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ABSTRACT OF THE THESIS

CSP-Completeness And Its Applications

by

Alexander Durgin

Master of Science in Computer Science

Washington University in St. Louis, May 2020

Research Advisor: Brendan Juba

We build off of previous ideas used to study both reductions between CSP-refutation prob-

lems and improper learning and between CSP-refutation problems themselves to expand

some hardness results that depend on the assumption that refuting random CSP instances

are hard for certain choices of predicates (like k-SAT). First, we are able argue the hard-

ness of the fundamental problem of learning conjunctions in a one-sided PAC-esque learning

model that has appeared in several forms over the years. In this model we focus on produc-

ing a hypothesis that foremost guarantees a small false-positive rate while minimizing the

false-negative rate for such hypotheses. Further, we formalize a notion of CSP-refutation

reductions and CSP-refutation completeness that and use these, along with candidate CSP-

refutatation complete predicates, to provide further evidence for the hardness of several

problems.
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Chapter 1

Introduction

1.1 Motivation and related work

Arguably, the main contribution of Computational Complexity to human knowledge has

been the development of methods for establishing that problems are likely to be intractable.

NP-completeness has found application well beyond computer science. In spite of its vast

reach, there are limits to what can be established intractable using NP-completeness. First

and foremost, NP-completeness, being only evidence of worst-case intractability, is no strong

evidence that a problem is hard “in practice.” Indeed, one need look no further than sat-

isfiability to find a problem that is both NP-complete and yet widely held to be solvable

“in practice.” Second, moreover, there are large families of essentially average-case prob-

lems that are suspected to be intractable, specifically arising in cryptography (Bogdanov and

Trevisan, 2006; Akavia et al., 2006; Haitner et al., 2010; Pass et al., 2011) and machine learn-

ing (Applebaum et al., 2008), but for which NP-completeness would violate other standard

assumptions. NP-completeness is simply not an effective tool for studying these problems.

Famously, an analogue to the theory of NP-completeness for average-case problems was

proposed by Levin (1986). In this framework, computational problems are paired with a dis-

tribution on inputs, called a “distributional problem,” and it is this “distributional problem”

pair that may be tractable or intractable. While this presents a natural candidate framework

for the study of such problems, proving problems to be “average-case NP-complete” is much

more difficult than for worst-case (standard) NP-completeness. It is difficult to construct re-

ductions that enforce that typical instances of an arbitrary problem map to typical instances

of a candidate complete problem. The current state of our knowledge can be summarized
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as: all natural NP-complete problems are average-case hard for a somewhat unnatural dis-

tribution (Livne, 2010), and the existence of any average-case NP-complete problem for an

efficiently sampleable distribution implies that there is an average-case complete problem

with the uniform distribution on inputs, although the problem itself may be unnatural (Im-

pagliazzo and Levin, 1990). Thus, although we do not have formal evidence against the

possibility, it is still beyond the state of the art to establish the intractability of problems

arising in cryptography and machine learning via average-case NP-completeness. For exam-

ple, Goldwasser and Kalai (2016) describe such a hypothetical finding as a “triumph.”

In both cryptography and machine learning, the standard for hardness has been largely

reductions from a “famous” problem with no known efficient algorithms, such as factoring

integers (equiv., computing modular square roots), discrete logarithms, or finding shortest

vectors in lattices. In the best of circumstances, these problems have known worst-case to

average-case (uniform random input) reductions, and so are based on the worst-case hardness

of the corresponding famous problem. Even here, the reach of this criteria was sufficiently

limited that alternatives have been sought. For example, relatively few assumptions have

yielded public-key cryptography, and such reductions are not known for (improper) PAC-

learning of DNF or approximate agnostic learning of standard hypothesis classes such as

conjunctions or halfspaces. In the case of cryptography, this has left the field dangerously

exposed to advances in quantum computers, for example, which could leave only a few related

standard intractability assumptions (based on lattices and “learning with errors” (Regev,

2009; Brakerski et al., 2013)) valid in practice.

This has motivated the search for other, somewhat tested average-case assumptions, such as

the planted clique problem (Jerrum, 1992; Kučera, 1995) and random constraint satisfaction

problems such as refuting random 3-SAT (Feige, 2002). Indeed, for public-key cryptography,

Applebaum et al. (2010) explored the use of variants of both of these assumptions. Likewise,

in machine learning, given the intractability of a variant of refuting random k-SAT (for large

k) recent work by Daniely and Shalev-Shwartz established the intractability of improper

learning of DNF (Daniely and Shalev-Shwartz, 2016); under the intractability of k-XOR,

further work by Daniely (2016) also established the intractability of “agnostic” learning of

halfspaces with a constant-factor approximation to the optimal error rate. In comparison

to problems such as integer factoring and shortest vectors in lattices, the specific average-

case variants of these problems considered are relatively contemporary developments. As
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discussed above, evidence for the hardness of these problems is primarily limited to the

failure of specific algorithms, or specific classes of approaches. Thus, further evidence for

the intractability of these problems is desirable.

1.2 Overview of the results

The goals of this work are two fold. First, it is to establish a general framework for formalizing

the concepts of reductions between CSP-refutation problems and completeness over these

reductions with respect to arbitrary classes of refutation problems, as well as providing

examples of complete refutation problems for the class of all non-trivial refutation problems.

And secondly, it is to provide evidence for the hardness of the fundamental problem of

learning conjunctions in an often-studied one-sided PAC-esque learning model.

1.2.1 Formalizing CSP-Reductions and Associated Completeness

More to the first goal, we show new evidence for the intractability of refuting random k-SAT,

the problem of distinguishing satisfiable k-CNFs from k-CNFs for which m = f(n, k) clauses

on n variables (for a specified function f) are chosen uniformly at random. It is known

that beyond some constant clause-to-variable ratio, the formulas become unsatisfiable for

each fixed k ≥ 2 (Friedgut and Bourgain, 1999), and in particular that for sufficiently large,

fixed k the limiting probability of satisfiability (as n → ∞) drops from 1 to 0 at a fixed,

constant density (Ding et al., 2015). (The same “sharp threshold” phenomenon is widely

conjectured to hold more generally for all k ≥ 3.) Thus, at least, for some f(n, k) = Ω(n),

the problem is information-theoretically feasible in the sense that below this threshold, while

the problem can be posed, no algorithm can solve it since the distributions are statistically

indistinguishable. By contrast, the current best efficient algorithms for refuting random k-

SAT require Ω̃(nk/2) clauses (Allen et al., 2015). Feige (2002) conjectured that the problem

is intractable for some f(n, k) = O(n) (sufficiently large that the problem is information-

theoretically feasible), and recently Daniely and Shalev-Shwartz more boldly conjectured

that the problem is hard for f(n, k) = nω(1) clauses. As we discussed in section 1.1, these
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assumptions were used to show the intractability of certain problems, especially in machine

learning, that had resisted previous efforts.

The only previous evidence for hardness of these problems is that broad classes of algorithms

cannot solve them. Specifically, “statistical algorithms” (Feldman et al., 2018) and semidefi-

nite programming hierarchies such as sum-of-squares (Schoenebeck, 2008) cannot detect the

unsatisfiability of formulas with substantially fewer clauses. Indeed, more generally, for any

random k-CSP for which a t-wise independent probability distribution can be constructed on

the satisfying assignments of the defining constraint, neither statistical algorithms (Feldman

et al., 2018) nor the sum-of-squares relaxation (Kothari et al., 2017) detect unsatisfiability

with less than Ω̃(nt/2) constraints, and the best known polynomial-time algorithm (Allen

et al., 2015, again) similarly requires this many constraints. Thus, we have essentially the

same evidence for hardness of every k-CSP that supports k − O(1)-wise independence, and

Barak et al. (2013) likewise conjecture that every such random CSP refutation problem is

intractable.

Here, we show that refuting random k-SAT is complete for random k-CSP refutation problems

for each fixed k under randomized, constraint-wise reductions. We give a simple family of

reductions that work for any k and for the strong refutation variant in which the formula

may only be ε-close to satisfiable. To our knowledge, this notion of completeness for random

k-CSP refutation problems had not previously been considered. The closest analogue is the

reductions between the sum-of-squares relaxations of such CSP problems, considered first by

Schoenebeck (2008) and more generally by Tulsiani (2009) and finally Chan (2016), but our

reduction applies to any algorithm for refuting random CSP instances, not just semidefinite

programming relaxations (or other specific methods). Under this notion of completeness,

we are able to vastly expand the classes of predicates which are candidates for producing

hard refutation problems, a phenomenon that, to our knowledge, has not yet occurred in the

study of hardness of improper learning. For example, the class of CSP-refutation problems

for which k-SAT is complete includes all CSPs considered in the literature which tend to be

nontrivial, monotone CSPs, as well as all exotic predicates such as not-all-equal-SAT, random

predicates, and even the XOR⊕MAJ predicate introduced by Applebaum and Lovett (2018)

as a candidate hard predicate for PRGs in NC0 achieving high stretch.
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In particular, we now have this strengthened evidence for the hardness of problems in ma-

chine learning that had shown to be intractable under the assumption that improper learning

of DNF is intractable. For example, in addition to the various classes that can express DNFs

such as DFAs of size nε (Pitt and Valiant, 1988), this includes the hardness of agnostic

learning of conjunctions (Kearns et al., 1994) and parities (Feldman et al., 2009) up to arbi-

trary accuracy, and the hardness of improper heuristic learning of conjunctions (Bshouty and

Burroughs, 2005) (a.k.a. “positive-reliable” learning (Kalai et al., 2012)) and relatedly, learn-

ing abduction of conjunctions (Juba, 2016) and conditional linear regression for conjunctive

conditions (Juba, 2017).

We also note that recent work by Brennan et al. (2018) established a variety of reductions

among planted sparse graph problems, ultimately based on planted clique (similar to earlier

work by Berthet and Rigollet (2013)). Although along the lines of Papadimitriou (1994) we

could simply consider “the class of problems reducible to planted clique” (PPC?), it would

be very interesting if the evidence for the hardness of planted clique could be strengthened to

completeness for a more natural class of problems, similar to what we show here for random

k-SAT.

It follows from the reductions of Feige (2002) that, for the special case of k = 3, several

other predicates are also complete for strong 3-CSP refutation (under refutation reductions),

specifically including 3-XOR, 3-AND, and 3-MAJ. While these reductions seem to rely on

the limited space of assignments on three variables and it is not clear if they can be gener-

alized to arbitrary k, we are able to show that a new variant of random XOR is also hard

for strong k-CSP refutation. Specifically, when the sizes of the predicates are binomially

distributed (conditioned on at least one success),1 we find that strongly refuting such ran-

dom XOR systems is strong k-CSP-hard, and hence this new XOR variant could serve as the

strong foundation of a candidate family of predicates for something like Goldreich’s proposed

pseudorandom generator Goldreich (2011). We note that this equivalently gives a reduction

to a standard random CSP problem with multiple predicates (where the predicate is also

chosen uniformly at random) if we consider the predicates given by non-constant parities

supported on strings of length k. Previously, it was essentially shown by Allen et al. (2015)

(see in particular Raghavendra et al. (2017) for a more careful treatment) how to reduce

1Recall that the binomial distribution with parameters n and p is the number of heads (“successes”) when
a p-biased coin is tossed n times.
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any k-CSP to a collection of weighted k-XOR refutation problems, where “strong refutation”

now means bounding the maximum value of the weighted sum of the predicates, where the

weights are given by sums of (uniformly) {−1, 0,+1}-valued random variables. Neither Allen

et al. (2015) nor Raghavendra et al. (2017) analyzed this transformation as a reduction, but

rather showed how it could be used to give polynomial-time algorithms for strong refutation

for large formulas. The reduction produces instances with many different size predicates,

and they obtain different bounds for different regimes of the output predicate sizes. Thus

it’s challenging to extract from their work one clean variant of even their weighted k-XOR

refutation problem that is complete.

1.2.2 CSP-Reduction Framework Applied to One-Sided Learning

Toward the second goal, we begin by considering the following, closely related learning

models:

(i) In Pitt and Valiant’s heuristic learning model (Pitt and Valiant, 1988), one seeks a

“rule of thumb” that commits (almost) no false-positive errors, and matches the best

true-positive rate of members of a given class.

(ii) In Kalai, Kanade, and Mansour’s positive-reliable learning model (Kalai et al., 2012),

one seeks a classifier that, again, commits almost no false-positive errors, and almost

matches the false-negative rate of the optimal classifier that makes no false-positive

errors.

(iii) In Juba’s learning to abduce model (Juba, 2016), one seeks a “hypothesis” condition

with probability as large as possible such that in the corresponding conditional prob-

ability distribution over examples, the label is almost always true, thus “empirically

entailed.”

The only differences are that Kalai et al. formulate their problem as minimizing false-

negatives as opposed to maximizing the positive classification rate, and Juba essentially

formulates the problem in terms of precision rather than the raw false-positive rate. Thus,

in the realizable setting (where a perfect rule exists) all three models are computationally

6



equivalent. We also remark briefly that these problems also arise as a special case of the

conditional linear regression problem (Juba, 2017), which is a variant of robust linear regres-

sion for small (minority-fraction) subsets, in which we also ask for a formula describing the

subset on which the linear predictor is intended to be used.

Conjunctions are among the simplest and least-expressive nontrivial representations. They

present a natural starting point for studying the extent of learnability in any model. More-

over, conjunctions are of particular significance to the learning to abduce model. In the

usual formulation of abduction as a reasoning task, conjunctions are widely considered to

be the most natural hypothesis formulation. For example a typical application of abduction

is in diagnosing faulty circuits, and the hypothesis explaining a given output is usually a

conjunction of faults at various points in the circuit. Indeed, many classical formulations of

the abduction task in AI only considered conjunctive hypotheses (e.g., ATMS Reiter and de

Kleer (1987)). Thus, conjunctions can be considered to be the central representation class

for abduction, and therefore the learnability of that class in Juba’s model is particularly

significant.

It is therefore somewhat surprising and unfortunate that all evidence to date suggests that

conjunctions are not learnable in these models. The first results concerned the “proper

learning” variant of the task, in which we seek the representation of a specific conjunction

solving the task: Pitt and Valiant showed this problem to be NP-hard (Pitt and Valiant,

1988); indeed, Bshouty and Burroughs (2005) noted that it follows from results of H̊astad

(1996) that even getting a n1−γ-approximation to the optimal positive classification rate for

this problem (for any constant γ > 0) is NP-hard.

Bshouty and Burroughs (2005) showed furthermore that even for the “improper” variant in

which any representation will do, we cannot obtain any polynomial approximation for the

positive classification rate, or else we would obtain an algorithm for PAC-learning DNF in

the usual, distribution-free model. This was the central problem in computational learning

theory raised by Valiant (1984), and the state-of-the-art algorithm for this problem requires

2O(n1/3) time and examples (Klivans and Servedio, 2004). Until recently, the only evidence

for the hardness of learning DNF was its notoriety. But, Daniely and Shalev-Shwartz (2016),

building on techniques pioneered by Daniely et al. (2014), show that learning DNF is hard

given that it is hard to distinguish random k-CNFs on nf(k) constraints from satisfiable
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k-CNFs for any f(k) = ω(1). This assumption is a slight strengthening of Feige’s R3SAT

hypothesis, Feige (2002) which (only) asserts that no polynomial-time algorithm can distin-

guish random 3-CNFs of size O(n) from satisfiable 3-CNFs. These connections show, in turn

that improper learning of conjunctions is intractable under the same assumptions. Thus,

furthermore, learning of any representation that can express a conjunction is also intractable

in these models. Since almost all natural representations can express conjunctions (except

disjunctions and parities, which are learnable (Bshouty and Burroughs, 2005; Kanade and

Thaler, 2014; Juba, 2016)), this essentially settles the extent of learnability in these models.

The pioneering work of Daniely et al. (2014) had earlier obtained a number of strong hardness

of improper learning results, using assumptions about the hardness of random CSPs for

unusual predicates, that were unfortunately subsequently falsified by Allen et al. (2015).

While the current, random k-SAT variant used by Daniely and Shalev-Shwartz has yet to be

falsified (and indeed seems plausible) and PAC-learning of DNF still seems formidable, it is

still desirable to have stronger evidence for the hardness of these problems. But, the hardness

of learning has almost always been based on the hardness of specific problems, such as the

aforementioned hardness of specific random CSP refutation problems, the hardness of specific

cryptographic problems, such as integer factoring (Kearns and Valiant, 1994) or shortest

vector problems (Klivans and Sherstov, 2009), or the hardness of planted clique (Berthet and

Rigollet, 2013). Applebaum et al. (2008) obtained evidence that such a result for improper

learning based on NP-hardness is implausible: most simple kinds of reductions would imply

the polynomial-time hierarchy collapses, and more complex reductions would yield a generic

reduction to construct weak one-way functions from arbitrary problems in NP that are hard

on average. Moreover, no natural problem with a natural distribution has yet been shown to

be complete for the average-case analogues of NP2 so hardness for the average-case analogues

of NP seem beyond our current reach, at least.

We show that the task of improper learning of conjunctions in this one-sided learning model

is hard unless all non-trivial k-CSPs can be weakly refuted: and while this same result can

be derived via Bshouty and Burroughs (2005), Daniely and Shalev-Shwartz (2016), and the

completeness of k-SAT. The reduction we derive is significantly simpler than the resulting

2In particular, this is in contrast to specific works where either the distribution is natural and the problem
is not (Impagliazzo and Levin, 1990, e.g.,) or where the problem is natural and the distribution is not (Livne,
2010).

8



reduction from the composition of the former and is worth laying out and studying in its

own right for what it reveals about what little structure an abductive learner of conjunctions

requires from predicates to be able to refute them.

We note that Barak et al. (2013) had explicitly conjectured that a basic semidefinite program

should be optimal for weak refutation of all predicates with a constant constraint-to-variable

ratio. By contrast, we only require that refutation is hard for some predicate on nf(k)

constraints for arbitrarily slowly growing f(k). In particular, Kothari et al. (2017) show that

the usual sum-of-squares formulation cannot efficiently refute such instances whenever there

is a 2f(k) + 1-wise independent distribution on the satisfying assignments of the predicate.

(We say that such predicates “support 2f(k) + 1-wise independence.”) Therefore, unless

we can improve upon the sum-of-squares algorithm for refutation on nf(k) constraints for

all non-trivial CSPs that support 2f(k) + 1-wise independence, there is no polynomial-time

algorithm for learning conjunctions in these models. Kothari et al. note that for the same

family of predicates, it furthermore follows from work by Lee et al. (2015) that no polynomial-

size semidefinite programming extended formulation will succeed for the same family and

same number of constraints. Therefore, again, a polynomial time algorithm for learning

conjunctions in this model will establish that no semidefinite programming formulations are

optimal for any non-trivial predicates (in stark contrast to the conjecture of Barak et al.

(2013)).
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Chapter 2

Preliminaries

In this chapter we will be formalizing the problem of CSP-refutations which is a fundamental

and recurring element throughout the rest of this work, as well as some notation and concepts

centered around CSP-refutation and reductions from these problems.

2.1 CSP-Refutations

Definition 1 (Constraint satisfaction problems). We call a boolean function P : {±1}k →
{0, 1} a k-predicate and say that C : {±1}n → {0, 1} is a P -constraint if ∃α1, ..., αk ∈ {±1}
and distinct choices i1, . . . , ik ∈ [n] are distinct such that C(x) = P (α1xi1 , ..., αkxik). We

denote the set of such P -constraints by CSPP

For k-predicate P and η ∈ [0, 1], we say that a randomized algorithm A solves the problem

of distinguishing between (1 − η)-satisfiable and random instances of P -constraints of size

m(n, k) if on input S = {C1, ..., Cm(n,k)} ⊆ CSPP the following holds:

(i) If there exists x ∈ {±1}n such that for at least (1 − η)m(n, k) many i ∈ [m(n, k)] we

have Ci(x) = 1, then A(S) outputs “satisfiable” with probability at least 3
4

with respect

to the internal randomness of A and

(ii) If each Ci ∈ S is drawn uniformly at random from all of the P -constraints and inde-

pendently from the other P -constraints, then for almost-all choices of S, A(S) outputs

“random” with probability at least 3
4

with respect to the internal randomness of A.
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We denote this problem by CSPrand,1−η
m(n,k) (P ).

If there is no such A that runs in time poly(n), then we say that this problem is hard.

Otherwise, we say that this problem is easy.

For example, we can let P be the familiar k-SAT predicate, taking x ∈ {±1}k to 1 when

at least one of the inputs is positive, ie x 6= {−1, . . . ,−1} and to 0 when all of the inputs

are negative. Then the corresponding distinguishing problem CSPrand,1−η
m(n,k) (k-SAT) is that of

deciding whether a set of k-SAT clauses has at least ηm simultaneously satisfiable clauses.

Such random constraint satisfaction problems have been studied mostly as a starting point

for the study of the intractability of other problems. A relatively minimal assumption in

this direction, which we will show suffices for many applications as a consequence of our

reductions, is the following:

Assumption 2. There exists some k-predicate P and f(k) = ω(1) such that CSPrand,1

nf(k)
(P )

is hard.

2.2 CSP-Refutation Reductions

It is also convenient to give a name to the notion of reducibility between random CSP

refutation problems that we use in this paper and that has appeared in the literature prior

(particularly in (Ding et al., 2015; Daniely and Shalev-Shwartz, 2016; Daniely, 2016; Feige,

2002)).

Definition 3 (Refutation Reductions). Let P, P ′ be k-predicates. Let η, η′ ∈ [0, 1), then

we say a function random polynomial-time computable f : CSP
m(n,k)
P → CSP

m′(n,k)
P ′ is a

refutation reduction from CSPrand,1−η
m(n,k) (P ) to CSPrand,1−η′

m′(n,k) (P ′) if the following holds:

Let S = {C1, . . . , Cm(n,k)}, where each Ci ∈ CSPP and let S ′ = f(S) = {C ′1, C ′2, . . . , Cm′(n,k)}.

(i) If there exists x ∈ {±1}n such that for at least (1 − η)m(n, k) many i ∈ [m(n, k)] we

have Ci(x) = 1, then with probability ≥ 3/4 over the internal randomness of f , there
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exists some x′ ∈ {±1}n such that Ci(x
′) = 1 on at least (1− η′)m′(n, k) many clauses

of S ′.

(ii) If each Ci ∈ S is drawn uniformly at random from all of the P -constraints and inde-

pendently from the other P -constraints, then the induced distribution on the C ′i is also

the uniform distribution over P ′ constraints. That is, S ′ is a uniform random system

of m′(n, k) P ′-constraints.

We would like to highlight some of the more interesting structure that can be found in the

refutation reductions we study in this paper. In particular, these transformations perform

”constraint-wise” mappings between the input and the image formula.

Definition 4 (Constraintwise Refutation Reductions). Let f : CSP
m(n,k)
P → CSP

m(n,k)
P ′ be a

refutation reduction from CSPrand,1−η
m(n,k) (P ) to CSPrand,1−η′

m(n,k) (P ′) such that for every P -formula

S = {C1, . . . , Cm(n,k)}, there is a g : CSPP → CSPP ′ where f(S) = {g(C1), . . . , g(Cm(n,k))}.
We call f the constraint-wise refutation reduction from CSPrand,1−η

m(n,k) (P ) to CSPrand,1−η′
m(n,k) (P ′)

induced by g.

And with an idea of what it means to reduce from one random CSP refutation problem

to another given, we can naturally discuss the idea of completeness for classes of random

refutation problems.

Definition 5 (Refutation Completeness). Let C be a set of CSP refutation problems, that is,

a collection of CSPrand,1−η
m(n,k) (P ) for possibly many different choices of P , η, and m. Then we

say CSPrand,1−η′
m′(n,k) (P ′) is C random refutation complete for C if for each CSPrand,1−η

m(n,k) (P ) ∈ C
there exists a refutation reduction f from CSPrand,1−η

m(n,k) (P ) to CSPrand,1−η′
m′(n,k) (P ′).

Note that the above definitions give a description of reducibility and completeness that can

apply to both “weak refutation” (where η = 0) and “strong refutation” (where η > 0).
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Chapter 3

CSP Refutation Completeness

3.1 Random k-CSP Completeness of k-SAT

We now give our main reductions, showing that random k-SAT and a new variant of strong

refutation of random XOR are at least as hard as all strong refutation problems for k-CSPs.

This gives new evidence for the intractability of these specific problems, which in turn we can

argue gives new evidence for the hardness of many other problems that had been previously

established to be hard under the assumption that random k-SAT specifically was hard. As

our variant of random XOR refutation is new, it currently does not establish such results,

and indeed this suggests several directions for future work that we will review subsequently.

3.1.1 The Reduction

Our main result is that random k-SAT is complete for strong refutation of random k-CSPs:

it is itself a random k-CSP problem, and every other (strong) refutation problem for random

k-CSPs reduces to it. Intuitively, our reduction proceeds as follows: Observe that we can

think of a clause as checking that a forbidden assignment does not appear. For any arbitrary

predicate P , given an instance of a CSP on P , we can choose one of the falsifying assignments

of P to check independently for each constraint of the instance. This will map a random

constraint to a random clause, and we will catch each falsified constraint with probability

1/2K(1 − E[P ]) (where E[P ] denotes the probability that P is satisfied on an assignment

chosen uniformly at random). So, in expectation, if η(1 − E[P ])m constraints are falsified
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originally, we get a k-SAT instance in which η
2k
m constraints are falsified. If the formula is

large enough, this fraction is almost exact. More formally, now:

Theorem 6 (CSP Refutation Completeness of k-SAT). Let η ∈ [0, 1], m(n, k) = Ω
(

2k

E[P ]2

)
,

and C = {CSP
rand,1−η(1−E[P ])
m(n,k) (P )|P is a falsifiable predicate}. Then CSPrand,1−η

m(n,k) (k-SAT) is

random refutation complete for C under randomized constraint-wise reductions.

In particular, this theorem shows completeness for both the weak and strong variants of the

random refutation problems.

We will make use of the following simple bound on the tail of the binomial distribution given

in Feller (1957) (found in chapter VI, section 3).

Lemma 7. Let X ∼ Binomial(n, p), then Pr[X ≤ r] ≤ (n−r)p
(np−r)2 for r < np.

Now our proof of theorem 6:

Proof. For the remainder of the proof, letm denotem(n, k) for brevity. Let J = {C1, ..., Cm} ⊆
CSPP be an instance of CSP

rand,1−η(1−E[P ])
m(n,k) (P ). For each Ci ∈ J let x(i) ∈ {−1, 1}n be a falsi-

fying assignment chosen randomly over all falsifying assignments of Ci, hence Ci(x
(i)) = −1.

Define C ′i ∈ CSPk-SAT to be the k-disjunction over the variables which appear in Ci that

is falsified by x(i), and consider the k-SAT formula J ′ = {C ′1, ..., C ′m}. Clearly, J ′ can be

produced in polynomial time with respect to n (for constant k). We will argue that this

transformation induces a constraint-wise refutation reduction.

First, we observe that if J is drawn uniformly at random, then J ′ will also be produced

uniformly at random. Let x∗ be any falsifying assignment of P (xi1 , . . . , xik). Note that every

Ci ∈ J is of the form Ci(x) = P (αi1xi1 , . . . , αikxik) where in particular each αij ∈ {±1} is

either label with probability 1
2
. Hence, the falsifying assignment of C ′i induced by x∗ (where

an index ij is negated iff αij = −1) is uniform random on the variables occurring in Ci, and

so C ′i must also be uniform random over the clauses of size k.

Next, suppose that J is (1 − η(1 − E[P ]))-satisfiable. Let x∗ ∈ {±1}n be an assignment

satisfying a 1− η(1−E[P ]) fraction of J , ie Ci(x
∗) = 1 for some (1− η(1−E[P ]))m many i.

Let m′ = bη(1− E[P ]))mc, and without loss of generality, let C1, . . . , Cm′ be the remaining

14



constraints of J that may or may not be satisfied x∗. Note that for each i ∈ {m′+ 1, . . . ,m}
we have that x∗ must differ from x(i) on at least one variable appearing in Ci, and hence

C ′i(x
∗) 6= 0. Note that if η = 0, then J is entirely satisfiable and there are no extra constraints

to consider (ie m′ = 0) in our analysis.

Thus, if η > 0, then we only need that our randomized reduction produces at least ((1 −
η(1− E[k-SAT]))− (1− η(1− E[P ])))m = m′ −mη(1− E[k-SAT]) many satisfiable clauses

from these remaining m′ constraints. We will show this occurs with high probability via a

simple tail-bound. Let Xi be the indicator random variable such that Xi = 1 iff the falsifying

assignment of Ci disagrees with x∗ on a variable appearing in Ci. We note that the Xi are

independent Bernoulli trials, since the x(i) are chosen independently of one another by the

reduction. So the sum
m′∑
i=1

Xi is a binomial distribution with p = E[k-SAT], hence we can

bound the probability that fewer than m′−mη(1−E[k-SAT]) of the constraints are satisfied

by x∗ with lemma 7:

Pr[
m′∑
i=1

Xi ≤ m′ −mη(1− E[k-SAT])] ≤ (m′ − (m′ −mη(1− E[k-SAT])))E[k-SAT]

(m′E[k-SAT]− (m′ −mη(1− E[k-SAT])))2

=
mη2−k(1− 2−k)

2−2k(m′)2 + 2−2km2η2 − 2 · 2−2km′mη

=
mη(2k − 1)

(m′)2 +m2η2 − 2m′mη

And for this to be bounded above by 1/4, it suffices that m > 4
η
2k−1
E[P ]2

since

m >
4

η

2k − 1

E[P ]2

m
(
(1− E[P ])2 + 1− 2(1− E[P ])

)
> 4

1

η
(2k − 1)

(mη)2(1− E[P ])2 + (mη)2 − 2(mη)2(1− E[P ])

m
> 4η(2k − 1)

(m′)2 +m2η2 − 2m′mη

m
> 4η(2k − 1)

mη(2k − 1)

(m′)2 +m2η2 − 2m′mη
< 1/4
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And so for m = Ω( 2k

E[P ]2
), these m′ constraints will fail with probability < 1

4
to produce at

least ((1− η(1− E[k-SAT]))− (1− η(1− E[P ])))m k-SAT constraints satisfied by x∗.

In particular, theorem 6 tells us that as long as there is some k-predicate P and m(n, k) for

which it is hard to distinguish random from almost satisfiable instances, then it is hard to

do so for k-SAT.

We obtain many corollaries, for the various problems shown to be hard based on the assump-

tion that refuting random k-SAT is hard. For example, we have the following strengthening

of the lower bound found by Daniely and Shalev-Shwartz (2016) for improperly PAC-learning

DNF, since their hardness assumption was on the hardness of k-SAT:

Corollary 8. If assumption 2 holds, then there is no polynomial-time algorithm for improp-

erly PAC-learning DNF formulas.

Remark. For a somewhat more limited set of predicates (those which are “uniformly falsi-

fiable”), we give similar evidence for the hardness of PAC-learning DNF in Chapter 4.

And consequently, furthermore, any lower bound established given the hardness of learn-

ing DNF is similarly strengthened. For example, agnostically learning conjunctions up to

additive error is at least as hard as PAC-learning DNF (Kearns et al., 1994), hence:

Corollary 9. If assumption 2 holds, then there is no polynomial-time algorithm for agnos-

tically PAC-learning conjunctions up to additive error.

Remark on the satisfiability threshold. Again, we know that when there are asymp-

totically fewer than (2k ln 2)n clauses, random k-SAT formulas are satisfiable with high prob-

ability; thus, for m smaller than this, the reduction produces instances of an information-

theoretically impossible problem. There is no contradiction here, but the reduction is not

useful since it produces unconditionally hard instances.

3.1.2 Beyond k-SAT

We observe that we can use this “random k-CSP completeness” of k-SAT to show random

k-CSP hardness of other CSP refutation problems. As noted previously, Feige (2002) had
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shown that strong refutation of random 3-SAT reduces to strong refutation of many other

predicates, such as 3-AND, 3-XOR, and 3-MAJ. Hence, all of these are complete for strong

3-CSP refutation. But, Feige’s reduction relies on the use of good algorithms for refuting

NAE-SAT to handle cases where simply interpreting a clause as an XOR (for example)

fails, and it is not clear how to generalize his algorithm beyond k = 3. We note that

likewise, although later work has shown (for general k) how to use algorithms for strongly

refuting sufficiently large weighted k-XOR formulas to refute arbitrary k-CSP instances (Allen

et al., 2015; Raghavendra et al., 2017), the weighted k-XOR problem is not a standard CSP

refutation problem, and furthermore the reduction requires solving a large collection of such

weighted instances. Finally, these works do not analyze these transformations as a reduction

per se, but rather use them in the specific large-formula (Ω(nk/2) constraint) regime to obtain

efficient algorithms for refuting large formulas. By contrast here, we exhibit a new variant

of random XOR that can be viewed as a standard CSP, which we can establish is hard for

strong refutation of k-CSPs under constraint-mapping reductions.

For every non-empty S ⊆ [k], let χS : {±1}k 7→ {±1} denote the parity function on the

variables whose index appear in S, ie χS(x) = (−1)
∑
i∈S xi . Then, for example, we can show

k-CSP completeness of (≤ k)-XOR: Let CSP(≤k)-XOR denote the set of constraints over all

of the non-constant χS predicates. Define CSP
rand,1−η(1−E[(≤k)-XOR])
m(n,k) ((≤ k)-XOR) as before,

but we let our formula’s constraints be drawn from over any of the χS constraints, and

the random formula are uniform not only over the literals but also over the choice of S.

Equivalently, these are instances in which the constraints are independently chosen to have

binomially distributed sizes, conditioned on a nonzero outcome (ki ∼ Binomial(k, 1/2)|ki >
0, independently).

Theorem 10. Let P be any non-trivial k-CSP. Let η ∈ [0, 1) and m = ω(1). Then

there is a randomized constraint-wise refutation reduction from CSP
rand,1−η(1−E[P ])
m(n,k) (P ) to

CSP
rand,1−η′(1−E[(≤k)-XOR])
m(n,k) ((≤ k)-XOR) for η′ ∈ [0, 1] depending only on η and k.

Proof. We will argue that CSP
rand,1−η(1−E[k-SAT])
m(n,k) (k-SAT) efficiently (constraint-wise refuta-

tion) reduces to CSP
rand,1−η′(1−E[(≤k)-XOR])
m(n,k) ((≤ k)-XOR), and the result will follow. First, we

will observe that every parity function over some non-empty subset of the variables appear-

ing in a clause of size k agrees with that clause on a 1
2

+ 1
2k

fraction of all inputs (that is,

the Fourier coefficient of k-SAT on every non-constant character is 1
2k−1 ).
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Now consider the following efficient, refutation reduction. Let J = {C1, . . . , Cm(n,k)} ⊆
CSPk-SAT be an instance of CSP

rand,1−η(1−E[k-SAT])
m(n,k) (k-SAT). For each Ci ∈ J , let C ′i ∈

CSP(≤k)-XOR where C ′i is uniform randomly chosen among all (≤ k)-XOR constraints over all

of the literals appearing in Ci. Let J ′ = {C ′1, . . . , C ′m(n,k)}, an instance of CSP
rand,1−η′(1−E[(≤k)-XOR])
m(n,k) ((≤

k)-XOR). It is easy to see that if J is a random k-SAT formula, then J ′ is a random

(≤ k)-XOR formula over the same variable set, since the subset of literals appearing in

each constraint is chosen uniformly at random over the literals of a uniformly drawn k-OR

constraint.

Now, suppose instead that J is (1 − η(1 − E[k-SAT]))-satisfiable. Let x∗ ∈ {±1} be an

assignment such that x∗ satisfies, without loss of generality, C1, ..., Cm′ , where m′ = d(1 −
η(1 − E[k-SAT]))e. Let Xi denote the indicator random variable that is 1 iff the randomly

chosen (≤ k)-constraint C ′i is satisfied by x∗. Note that the Xi are iid, since the parity is

sampled uniform randomly and independently of the other C ′i. Moreover, we can deduce

that since Ci(x
∗) = 1 =

∑
S⊆[k]

Ĉi(S)χS(x∗), and that the Fourier coefficient corresponding

to the empty set is 1 − 1
2k−1 , that the number of non-constant parities which agree with

Ci on x∗ (and so the number of possible choices of (≤ k)-constraints for C ′i which are

satisfied by x∗) is greater by one than the number of non-constant parities that don’t. Hence,

E[Xi] = 2k−1

2k−1 = 1
2

+ 1
2k+1−2 .

So, we can bound the probability that the produced (≤ k)-XOR formula is not 1 − η′

2

satisfiable via a Chernoff bound for some choice of η′:

Pr

[
m′∑
i=1

Xi ≤
(

1− η′1
2

)
m(n, k)

]
=

Pr

[
m′∑
i=1

Xi ≤ (1− δ)
(

1

2
+

1

2k+1 − 2

)
m′

]
< exp

−δ2
(

1
2

+ 1
2k+1−2

)
m′

2


Now, take 0 < δ < 1

2

(
η−1
η−2k

)
, and we see that taking η′ = −ηδ+η+δ2k+2k−2

2k−1 (<
1+η
2

+2k−2
2k−1 < 1)

is enough. And η′ only depends on k and η. Hence, for fixed k and η, since m(n, k) = ω(1)

we have for large enough n that J ′ is (1− η′ 1
2
)-satisfiable with probability ≥ 3

4
.
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Again, as this variant of random XOR refutation is new, it does not immediately strengthen

any of the existing lower bounds based on strong refutation of random k-XOR.

Additional evidence of hardness of XOR for large k. We note an additional source

of evidence that k-XOR (and consequently k-SAT and (≤ k)-XOR) strong refutation is

hard. The reduction given by Alekhnovich (2011) for 3-sparse linear systems generalizes

to arbitrary k as well as to other distributions, such as our binomially distributed systems.

The problem considered by Alekhnovich is to distinguish ε-noisy 3-sparse linear systems

from linear systems with the same distribution on constraints and a uniform random right-

hand side, and he shows how to reduce this problem to strongly refuting 3-XOR. As it is

conjectured that this variant of the problem is hard, it provides additional evidence for the

hardness of such XOR refutation problems.

A small generalization. We can also observe that we can construct simpler (constraint-

wise) refutation reductions from large classes of CSPs to CSPs other than k-SAT, which pre-

serve solutions for families of constraints. Let encP,P ′ : CSPP → CSPP ′ , where enc(P (`1, . . . , `k)) =

P ′(`1, . . . , `k). Then it is easy to see that if the support of P is contained in the support

of P ′, then encP,P ′ induces an efficient reduction from CSPrand,1−η
m (P ) to CSPrand,1−η

m (P ′),

sending instance {C1, . . . , Cm} to {encP,P ′(C1), . . . , encP, P ′(Cm)}.

This observation allows us to strengthen any hardness result based on hardness of refuting

random CSP instances for a particular choice of predicate. Examples of this, as previ-

ously mentioned, include lower bounds on the hardness of agnostically learning halfspaces

(Daniely, 2016):

Corollary 11. If there exists any k-predicate P whose support consists only of assignments

with an odd parity and any constants c > 0, 1
2
> η > 0 such that CSPrand,1−η

nc log (k)
√
k
(P ) is hard,

then it is hard to agnostically PAC-learn halfspaces even with a constant approximation ratio.
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Chapter 4

Hardness of Abductively Learning

Conjunctions

In this chapter, we use the previously introduced infrastructure of CSP-completeness to give

evidence for the hardness of abductively (even improperly) learning conjunctions.

4.1 Additional Preliminaries

To accomplish this task we will introduce some new concepts and associated notation in this

section to help us describe the learning model and the reduction from the CSP refutation to

this new learning model.

4.1.1 Abductive Learning Problem

First, we describe the one-sided learning model in which we are studying the learnability of

conjunctions, as described by Juba (2016). (We relate this model to positive-reliable learning

in the appendix.)

Definition 12. For a class H of Boolean formulas over Boolean attributes x1, . . . , xn, the

abduction task is as follows. We are given as input m independent examples x(1), . . . , x(m)

from an arbitrary distribution D over {0, 1}n (assignments to the n attributes), a query

formula c(x) over x1, . . . , xn, and an alphabet A ⊆ {x1, . . . , xn}, for which there exists
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h∗ ∈ H only using attributes in A such that Pr[c(x) = 1|h∗(x) = 1] = 1 and Pr[h∗(x) =

1] ≥ µ. Then, with probability 1− δ, in time polynomial in n, 1/µ, 1/ε, and 1/δ, we find an

explanation h ∈ H only using attributes in A such that

(i) Pr[c(x) = 1|h(x) = 1] ≥ 1− ε and

(ii) Pr[h(x) = 1] ≥ 1/p(1/µ, n, 1/(1− ε)) for some positive polynomial p.

So, in the case of there being a good (“µ-plausible”) explanation for the sample data (an

h ∈ H with no error on its support), an efficient abductive learner in this model will probably

output an approximately correct hypothesis (on its support) with the plausibility (size of

the support) depending only polynomially on n, 1
µ
, 1
ε
, 1
δ
.

4.1.2 Scattering and Explainability

Analogous to distinguishing between random and satisfiable instances of CSP problems, our

reduction will make use of the following problem of distinguishing between scattered and

explainable samples:

Definition 13 ((H, µ)-explainable and scattered samples). Let

S = {(x1, y1), ..., (xm(n), ym(n))} ⊆ {0, 1}n × {0, 1} be a labeled sample.

• We say that S is (H, µ)-explainable for µ > 0 if there exists h∗ ∈ H such that

(i) 1
m(n)

m(n)∑
i=1

1{x|h∗(x)=1}(xi) ≥ µ

(ii) For each i ∈ [m(n)], h∗(xi) = 1 =⇒ yi = 1

• We say that a distribution over ({0, 1}n × {0, 1})m is scattered if for S ∼ D the

examples (xi, yi) are independent and identically distributed, and the yi in particular

are Bernoulli(1
2
) random variables that are independent of xi.

Definition 14 (Distinguishing Explainable From Scattered Samples). For hypothesis class

H, we say that a random algorithm A solves the problem of distinguishing between (H, µ)-

explainable samples and scattered samples of sizem(n) if on input S = {(x1, y1), ..., (xm(n), ym(n))} ⊆
{0, 1}n × {0, 1}, A has the following two behaviors:
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(i) if S is (H, µ)-explainable, then A(S) outputs “explainable” with probability at least 3
4

with respect to the internal randomness of A.

(ii) If S is drawn from a scattered distribution, then with probability 1− on(1) with respect

to the choice of S, A(S) will output “scattered” with probability at least 3
4

with respect

to the internal randomness of A.

If there is no such A that runs in time poly(n), then we say that this problem is hard.

Otherwise, we say that this problem is easy.

In particular, our reduction will relate the problem of distinguishing (H, µ)-explainable from

scattered examples to the abductive learnability ofH. The basic idea behind this relationship

is similar to that of Daniely et al., in that since any efficient abductive learner can use at

most a polynomial number of bits to describe an output hypothesis, it will almost certainly

output a poorly performing explanation in the scattered case. Meanwhile, in the explainable

case, it will do well by assumption. We will give a full proof in the next section.

4.2 Main Result: One-Sided Improper Learning of Con-

junctions Refutes All Non-Trivial CSPs

Our main result concludes that under Assumption 2, abductively learning conjunctions is

hard, even improperly:

Theorem 15 (Hardness of Improperly Abductively Learning Conjunctions). If assumption

2 holds, then there exists no random algorithm that efficiently abduces conjunctions, even

improperly.

Given the results above, an obvious place one might start would be trying to reduce CSPrand,1

nf(k)
(k-SAT)

to abductively learning conjunctions, and this is what we will do. But to emphasise what

little structure is required out of the predicate to make our reduction work, we will give the

reduction from CSPrand,1

nf(k)
(P ) for any P that is uniformly falsifiable. That is, at least one of

P (0, 0, . . . , 0) = 0 or P (1, 1, . . . , 1) = 0 holds.
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Hence, we will show the following result:

Theorem 16. If there exists some uniformly falsifiable k-predicate P for which CSPrand,1

nf(k)
(P )

is hard, then it is hard to improperly abduce conjunctions efficiently.

And theorem 15 follows from the random refutation completeness of CSPrand,1

nf(k)
(k-SAT) by

theorem 6.

The method behind our result is based on that of Daniely et al. Namely, we will reduce

the (hard) problem of distinguishing between satisfiable and random CSP instances to the

problem of distinguishing between conjunctively explainable and scattered samples. The idea

will be to label the set of input constraints negatively, then to randomly (with probability
1
2
) replace constraints with (uniformly) random positively labeled constraints. We will then

encode the constraints (as a collection of literals) into a larger set of Boolean attributes.

In the case that the input system is satisfiable, due to our mild assumption that P is false on

either the all 0 or all 1 input, any satisfying assignment induces a mapping h∗ : {0, 1}2n →
{0, 1} (computable by a conjunction) from the encoded constraints to {0, 1} such that for

P -constraint C and encoding function enc : CSPP → {0, 1}2n we have h∗(enc(C)) = 1

only if C(x∗) = 0, i.e., there exists a conjunctive explanation for the encoded input system

of constraints. In the random case, on the other hand, there is almost always no such

explanation h∗. Hence, any efficient abductive learner for conjunctions will be able to solve

our original CSP problem.

Note that for brevity the following analysis will be for the case that P (0, 0, . . . , 0) = 0,

but if we do not have falsification on all 0’s and instead have falsification of P on all 1’s

(P (1, 1, . . . , 1) = 0), that the analysis is much the same. Furthermore, we note that our

argument extends directly to all constant size alphabets Γ given a suitable notion of “literals:”

we only require that for any pair of symbols σ, τ ∈ Γ, there is a literal function that takes σ to

τ (the literals are “1-transitive”). In particular, the constant shift literals used by Georgiou

et al. (2009) will suffice.
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4.2.1 The Reduction

First, we will describe our encoding of CSPP over n variables as elements of {0, 1}2n. Let

enc : CSPP → {0, 1}2n, where for C = P (`i1 , . . . `ik), enc(C) = z such that when we identify

{0, 1}2n with {0, 1}n×[2], z(i,1) = 1 ⇐⇒ either xi does not appear in any literal `q of C or

xi appears as a literal itself in C, and similarly z(i,2) = 1 ⇐⇒ either xi does not appear in

any literal `q of C or ¬xi appears as a literal itself in C. Hence, every index of enc(C) is 1

unless the negation of the associated literal appears in the constraint C.

We now describe the algorithm itself. Let Hcon denote the hypothesis class of conjunctions

over n variables and let P denote a k-predicate over n variables. Let A denote an algorithm

that efficiently distinguishes between (Hcon, µ)-explainable (with respect to µ = µ(n, k))

and scattered samples of size nd. Then A′, given as Algorithm 1 below, is a polynomial

time algorithm for the problem of distinguishing between satisfiable and random instances

of P -constraints of size nd, by reducing to the problem of distinguishing between (Hcon, µ)-

explainable and scattered samples of size nd over {0, 1}2n.

Algorithm 1: A′, Reduction of the CSP distinguishing problem to the distinguishing
problem for scattered versus explainable samples.

Input : S = {C1, . . . , Cnd} ⊆ CSPP

Output: Either “satisfiable” or “random”
1 Let S ′ = {(C1, 0), . . . , (Cnd , 0)} by labeling each input constraint 0
2 for i← 1 to nd do
3 With probability 1

2
replace, in S ′, labeled example (Ci, 0) with labeled example

(C, 1) for C chosen uniformly at random.
4 end
5 Let E = {(enc(C1), b1), . . . , (enc(Cnd), bnd)}, where bi is the label of the ith example

after the randomizing loop.
6 if A(E) = “explainable” then
7 return “satisfiable”
8 else
9 return “random”

10 end
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4.2.2 Correctness of The Reduction

We will now establish the correctness of A′, as shown in Algorithm 1.

Lemma 17. On input a satisfiable system of constraints for some uniformly falsifiable k-

constraint P , the algorithm A′ will output “satisfiable” with probability at least 3
4
. And if S

is random, then A′ will return “random” with probability at least 3
4

for a 1− on(1)-fraction

of choices of S.

We consider each of the two cases of the problem separately. In the case that S is structured

(satisfiable) we will show that with probability at least 3
4

we output “satisfiable”. And, in

the unstructured case (S is random), we will show that over a 1−on(1) fraction of all choices

of S with probability at least 3
4
A′ outputs “random”. And then afterwards, we will prove

our main theorem, relating the problem to abduction.

Claim 18. If S = {C1, ..., Cnd} is satisfiable, then E is (Hcon, µ)-explainable with respect to

any µ < 1
2k+1 −

√
2k+1

nd
ln 4 with probability at least 3

4
.

Proof. Let x∗ be a satisfying assignment for {C1, ..., Cnd} and consider the following h∗ ∈
Hcon: h∗(z) =

∧n
i=1 αi where

αi =

z(i,1), if x∗i = 0

z(i,2), if x∗i = 1

In words, h∗(enc(C)) = 0 if and only if some literal belonging to C is satisfied by the

assignment x∗. Hence, if we have h∗(enc(C)) = 1 on a µ fraction of E, then we are done.

Note that this argument only depends on the value of the predicate on the all 0 string. If

instead we had considered predicates that are falsified on the all 1 string, then only the

construction of h∗ changes in this proof (particularly, each z(i,1) appearing in h∗ is swapped

for a z(i,2) and vice versa).

Let Xi be the indicator random variable that is 1 if and only if h∗(enc(Ci)) = 1. We make two

observations. First, we note that if h∗(enc(Ci)) = 1 then the label of the ith example is also

1. Second, we note that E[Xi] = (1
2
)( 1

2k
). And so, by application of the usual multiplicative

Chernoff bounds:
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Pr
[ nd∑
i=1

Xi < µnd
]
< exp

(
−
(1

2

)
(

1

2k+1
− µ)2

( 1

2k+1

)
nd
)

And so, in order to pick µ so that this probability h∗ does a poor job at explaining the

labeling is less than 1
4

we need

exp
(
−
(1

2

)
(

1

2k+1
− µ)2

( 1

2k+1

)
nd
)
<

1

4

and continuing with elementary manipulations we find that happens when

µ <
1

2k+1
−
√

2k+1

nd
ln 4

and so we are done.

Thus, our reduction maps satisfiable instances of P -constraints to conjunctively explainable

instances over the boolean cube.

Next, observe that in the case of S being drawn uniformly at random, that for almost all

choices of S, with probability at least 3
4

with respect to the internal randomness of the

algorithm, we will output “random”. Indeed, we observe that the distribution induced by

the algorithm on examples over {0, 1}2n × {0, 1} is scattered in the random case, and so, by

the assumption that A solves the problem of distinguishing between (Hcon, µ)-explainable

and scattered samples we have this guarantee:

Claim 19. If S is drawn uniformly at random, then for a 1− on(1) fraction of the possible

S, with probability at least 3
4
A′ will return “random.”

Proof. As A′ outputs “random” whenever A outputs “scattered” on its input E, and we are

given that A outputs “scattered” with probability 3
4

for a 1− on(1)-fraction of the possible

samples produced by a scattered distribution, it suffices to argue that E is indeed scattered.
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Indeed, since {C1, . . . , Cnd} is by assumption a collection of mutually independent and uni-

formly random constraints, in particular the set of literals appearing in each Ci is an in-

dependent and uniformly random set of k literals on distinct variables. Observe that this

remains true even if we sample a new, independent constraint for Ci in the first loop of A′.
Hence, {enc(C1), . . . , enc(Cnd)} is, by construction, a collection of mutually independent and

identically distributed random variables. Moreover, our choice of whether or not to resample

Ci and replace its label with 1 is an independent Bernoulli trial, and as the new constraint

Ci was (once again) independently and uniformly sampled, we find that indeed the labels yi

are independent and unbiased Bernoulli random variables. Thus we see that E is a scattered

sample as claimed.

Thus, our reduction maps random CSP instances to scattered samples, and (by Claim 18)

mapped satisfiable CSP instances to “explainable” samples. Since by hypothesis A is able

to distinguish scattered from “explainable” samples, our reduction is correct.

4.2.3 Proof of Theorem 16

Proof. Toward a contradiction let L be an efficient abductive learner of Hcon. We take

g(n, µ, ε, δ) ≥ Ω(
((

1− ε)µ
n

)d)
(for some constant d) to be the lower bound of the plausibility

of L’s output explanation guaranteed by definition of L being an efficient abductive learner

when there is a µ-plausible explanation.

Hence, for each fixed choice of δ, ε ∈ (0, 1) there is some d > 0 such that (i) L reads and writes

fewer than (n
µ
)d bits over its execution, including those used to read the input examples and

the bits required to describe an output explanation. In particular, the number of examples

read and used by the algorithm is at most (n
µ
)d, and (ii) (n

µ
)d ≥ 1

g(n,µ,ε,δ)
.

Let q = d+1 and let k be large enough such that f(k) ≥ 3q. Recall that for our reduction to

distinguish between satisfiable and random samples our analysis requires that our subroutine

A be able to efficiently distinguish between (Hcon, µ)-explainable and scattered samples for

some 1
2k+2 ≤ µ < 1

2k+1 . Notice that for sufficiently large n, i.e., n > 1
µd

, we have nd+1 >
(
n
µ

)d
,

that is, nq ≥ (n
µ
)d.
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Now consider the algorithm L′, given as Algorithm 2 below, that on input S ⊆ {0, 1}n×{0, 1}
of size n3q, we claim distinguishes between the case that S is (Hcon, µ)-explainable for such

a µ and the case that S is scattered.

Algorithm 2: L′, reduction of distinguishing scattered from explainable samples to
abductive learning

Input : S = {(x1, y1), . . . , (xn3q , yn3q)}
Output: Either “explainable” or “random”

1 Run L with the following parameters: Examples drawn uniformly (with replacement)
from S as the input example set, µ as above, δ = 1

8
, and ε = 1

4
and let h be the output

explanation hypothesis.

2 if If 1
n3q

n3q∑
i=1

1{(x,y)∈S|h(x)=1}(xi) ≥ g(n, µ, ε, δ) and Err{(x,y)∈S|h(x)=1}(h) < 1
4

then

3 return “explainable”
4 else
5 return “random”
6 end

Where we define

ErrA(h) =
1

|A|
∑

(x,y)∈A

1{(x,y)∈A|y=0}(x, y)

i.e., the fraction of false positives h produces over S.

Suppose that S is (Hcon, µ)-explainable, then by assumption of L being an abductive learner,

for large enough n, with probability at least 1− δ > 3
4

it will return an h satisfying the con-

dition in line 2 of the algorithm (since L must work with respect to the uniform distribution

over examples we are using) and L′ will return “explainable”.

Now suppose that instead S is drawn from a scattered distribution. We bound the probability

that h does well (that it satisfies the conditions of line 2). Let us fix an arbitrary h that

may be output by L. Note that when h passes the first condition, on the number of positive

classifications, since we have chosen q so that g(n, µ, ε, δ) ≥ n−q, h must be positive on at

least n2q examples from S. Since S is scattered, for this fixed h, half of the examples from

S it classifies positively are false-positives in expectation. Note that since the labels yi are

independent of the examples xi in a scattered distribution, conditioning on h passing the

first check on the number of positive classifications leaves the distribution on labels uniform.

Therefore, by a Chernoff bound, the probability that fewer than 1/4 of the at least n2q
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examples h classifies positively are false positive errors is at most e−n
2q/8. And since there

are at most 2n
q

possible output hypotheses of L, by applying the union bound over these the

probability that the output of L has error lower than 1
4

is at most 2n
q
e−n

2q/8 = e−n
q(nq/8−ln 2).

We conclude that with probability 1− on(1) over choices of S, L′ will return “random” with

probability 7/8. Hence, overall, for sufficiently large n L′ returns “random” with probability

greater than 3/4 as needed.

And thus, if there were an efficient abductive learner L for Hcon we would contradict the

assumption on P as follows. We first take L′ above as the A subroutine of A′, which

efficiently solves the problem of distinguishing between (Hcon, µ)-explainable and scattered

samples when we have such an efficient abductive learner L, for all large enough k, and then

use our algorithm A′ to solve the problem of distinguishing between satisfiable and random

P -instances for some choice of k, and f(k). This contradicts the assumption that it is hard

to solve CSPrand,1

nf(k)
(P ).
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Chapter 5

Conclusion

5.1 Directions for future work

With regard to the k-CSP reduction framework developed above, we see five natural di-

rections for future investigation. The first, obvious direction is to try to find additional

examples of k-CSP hard average-case problems. As a starting point, it would be interesting

to know if our result for (≤ k)-XOR can be strengthened to k-XOR, i.e., with all constraints

the same size. Given that on the algorithms side, the “XOR principle” (Feige, 2002; Feige

and Ofek, 2007; Feige et al., 2006; Allen et al., 2015) asserts that refuting k-XOR is sufficient

to refute all CSPs, we should expect that k-XOR is complete. This might help provide ad-

ditional evidence for the hardness of approximate agnostic learning of halfspaces, bolstering

results of Daniely (2016) for example. Actually, noting that Feige (2002) showed that many

natural 3-CSPs are complete, it is natural to ask if the same is true of the generalization

to k > 3. Finally, as this notion of CSP completeness gives us a new way to study the

complexity of refutation problems with unusual predicates, one interesting question in this

direction (suggested to us by M. Tulsiani) is whether or not the linearity testing predicate

used by Samorodnitsky and Trevisan (2000) can be shown to be complete for k-CSPs. Cur-

rently there is no evidence that such refutation problems are hard, but also there are no

algorithms.

The second, related direction is to see if our new variant of random XOR refutation is useful

for establishing hardness. Even if we cannot manage to establish that the standard k-XOR

problem is k-CSP complete, we feel that this new variant is a reasonably natural problem,

and it may be that reductions that had been based on k-XOR can be adapted to use this
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problem instead. If so, then the problems based on the hardness of refuting k-XOR (such

as approximate agnostic learning of halfspaces with constant approximation ratio) could be

shown to be hard under the weaker assumption that some predicate is hard to strongly

refute.

A third direction would be to tighten our bounds on m in the completeness analysis of

(≤ k)-XOR to something like that in the k-SAT case, expressed in terms of E[(≤ k)-XOR]

and E[k-SAT].

The fourth direction is to better understand the predicates on k variables for large k. Apple-

baum and Lovett (2018), for example, considered a slightly unusual combination predicate

for cryptographic applications. We believe there is more scope for considering such unusual

predicates, which would then translate into new understanding of the usual problems such

as random k-SAT. For example, Impagliazzo and Levin (1990) considered somewhat unusual

problems in which a predicate is evaluated on the preimage of a hash function. We could

define a predicate along these lines, and perhaps it would allow us to connect to problems

such as average-case NP-complete problems.

The final direction we propose here for making use of the CSP-refutation reduction frame-

work is that of providing evidence for certain functions being pseudorandom generators.

In particular, Goldreich (2011) provides a candidate pseudorandom generator based on the

output of a system of CSP consraints. Loosely, Goldreich’s proposed algorithm is a pseu-

dorandom generator if it is hard to distinguish between random and satisfiable systems of

constraints with respect to the underlying predicate(s). We believe there at least two op-

portunities here. The first is to explore whether popular choices for the input predicate

(for example, the XORANDt,k−t of ODonnell and Witmer (2014)) are complete for k-CSPs.

And the second is to modify Goldreich’s candidate function slightly to allow the problem of

distinguishing for our XOR variant to reduce to that of distinguishing between the generated

and random strings.

And on the topic of this framework as applied to one-sided learning theory, we have positive

results for the agnostic variant of this model: we have a Õ(
√
n)-approximation to the optimal

disjunction (Zhang et al., 2017) (based on an earlier algorithm by Peleg (2007)) and a simple

Õ(s log log n) approximation to the optimal size-s disjunction (Juba et al., 2018). We would

like to know how close to optimal either of these algorithms are. We note that Daniely (2016)
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has succeeded at using similar techniques (but based on strong assumptions about refuting

random XOR) to show ω(1) lower bounds for the blow-up of agnostically learning halfspaces

in the standard improper supervised learning model.3 Noting the relative simplicity of the

reductions for the one-sided error models we consider, we are optimistic that it might be

possible to extend Daniely’s techniques to analyze the blow-up needed for one-sided learning

of disjunctions.

3Daniely also obtains a 2log
1−ε n lower bound for very strong assumptions – for polylogarithmic k, Daniely

requires refuting random k-XOR to remain hard with up to nO(k) constraints.
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