6,727 research outputs found

    Strong isomorphism reductions in complexity theory

    Get PDF
    We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees

    Complexity of equivalence relations and preorders from computability theory

    Full text link
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relations R,SR, S, a componentwise reducibility is defined by R\le S \iff \ex f \, \forall x, y \, [xRy \lra f(x) Sf(y)]. Here ff is taken from a suitable class of effective functions. For us the relations will be on natural numbers, and ff must be computable. We show that there is a Π1\Pi_1-complete equivalence relation, but no Πk\Pi k-complete for k≥2k \ge 2. We show that Σk\Sigma k preorders arising naturally in the above-mentioned areas are Σk\Sigma k-complete. This includes polynomial time mm-reducibility on exponential time sets, which is Σ2\Sigma 2, almost inclusion on r.e.\ sets, which is Σ3\Sigma 3, and Turing reducibility on r.e.\ sets, which is Σ4\Sigma 4.Comment: To appear in J. Symb. Logi

    Some hard families of parameterised counting problems

    Get PDF
    We consider parameterised subgraph-counting problems of the following form: given a graph G, how many k-tuples of its vertices have a given property? A number of such problems are known to be #W[1]-complete; here we substantially generalise some of these existing results by proving hardness for two large families of such problems. We demonstrate that it is #W[1]-hard to count the number of k-vertex subgraphs having any property where the number of distinct edge-densities of labelled subgraphs that satisfy the property is o(k^2). In the special case that the property in question depends only on the number of edges in the subgraph, we give a strengthening of this result which leads to our second family of hard problems.Comment: A few more minor changes. This version to appear in the ACM Transactions on Computation Theor

    Complexity of distances: Theory of generalized analytic equivalence relations

    Full text link
    We generalize the notion of analytic/Borel equivalence relations, orbit equivalence relations, and Borel reductions between them to their continuous and quantitative counterparts: analytic/Borel pseudometrics, orbit pseudometrics, and Borel reductions between them. We motivate these concepts on examples and we set some basic general theory. We illustrate the new notion of reduction by showing that the Gromov-Hausdorff distance maintains the same complexity if it is defined on the class of all Polish metric spaces, spaces bounded from below, from above, and from both below and above. Then we show that E1E_1 is not reducible to equivalences induced by orbit pseudometrics, generalizing the seminal result of Kechris and Louveau. We answer in negative a question of Ben-Yaacov, Doucha, Nies, and Tsankov on whether balls in the Gromov-Hausdorff and Kadets distances are Borel. In appendix, we provide new methods using games showing that the distance-zero classes in certain pseudometrics are Borel, extending the results of Ben Yaacov, Doucha, Nies, and Tsankov. There is a complementary paper of the authors where reductions between the most common pseudometrics from functional analysis and metric geometry are provided.Comment: Based on the feedback we received, we decided to split the original version into two parts. The new version is now the first part of this spli

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New
    • …
    corecore