. Y.: Application of Eigenstructure Assignment to 
Flight Control Design: Some Extensions. Journal of Guidance. Control. and 
Dynamics, vol. 10. 1987. pp. 73-81. 

Klema. V.; and Laub. A. J.: The Singular Value Decomposition: Its 
Computation and Some Applications. IEEE Trans. Automatic Control, vol. 
AC-25, 1980. pp. 164-176. 

Porter, B.; and D'Azzo. J. J.: Algorithm for Closed-Loop Eigenstructure 
Assignment by State Feedback in Multivariable Linear Systems. Int. Journal 
of Control, vol. 27. 1978, pp. 943-947. 

Golub. G. H.; and Van Loan, C. F.: Matrix Computations. The Johns Hopkins 
University Press. Baltimore, Maryland. 1983. 

Kwakernaak. H.; and Sivan. R.: Linear Optimal Control Systems. Wiley 
Interscience. New York. 1972. 

Doyle. J. C.': and Stein, G.: Multivariable Feedback Design: Concepts for a 
Classical/ odern Synthesis. IEEE Trans. on Automatic Control, vol. AC-26. 
1981, pp. !-16. 

Courant, R.: Variational Methods for the Solution of Problems of Equilibrium 
and Vibrations. Bull. American Math Society, vol. 49. January 1943. 
pp. 1-23. 

Olsson, D. M.; and Nelson, L. S . :  The Nelder-Mead Simplex Procedure for 
Function Minimization. Technometrics, vol. 17. 1975. 

Murrow. H. N.; and Eckstrom, C. V.: Drones for Aerodynamic and Structural 
Testing (DAST) - A Status Report. AIAA Paper No. 78-1485. Presented at the 
1978 Atmospheric Flight Mechanics Conference, August 1978. 

I 858 



17. Boeing Wichita Company: Integrated Design of a High Aspect Ratio Research Wing 
with an Active Control System for Flight Tests on a BQM-34E/C Drone Vehicle. 
NASA CR-166108. 1979. 

18. Rodger. Kenneth L.: Airplane Math Modeling Methods for Active Control Design. 
AGARD CR-228, August 1977. 

19. Adams, William M., Jr.; and Tiffany, Sherwood H.: Design of a Candidate 
Flutter Suppression Control Law for the DAST ARW-2. NASA TM-86257, July 
1984. 

20. Ridgely. D. Brett: and Banda, Siva S.: Introduction to Robust Multivariable 
Control. AFWAL-TR-85-3102, February 1986. 

859 


