49 research outputs found

    Strongly Refuting Random CSPs Below the Spectral Threshold

    Full text link
    Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with nn variables and mm clauses, there is a value of m=Ω(n)m = \Omega(n) beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when m/n=ω(1)m/n = \omega(1)). Intuitively, strong refutation should become easier as the clause density m/nm/n grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as kk-SAT and kk-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, m/nO~(nk/21)m/n \ge \widetilde O(n^{k/2-1}), and the clause density at which instances become unsatisfiable with high probability, m/n=ω(1)m/n = \omega (1). In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random kk-XOR instances with clause density m/nO~(n(k/21)(1δ))m/n \ge \widetilde O(n^{(k/2-1)(1-\delta)}) in time exp(O~(nδ))\exp(\widetilde O(n^{\delta})) or in O~(nδ)\widetilde O(n^{\delta}) rounds of the sum-of-squares hierarchy, for any δ[0,1)\delta \in [0,1) and any integer k3k \ge 3. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at δ=0\delta = 0, and brute-force refutation at the satisfiability threshold when δ=1\delta = 1. We also leverage our kk-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors

    Sum of squares lower bounds for refuting any CSP

    Full text link
    Let P:{0,1}k{0,1}P:\{0,1\}^k \to \{0,1\} be a nontrivial kk-ary predicate. Consider a random instance of the constraint satisfaction problem CSP(P)\mathrm{CSP}(P) on nn variables with Δn\Delta n constraints, each being PP applied to kk randomly chosen literals. Provided the constraint density satisfies Δ1\Delta \gg 1, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate PP supports a tt-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree d=Θ(nΔ2/(t1)logΔ)d = \Theta(\frac{n}{\Delta^{2/(t-1)} \log \Delta}) (which runs in time nO(d)n^{O(d)}) \emph{cannot} refute a random instance of CSP(P)\mathrm{CSP}(P). In particular, the polynomial-time SOS algorithm requires Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints to refute random instances of CSP(P)(P) when PP supports a tt-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~PP, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.Comment: 39 pages, 1 figur

    Algorithms and Certificates for Boolean CSP Refutation: "Smoothed is no harder than Random"

    Full text link
    We present an algorithm for strongly refuting smoothed instances of all Boolean CSPs. The smoothed model is a hybrid between worst and average-case input models, where the input is an arbitrary instance of the CSP with only the negation patterns of the literals re-randomized with some small probability. For an nn-variable smoothed instance of a kk-arity CSP, our algorithm runs in nO()n^{O(\ell)} time, and succeeds with high probability in bounding the optimum fraction of satisfiable constraints away from 11, provided that the number of constraints is at least O~(n)(n)k21\tilde{O}(n) (\frac{n}{\ell})^{\frac{k}{2} - 1}. This matches, up to polylogarithmic factors in nn, the trade-off between running time and the number of constraints of the state-of-the-art algorithms for refuting fully random instances of CSPs [RRS17]. We also make a surprising new connection between our algorithm and even covers in hypergraphs, which we use to positively resolve Feige's 2008 conjecture, an extremal combinatorics conjecture on the existence of even covers in sufficiently dense hypergraphs that generalizes the well-known Moore bound for the girth of graphs. As a corollary, we show that polynomial-size refutation witnesses exist for arbitrary smoothed CSP instances with number of constraints a polynomial factor below the "spectral threshold" of nk/2n^{k/2}, extending the celebrated result for random 3-SAT of Feige, Kim and Ofek [FKO06]

    Certifying solution geometry in random CSPs: counts, clusters and balance

    Get PDF
    An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: what does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1. Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random dd-regular graph. 2. Clusters. For Boolean 33CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3. Balance. We also give algorithms that with high probability certify that there are no "unbalanced" solutions, i.e., solutions where the fraction of +1+1s deviates significantly from 50%50\%. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time

    A simple and sharper proof of the hypergraph Moore bound

    Full text link
    The hypergraph Moore bound is an elegant statement that characterizes the extremal trade-off between the girth - the number of hyperedges in the smallest cycle or even cover (a subhypergraph with all degrees even) and size - the number of hyperedges in a hypergraph. For graphs (i.e., 22-uniform hypergraphs), a bound tight up to the leading constant was proven in a classical work of Alon, Hoory and Linial [AHL02]. For hypergraphs of uniformity k>2k>2, an appropriate generalization was conjectured by Feige [Fei08]. The conjecture was settled up to an additional log4k+1n\log^{4k+1} n factor in the size in a recent work of Guruswami, Kothari and Manohar [GKM21]. Their argument relies on a connection between the existence of short even covers and the spectrum of a certain randomly signed Kikuchi matrix. Their analysis, especially for the case of odd kk, is significantly complicated. In this work, we present a substantially simpler and shorter proof of the hypergraph Moore bound. Our key idea is the use of a new reweighted Kikuchi matrix and an edge deletion step that allows us to drop several involved steps in [GKM21]'s analysis such as combinatorial bucketing of rows of the Kikuchi matrix and the use of the Schudy-Sviridenko polynomial concentration. Our simpler proof also obtains tighter parameters: in particular, the argument gives a new proof of the classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a log3n\log^3 n factor), and loses only a single logarithmic factor for all k>2k>2-uniform hypergraphs. As in [GKM21], our ideas naturally extend to yield a simpler proof of the full trade-off for strongly refuting smoothed instances of constraint satisfaction problems with similarly improved parameters

    CSP-Completeness And Its Applications

    Get PDF
    We build off of previous ideas used to study both reductions between CSPrefutation problems and improper learning and between CSP-refutation problems themselves to expand some hardness results that depend on the assumption that refuting random CSP instances are hard for certain choices of predicates (like k-SAT). First, we are able argue the hardness of the fundamental problem of learning conjunctions in a one-sided PAC-esque learning model that has appeared in several forms over the years. In this model we focus on producing a hypothesis that foremost guarantees a small false-positive rate while minimizing the false-negative rate for such hypotheses. Further, we formalize a notion of CSP-refutation reductions and CSP-refutation completeness that and use these, along with candidate CSP-refutatation complete predicates, to provide further evidence for the hardness of several problems
    corecore