977 research outputs found

    Lecture Notes on Gradient Flows and Optimal Transport

    Full text link
    We present a short overview on the strongest variational formulation for gradient flows of geodesically λ\lambda-convex functionals in metric spaces, with applications to diffusion equations in Wasserstein spaces of probability measures. These notes are based on a series of lectures given by the second author for the Summer School "Optimal transportation: Theory and applications" in Grenoble during the week of June 22-26, 2009

    Weighted Energy-Dissipation principle for gradient flows in metric spaces

    Full text link
    This paper develops the so-called Weighted Energy-Dissipation (WED) variational approach for the analysis of gradient flows in metric spaces. This focuses on the minimization of the parameter-dependent global-in-time functional of trajectories \mathcal{I}_\varepsilon[u] = \int_0^{\infty} e^{-t/\varepsilon}\left( \frac12 |u'|^2(t) + \frac1{\varepsilon}\phi(u(t)) \right) \dd t, featuring the weighted sum of energetic and dissipative terms. As the parameter ε\varepsilon is sent to~00, the minimizers uεu_\varepsilon of such functionals converge, up to subsequences, to curves of maximal slope driven by the functional ϕ\phi. This delivers a new and general variational approximation procedure, hence a new existence proof, for metric gradient flows. In addition, it provides a novel perspective towards relaxation

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Get PDF
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations
    corecore