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Abstract. We give the first systematic study of strong isomorphism reduc-
tions, a notion of reduction more appropriate than polynomial time reduction
when, for example, comparing the computational complexity of the isomor-
phim problem for different classes of structures. We show that the partial
ordering of its degrees is quite rich. We analyze its relationship to a further
type of reduction between classes of structures based on purely comparing for
every n the number of nonisomorphic structures of cardinality at most n in
both classes. Furthermore, in a more general setting we address the question
of the existence of a maximal element in the partial ordering of the degrees.

1. Introduction

In many areas of computational complexity, polynomial time reduction is the
appropriate notion for comparing the complexity of problems. However, sup-
pose that we face, for example, the problem of comparing the complexity of the
isomorphism problem for two classes C and D of graphs. Here

Iso(C) :=
{

(A,B) | A,B ∈ C and A ∼= B
}

is the isomorphism problem for C (more precisely, the set of positive instances of
this problem) and Iso(D) is defined analogously. Probably we would not accept
a polynomial time computable function f : C × C → D ×D with

(A,B) ∈ Iso(C) ⇐⇒ f(A,B) ∈ Iso(D)

as the right notion of reduction in this context but we would seek a strong iso-
morphism reduction, that is, a polynomial time computable function f : C → D
with

(1) A ∼= B ⇐⇒ f(A) ∼= f(B).

This paper is devoted to the study of this type of reduction. For us the motivation
for this study came from various areas:

Computational complexity : The isomorphism relation (on a class C) is an equiv-
alence relation. In the context of arbitrary equivalence relations a notion of
reduction defined analogously as in (1) (and that for the isomorphism relation
coincides with our notion) has been introduced in [7]. However that paper is
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mainly devoted to other problems (see the end of Section 7 for some more de-
tails); concerning the notion of reduction only some open problems are stated
in [7], problems we address in our paper.

Descriptive set theory : For the isomorphism relation our notion of reduction was
first considered by the fourth author (see [8]) inspired by the analogous notion
from descriptive set theory (see [9]). In descriptive set theory, C and D denote
classes of structures with universe N and the function f satisfying (1) is required
to be Borel (in the topology generated by the first-order definable classes).

Descriptive complexity : The existence of a logic capturing polynomial time re-
mains the central open problem of descriptive complexity theory. For many
classes C of graphs (or of other types of structures), one shows that a logic L
captures polynomial time on C by defining in L an invariantization for C. From
the definition of invariantization (given in Section 4), one immediately gets that
if C is strongly isomorphism reducible to D, then C has an invariantization if D
has one.

This paper contains the first systematic study of strong isomorphism reduc-
tions. In Section 3 and Section 4 we introduce our framework, derive some basic
properties of strong isomorphism reductions, and explain via invariantizations
and canonizations the relationship to logics capturing polynomial time mentioned
above. At various places of our analysis, invariantizations and canonizations will
be valuable tools. Their relationship and the computational complexity of prob-
lems related to these notions have been studied in [2, 3, 7, 11, 15, 16].

We denote by ≤iso the partial ordering on the set of degrees induced by strong
isomorphism reductions. In Section 3 we observe that (the degree of) the class of
graphs is the ≤iso maximum element. Furthermore, by Theorem 4.7 we see that
some “basic algebraic classes of structures” all have the same strong isomorphism
degree. In Section 5 we show that the structure of ≤iso is rich already when
restricting to classes with an invariantization.

Assume that C is strongly isomorphism reducible to D. Since such reductions
are computable in polynomial time we know that for some polynomial p ∈ N[X]
and all n ∈ N the number of isomorphism types of structures in C with at most n
elements is at most the number of isomorphism types of structures in D with at
most p(n) elements. If this condition is satisfied, then following [8] we say that C
is potentially reducible to D. Already in Section 5 this concept is the main tool to
demonstrate the richness of the partial ordering ≤iso . We believe that the notions
of strong isomorphism reducibility and that of potential reducibility are distinct
but can only show this under the hypothesis U2EXP ∩ co-U2EXP 6= 2EXP (see
Section 6). It turns out in Section 7 that we would get P 6= #P if we could
separate the two notions without any complexity-theoretic assumption.
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The isomorphism relation is an equivalence relation in NP. In Section 8 we
study reductions (defined in analogy to (1)) between arbitrary equivalence re-
lations in NP. In particular, we show that there is a maximum element in the
corresponding partial ordering if and only if there is an effective enumeration of
these equivalence relations by means of clocked Turing machines. Even if we re-
strict to equivalence relations in P (= PTIME), we cannot show that a maximum
element exists; we can guarantee its existence if a p-optimal propositional proof
system exists. The existence of a maximum element for equivalence relations in
P was addressed in [7, Open Question 4.14].

The authors wish to acknowledge the generous support of the John Templeton
Foundation and the Centre de Recerca Matemàtica through the CRM Infinity
Project. Sam Buss’ work was supported in part by NSF grant DMS-0700533.
This article will appear in the December 2011 issue of the Journal of Symbolic
Logic.

2. Some preliminaries

Throughout the paper Σ denotes the alphabet {0, 1}, and Σ∗ is the set of
strings over this alphabet. For n ∈ N we denote by 1n the string 11 . . . 1 of length
n. An ordered pair (x, y) of strings x = x1 . . . xk, y = y1 . . . y` with x1, . . . , y` ∈ Σ
is coded (identified) with the string x1x1 . . . xkxk01y1y1 . . . y`y`. We do similarly
for tuples of arbitrary length. Sometimes statements containing a formulation
like “there is a d ∈ N such that for all x ∈ Σ∗: . . . ≤ |x|d” can be wrong for
x ∈ Σ∗ with |x| ≤ 1 (here |x| denotes the length of the string x). We trust the
reader’s common sense to interpret such statements reasonably.

2.1. Structures and classes of structures. A vocabulary τ is a finite set of
relation symbols, function symbols, and constant symbols. The universe of a
τ -structure A will be denoted by the corresponding Latin letter A and the inter-
pretation of a symbol s ∈ τ in A by sA.

All structures in this paper are assumed to be finite and to have
[n] := {1, 2, . . . , n} as universe for some n ∈ N.

Therefore, in a canonical way we can identify structures with nonempty strings
over Σ. In particular, |A| for a structure A is the length of the string A. Fur-
thermore, we may assume that for every vocabulary τ there is a polynomial
qτ ∈ N[X] such that |A| ≤ |A| ≤ qτ (|A|) for every τ -structure A, where for a set
M we denote by |M | its cardinality.

A class C of τ -structures is closed under isomorphism if for all structures A and B

A ∈ C and A ∼= B imply B ∈ C

(recall that we restrict to structures with universe [n] for some n ∈ N).
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In the rest of the paper C (and D) will always denote a class of
structures which is in P, is closed under isomorphism, and con-
tains arbitrarily large (finite) structures. Moreover, all structures
in a fixed class will have the same vocabulary.

Examples of such classes are:

• The classes Set, Boole, Field, Group, Abelian, and Cyclic of sets
(structures of empty vocabulary), Boolean algebras, fields, groups, abelian
groups, and cyclic groups, respectively.
• The class Graph of (undirected and simple) graphs. We view graphs as
τGraph-structures, where τGraph := {E} for a binary relation symbol E.
• The class Ord of linear orderings. Here we use the vocabulary τOrd :=
{<} with a binary relation symbol <.
• The class Lop of Linear Orderings with a distinguished Point and the

class Lou of Linear Orderings with a U nary relation. Let τLop := τOrd ∪
{c} with a constant symbol c and τLou := τOrd∪{P} with a unary relation
symbol P . Then Lop (Lou) is the class of all τLop-structures (τLou-
structures) A such that (A,<A) ∈ Ord.

There is a natural one-to-one correspondence between strings in Σ∗ and structures
in Lou, namely the function which assigns to a string x = x1 . . . xn ∈ Σ∗ the
structure A ∈ Lou with universe [n], where <A is the natural ordering on [n]
and PA := {i ∈ [n] | xi = 1}.

3. Strong isomorphism reductions

We define the notion of strong isomorphism reduction already indicated in the
Introduction and present first examples.

Definition 3.1. Let C and D be classes. We say that C is strongly isomorphism
reducible to D and write C≤isoD, if there is a function f : C → D computable in
polynomial time such that for all A,B ∈ C

A ∼= B ⇐⇒ f(A) ∼= f(B).

We then say that f is a strong isomorphism reduction from C to D and write
f : C≤iso D. If C≤isoD and D≤isoC, denoted by C≡iso D, then C and D have
the same strong isomorphism degree.

Examples 3.2. (a) The map sending a field to its multiplicative group shows
that Field≤iso Cyclic.

(b) Cyclic≤iso Abelian≤iso Group; more generally, if C ⊆ D, then idC :
C≤iso D for the identity function idC on C.

(c) Set≡iso Ord≡iso Cyclic.

Remark 3.3. We can reduce the notion of strong isomorphism reduction to the
notion of polynomial time reduction. For this, we introduce the problem
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Iso(C)
Instance: A,B ∈ C.
Problem: Is A ∼= B?

A function f : C → D induces the function f̂ : C × C → D ×D with f̂(A,B) :=(
f(A), f(B)

)
. Then

f : C≤isoD ⇐⇒ f̂ : Iso(C) ≤p Iso(D),

where f̂ : Iso(C) ≤p Iso(D) means that f̂ is a polynomial time reduction from
Iso(C) to Iso(D).

Of course, it is easy to construct polynomial time reductions from Iso(C) to

Iso(D) that are not of the form f̂ for some f : C≤isoD. Moreover, in Remark 5.2
we shall present classes C and D such that

Iso(C) ≤p Iso(D) but not C≤iso D.

This answers [7, Open Question 4.13].

As already mentioned in the Introduction one of our goals is to study the
relation ≤iso . First we see that this relation has a maximum element:

Proposition 3.4. C≤iso Graph for all classes C.

Proof. Let τ be a vocabulary and S be the class of all τ -structures. It is well-
known that there is a strong isomorphism reduction from S to Graph (even a
first-order interpretation, e.g. see [6, Proposition 11.2.5 (i)]). In particular, its
restriction to a class C of τ -structures shows that C≤iso Graph. �

4. Invariantizations and canonizations

One of the central aims of algebra and of model theory is to describe the
isomorphism type of a structure by means of an invariant. The underlying notion
of invariantization is also relevant in our context. We use it (and the related
notion of canonization) to show that most classes of structures mentioned in
Section 2.1 have the same strong isomorphism degree (cf. Corollary 4.8).

Definition 4.1. An invariantization for C is a polynomial time computable
function Inv: C → Σ∗ such that for all A,B ∈ C

A ∼= B ⇐⇒ Inv(A) = Inv(B).

Lemma 4.2. If C≤isoD and D has an invariantization, then also C has an
invariantization.

Proof. If Inv is an invariantization for D and f : C≤iso D, then Inv ◦ f is an
invariantization for C. �

Lou is a maximum class among those with an invariantization:

Proposition 4.3. For a class C the following are equivalent.
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(1) C has an invariantization.
(2) C≤iso Lou.
(3) There is a class D of ordered structures such that C≤isoD.

Here, a class D is a class of ordered structures if its vocabulary contains a binary
relation symbol which in all structures of D is interpreted as a linear ordering of
the universe.

Proof. (1) implies (2) by the natural correspondence between strings in Σ∗ and
structures in Lou. That (2) implies (3) is trivial. To see that (3) implies (1)
assume that there is a class D of ordered structures such that C≤iso D. As
ordered structures have no nontrivial automorphisms, every ordered structure A
is isomorphic to a unique structure A′ whose ordering <A

′
is the natural linear

ordering on its universe {1, . . . , |A′|}. Thus the mapping on D defined by A 7→ A′
is an invariantization of D. Now we apply Lemma 4.2. �

It is open whether the class Graph has an invariantization or equivalently
(by Proposition 3.4 and Proposition 4.3) whether Lou is a maximum element of
≤iso . Moreover, it is known [11, 15] that an invariantization for Graph yields a
canonization.

Definition 4.4. A function Can: C → C computable in polynomial time is a
canonization for C if

(1) for all A,B ∈ C:
(
A ∼= B ⇐⇒ Can(A) = Can(B)

)
;

(2) for all A ∈ C: A ∼= Can(A).

Every class C of ordered structures, in particular Lou, has a canonization. In
fact, the mapping A 7→ A′ defined for all ordered structures in the previous proof
is a canonization for C.

We do not define the notion of a logic capturing P on a class C (e.g. see [6]).
However we mention that canonizations and invariantizations are important in
descriptive complexity theory as:

Proposition 4.5. (1) If C has a canonization, then there is a logic capturing
P on C.

(2) If Graph has an invariantization, then there is a logic capturing P (on
all finite structures).

Clearly, every canonization is an invariantization. Often the invariantizations
we encounter in mathematics yield canonizations. For example, consider the class
Field of fields. Then an invariant for a field K is the pair (pK, nK), where pK is
its characteristic and nK its dimension over the prime field. As for every invariant
(p, n) one can explicitly construct a canonical field Fpn of this invariant, we see
that the mapping K 7→ FpnKK is a canonization. This canonization has a further

property, it is a canonization that has a polynomial time enumeration:
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Definition 4.6. Let Can be a canonization for the class C. The enumeration
induced by Can is the enumeration

A1,A2, . . .

of the image Can(C) of C such that Ai<lexAj1 for i < j. If the mappings
An 7→ 1n and 1n 7→ An are computable in polynomial time, then Can has a
polynomial time enumeration.

Note that the mapping An 7→ 1n is computable in polynomial time if and only
if we get an invariantization Inv of C by setting

Inv(A) := 1n ⇐⇒ Can(A) = An.

The classes Set, Field, Abelian, Cyclic, Ord, and Lop have canoniza-
tions with polynomial time enumerations (for Abelian see [13], for example).
The classes Boole and Lou have canonizations but none with a polynomial
time enumeration: For Boole the function 1n 7→ An will not be computable
in polynomial time, as there are, up to equivalence, “too few” Boolean algebras
of cardinality ≤ n, namely blog nc; for Lou the function An 7→ 1n won’t be
computable in polynomial time, as there are “too many” structures in Lou of
cardinality ≤ n, namely 2n+1 − 1.

Theorem 4.7. Assume that the classes C and D have canonizations with poly-
nomial time enumerations. Then C≡iso D.

Corollary 4.8. The classes Set, Field, Abelian, Cyclic,Ord, and Lop all
have the same strong isomorphism degree.

Proof of Theorem 4.7. Let C and D be classes with canonizations CanC and
CanD which have polynomial time enumerations A1,A2, . . . and B1,B2, . . .
respectively. We define a strong isomorphism reduction f from C to D by:

f(A) = Bn ⇐⇒ CanC(A) = An.

Hence, C≤iso D; by symmetry we get D≤isoC. �

An analysis of the previous proof shows that we already obtain C≤iso D if the
mappings An 7→ 1n and 1n 7→ Bn are computable in polynomial time. By this,
we get, for example, Boole≤iso Cyclic.

5. On ≤iso below Lop

As we have seen that the structure of ≤iso between Lou and Graph is linked
with central open problems of descriptive complexity, we turn our attention to
the structure below Lou. In this section we show that there, in fact even below

1By <lex we denote the standard (length-)lexicographic ordering on Σ∗.
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Lop, the structure is quite rich. In fact, this section is devoted to a proof of the
following result: 2

Theorem 5.1. The partial ordering of the countable atomless Boolean algebra
is embeddable into the partial ordering induced by ≤iso on the degrees of strong
isomorphism reducibility below Lop. More precisely, let B be a countable atomless
Boolean algebra. Then there is a one-to-one function b 7→ Cb defined on B such
that for all b, b′ ∈ B

• Cb is a subclass of Lop;
• b ≤ b′ ⇐⇒ Cb≤iso Cb′.

Recall that the partial ordering of an atomless Boolean algebra has infinite
antichains and infinite chains, even chains of ordertype the rationals.

Remark 5.2. By the preceding result, for example we see that there exist an in-
finite ≤iso -antichain of classes C below Lop, whose problems Iso(C) are pairwise
equivalent under usual polynomial time reductions. Indeed, even Iso(C) ∈ P for
all C ⊆ Lop.

The reader not interested in the details of the proof of Theorem 5.1 should read
until Lemma 5.5 and can then skip the rest of this section. We obtain Theorem 5.1
by comparing the number of isomorphism types of structures with universe of
bounded cardinality in different classes. First we introduce the relevant notations
and concepts.

For a class C we let C(n) be the subclass consisting of all structures in C with
universe of cardinality ≤ n and we let #C(n) be the number of isomorphism
types of structures in C(n), more formally

C(n) := {A ∈ C | |A| ≤ n} and #C(n) := |C(n)/∼=|
Here, for a class of structures S we denote by S/∼= the set of isomorphism classes
in S.

Examples 5.3. (1) #Boole(n) = blog nc, #Cyclic(n)=n and #Set(n)=
#Ord(n) = n+ 1.

(2) #Lop(n) =
∑n

i=1 i = (n+ 1) · n/2 and #Lou(n) =
∑n

i=0 2i = 2n+1 − 1.
(3) For every vocabulary τ there is a polynomial pτ ∈ N[X] such that

#C(n) ≤ 2pτ (n) for all n ∈ N (see Subsection 2.1).
(4) (E.g. see [1]) #Group(n) is superpolynomial but subexponential (more

precisely, #Group(n) ≤ nO(log2 n)).

Definition 5.4. A class C is potentially reducible to a class D, written C≤pot D,
if there is some polynomial p ∈ N[X] such that #C(n) ≤ #D(p(n)) for all n ∈ N.
Of course, by C ≡pot D we mean C≤pot D and D≤pot C.

2Recall that up to isomorphism there is a unique countable atomless Boolean algebra (e.g.
see [10]).



STRONG ISOMORPHISM REDUCTIONS 9

The following lemma explains the term potentially reducible.

Lemma 5.5. If C≤isoD, then C≤potD.

Proof. Let f : C≤iso D. As f is computable in polynomial time, there is a
polynomial p such that for allA ∈ C we have |f(A)| ≤ p(|A|), where f(A) denotes
the universe of f(A). As f strongly preserves isomorphisms, it therefore induces
a one-to-one map from

{
A ∈ C | |A| ≤ n

}
/∼= to

{
B ∈ D | |B| ≤ p(n)

}
/∼=. �

We state some consequences of this simple observation:

Proposition 5.6. (1) Cyclic 6≤iso Boole and Lou 6≤iso Lop.
(2) C≤pot Lou for all classes C and Lou ≡pot Graph.
(3) The strong isomorphism degree of Group is strictly between that of Lop

and Graph, that is, Lop≤iso Group≤iso Graph, but Lop 6≡iso Group
and Group 6≡iso Graph.

(4) The potential reducibility degree of Group is strictly between that of Lop
and Lou, that is, Lop≤pot Group≤pot Lou, but Lop 6≡pot Group and
Group 6≡pot Lou.

Proof. Using the previous lemma we see that

• (1) follows by Examples 5.3 (1), (2);
• (2) from Examples 5.3 (2), (3) and Proposition 3.4;
• Group≤iso Graph holds by Proposition 3.4 and

Lop≤iso Cyclic≤iso Group

by Corollary 4.8 and Example 3.2 (b); the remaining claims in (3) follow
from (4) as Lou ≡pot Graph;
• the first claim follows from the first claim in (3) as Lou ≡pot Graph; the

remaining claims follow from Examples 5.3 (2), (4). �

The following concepts and tools will be used in the proof of Theorem 5.1.
We call a function f : N→ N value-polynomial if it is increasing and f(n) can be
computed in time f(n)O(1). Let VP be the class of all value-polynomial functions.

For f ∈ VP the set

Cf :=
{
A ∈ Lop | |A| ∈ im(f)

}
is in P and is closed under isomorphism. As there are exactly f(k) pairwise
nonisomorphic structures of cardinality f(k) in Lop, we get

#Cf (n) =
∑

k ∈ N with f(k) ≤ n

f(k).

The following proposition contains an essential idea underlying the proof of
Theorem 5.1, even though it is not used explicitly. Loosely speaking, if the
gaps between consecutive values of f ∈ VP “kill” every polynomial, then there
are classes C and D with C 6≤pot D.
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Proposition 5.7. Let f ∈ VP and assume that for every polynomial p ∈ N[X]
there is an n ∈ N such that

(2)
∑

k ∈ N with f(2k) ≤ n

f(2k) >
∑

k ∈ N with f(2k + 1) ≤ p(n)

f(2k + 1).

Then Cg0 is not potentially reducible to Cg1, where g0, g1 : N→ N are defined by
g0(n) := f(2n) and g1(n) := f(2n+ 1).

Proof. By contradiction, assume that there is some polynomial p ∈ N[X] such
that #Cg0(n) ≤ #Cg1(p(n)) for all n ∈ N. Choose n such that (2) holds. Then

#Cg0(n) =
∑

f(2k)≤n

f(2k) >
∑

f(2k+1)≤p(n)

f(2k + 1) = #Cg1(p(n)),

a contradiction. �

Lemma 5.8. The images of the functions in VP together with the finite subsets of
N are the elements of a countable Boolean algebra V (under the usual set-theoretic
operations). The factor algebra V/≡, where for b, b′ ∈ V

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is finite,

is a countable atomless Boolean algebra.

Proof. For a function f : N → N we denote by im(f) the image of f . Using the
definition of value-polynomial function we verify that for f, g ∈ VP the sets

N \ im(f), im(f) ∩ im(g), and im(f) ∪ im(g)

are images of value-polynomial functions provided they are infinite. For example,
assume that N \ im(f) is infinite. We choose an algorithm A and a polynomial
p ∈ N[X] such that for every n ∈ N the algorithm A computes f(n) in time
p(f(n)). Let h be the function enumerating N \ im(f) in increasing order, that
is, h : N → (N \ im(f)) is increasing and surjective. We show that h is value-
polynomial too.

A corresponding algorithm inductively computes pairs (h(0),m0), (h(1),m1),. . .
with

f(mn) < h(n) < f(mn + 1)

for all n ∈ N; if f(0) > 0 and hence h(0) = 0, we set (h(0),m0) = (0,−1). For
n ≥ 1 the algorithm gets (h(n),mn) from (h(n−1),mn−1) by the following steps:

1. Let k := h(n− 1) + 1 and ` := mn−1.
2. Simulate A on `+ 1 for at most p(k) steps.
3. If A does not halt or if it outputs f(` + 1) and f(` + 1) > k, then

(h(n),mn) = (k, `).
4. Otherwise (i.e., if f(`+ 1) = k), let k := k+ 1 and ` := `+ 1, and goto 2.

It should be clear that the algorithm yields (h(n),mn) (more precisely, (h(0),m0),
(h(1),m1), . . ., (h(n),mn)) in time polynomial in h(n).

We leave the proof of the remaining claims to the reader. �
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The lemma just proved shows that the set of images of functions in VP has a
rich structure. We compose the functions in VP with a “stretching” function h,
which guarantees that the gaps between consecutive values “kill” every polyno-
mial. Then we can apply the idea of the proof of Proposition 5.7 to show that
the set of the ≤pot -degrees has a rich structure too.

We define h : N→ N by recursion: h(0) := 0 and

h(n+ 1) = (h(0) + · · ·+ h(n))n .

One easily verifies that h is value-polynomial.
For f, g ∈ VP set

f ⊆∗ g ⇐⇒ im(f) \ im(g) is finite.

By the homogeneity properties of atomless countable Boolean algebras, to prove
Theorem 5.1 it suffices to find a corresponding embedding defined only on the
nonzero elements of V/≡. In general f ⊆∗ g and g ⊆∗ f do not imply Ch◦f = Ch◦g.
However, by the following lemma we get an embedding of V/≡ into the partial
ordering of the ≤iso -degrees as required by Theorem 5.1 by defining the mapping
on a set of representatives, more precisely on a set R ⊆ VP such that

• for every f ∈ VP there is exactly one g ∈ R with f ⊆∗ g and g ⊆∗ f .

Lemma 5.9. The mapping f 7→ Ch◦f from VP to {C ⊆ Lou | C a class} is
one-to-one, and for all f, g ∈ VP:

(1) if Ch◦f≤isoCh◦g, then f ⊆∗ g;
(2) if f ⊆∗ g and g 6⊆∗ f , then Ch◦f≤isoCh◦g.

For the proof of Lemma 5.9 we need an appropriate way to invert increasing
functions f : : N→ N. We define f−1 : N→ N by

f−1(n) := max{i | f(i) ≤ n},

where we set max ∅ := 0. We collect some properties of this inverse in the
following lemma, whose simple proof we omit. We denote by idN the identity
function on N.

Lemma 5.10. (1) If f : N → N is increasing, then f−1 is nondecreasing,
f−1 ≤ idN, f−1 ◦ f = idN and f(f−1(n)) ≤ n for all n ≥ f(0).

(2) If f, g : N→ N are increasing, then (f ◦ g)−1 = g−1 ◦ f−1.
(3) If f ∈ VP, then f−1 is computable in polynomial time.

A further notation is useful: For f : N→ N let fΣ : N→ N be defined by

fΣ(n) :=
∑
i≤n

f(i).

Lemma 5.11. Let f, g : N → N be functions and assume g is increasing. Then
(f ◦ g)Σ ≤ fΣ ◦ g.
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Proof. This is seen by direct calculation:

(f ◦ g)Σ(n) =
∑
i≤n

f(g(i)) =
∑
i≤g(n)
i∈im(g)

f(i) ≤
∑
i≤g(n)

f(i) = fΣ ◦ g(n);

here the second equality uses that g is increasing. �

Furthermore observe that:

Lemma 5.12. If f ∈ VP, then for all n ∈ N we have #Cf (n) = (fΣ ◦ f−1)(n).

Proof of Lemma 5.9. The mapping f 7→ Ch◦f is one-to-one: Assume Ch◦f = Ch◦g.
Then im(h ◦ f) = im(h ◦ g) and thus, im(f) = im(g) as h is one-to-one. Since f
and g are both increasing, this yields f = g. We prove the remaining statements
of Lemma 5.9 by the following two claims.

Claim 1: Let f, g ∈ VP and f ⊆∗ g and g 6⊆∗ f . Then Ch◦f≤isoCh◦g.

Proof of Claim 1: By our assumptions, the set im(h ◦ f) \ im(h ◦ g) is finite (as
f ⊆∗ g implies h◦f ⊆∗ h◦g) and (by injectivity of h) the set im(h◦g)\ im(h◦f)
is infinite. Then Ch◦f≤iso Ch◦g is witnessed by a function sending the (up to ∼=)
finitely many structures in Ch◦f \ Ch◦g to Ch◦g \ Ch◦f and which is the identity
on all other structures in Ch◦f .

Claim 2: Let f, g ∈ VP and f 6⊆∗ g. Then Ch◦f 6≤iso Ch◦g.

Proof of Claim 2: By contradiction assume Ch◦f≤iso Ch◦g. Then Ch◦f is po-
tentially reducible to Ch◦g by Lemma 5.5. Hence there is p ∈ N[X] such that
#Ch◦f (n) ≤ #Ch◦g(p(n)) for all n ∈ N. We show that this is wrong for some n.
For this purpose we choose k such that

(3) g(0) < f(k), p(h(f(k))) < h(f(k) + 1), and f(k) ∈ im(f) \ im(g)

(by the definition of h and the assumption f 6⊆∗ g such a k exists). Then we get

#Ch◦g(p(h(f(k))))

= e(h ◦ g)Σ ◦ (h ◦ g)−1(p(h(f(k)))) (by Lemma 5.12)

= (h ◦ g)Σ ◦ (g−1 ◦ h−1)(p(h(f(k)))) (by Lemma 5.10(2))

≤ (h ◦ g)Σ ◦ g−1(f(k)) (by p(h(f(k))) < h(f(k) + 1) (see (3))

and by definition of h−1)

= (h ◦ g)Σ ◦ g−1(f(k)− 1) (as f(k) /∈ im(g))

≤ hΣ ◦ g ◦ g−1(f(k)− 1) (by Lemma 5.11)

≤ hΣ(f(k)− 1) (by Lemma 5.10(1) as g(0) < f(k))

< h(f(k)) (by definition of h)

≤ #Ch◦f (h(f(k))) (by definition of #Ch◦f ). �
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6. Strong isomorphism reducibility and potential reducibility

We know that Graph≤pot Lou while Graph≤iso Lou is equivalent to Graph
having an invariantization (cf. Propositions 5.6 (2) and 4.3). However, so far in
all concrete examples of classes C and D, for which we know the status of C≤isoD
and of C≤potD, we had that

C≤iso D ⇐⇒ C≤potD.

So the question arises whether the relations of strong isomorphism reducibility
and potential reducibility coincide. Recall that we require the classes C and D
to be closed under isomorphism and decidable in polynomial time. Generalizing
the proof idea of Theorem 4.7, we shall see in the next section that indeed the
relations ≤iso and ≤pot coincide if P = #P. We believe that they are distinct
but could only show:

Theorem 6.1. If U2EXP ∩ co-U2EXP 6= 2EXP, then the relations of strong
isomorphism reducibility and that of potential reducibility are distinct.

Recall that

2EXP := DTIME
(

22n
O(1)
)

and N2EXP := NTIME
(

22n
O(1)
)

The complexity class U2EXP consists of those Q ∈ N2EXP for which there is
a nondeterministic Turing machine of type N2EXP that for every x ∈ Q has
exactly one accepting run. Finally, co-U2EXP := {Σ∗ \Q | Q ∈ U2EXP}.

The rest of this section is devoted to a proof of this result. We explain the
underlying idea: Assume Q ∈ U2EXP ∩ co-U2EXP. We construct classes C and
D which contain structures in the same cardinalities and which contain exactly
two nonisomorphic structures in these cardinalities. Therefore they are poten-
tially reducible to each other. While it is trivial to exhibit two nonisomorphic
structures in C of the same cardinality, from any two concrete nonisomorphic
structures in D we obtain information on membership in Q for all strings of a
certain length. If C≤isoD, we get concrete nonisomorphic structures in D (in
time allowed by 2EXP) by applying the strong isomorphism reduction to two
nonisomorphic structures in C and therefore obtain Q ∈ 2EXP.

Proof of Theorem 6.1. Let Q ∈ U2EXP ∩ co-U2EXP. Then there exists a non-
deterministic Turing machine M and a constant d ≥ 2 such that (M1)–(M5)
hold:

(M1) The machine M has three terminal states ‘yes,’ ‘no,’ and ‘maybe.’

(M2) For x ∈ Σ∗, every run of M on input x stops after exactly 22|x|
d

many
steps.

(M3) For x ∈ Q exactly one run of M on x stops in ‘yes’ and none in ‘no.’
(M4) For x 6∈ Q exactly one run of M on x stops in ‘no’ and none in ‘yes.’
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(M5) The machine M has exactly two different choices for the next step in every
nonterminal state.

We say that a run of M takes a decision if it ends in ‘yes’ or in ‘no.’

For n ∈ N we set `(n) := 22n
d

. For x ∈ Σn, by (M2) and (M5), every run of M
on input x can be identified with a binary string r ∈ {0, 1}`(n). Conversely, from
such a string r we can determine a run of M on x.

Let m(n) := 2n and x1, x2, . . . , xm(n) be the enumeration of all strings of Σn in

the lexicographic ordering. We call a binary string s of lengthm(n)·`(n) = 2n·22n
d

a decision string if for every i ∈ [m(n)] the ith substring of s of length `(n)
corresponds to a run of M on xi taking a decision; more precisely, if we have
s = s1̂s2̂ · · ·̂ sm(n) with |si| = `(n) for i ∈ [m(n)], then si corresponds to a run of
M on xi taking a decision. By our assumptions (M3) and (M4) we get:

for every n ∈ N there is exactly one decision string(4)
of length m(n) · `(n).

We turn every string s of length m(n) · `(n) into a structure A(s) over the vocab-
ulary τ = {One,Zero, R}, where One and Zero are unary relation symbols and
R is a binary relation symbol. Let

A(s) := [m(n) · `(n)],

RA(s) :=
{

(j, j + 1) | j ∈ [m(n) · `(n)− 1]
}
.

For s a decision string, let

OneA(s) :=
{
j | j ∈ [m(n) · `(n)] and the jth bit of s is one

}
,

ZeroA(s) :=
{
j | j ∈ [m(n) · `(n)] and the jth bit of s is zero

}
,

and let OneA(s) = ZeroA(s) = ∅ otherwise. By (4) for every s, s′ ∈ {0, 1}m(n)·`(n)

A(s) 6∼=A(s′) ⇐⇒ exactly one of s and s′ is a decision string.(5)

Let Dn be the class containing, up to isomorphism, the structures A(s) with
s ∈ {0, 1}m(n)·`(n). The following is straightforward.

(D1) The universe of every structure in Dn has cardinality m(n) · `(n).
(D2) |Dn/∼=| = 2.

We set

D :=
⋃
n∈N

Dn.

Finally, we let

C :=
⋃
n∈N

Cn,

where for n ∈ N every structure in the class Cn is isomorphic to the complete
graph Km(n)·`(n) on m(n) · `(n) vertices or to its complement K̄m(n)·`(n). Then:

(C1) The universe of every structure in Cn has cardinality m(n) · `(n).
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(C2) |Cn/∼=| = 2.

Hence, C≤pot D.

Claim: If f : C≤isoD, then there is n0 ∈ N such that for all n ≥ n0

(6) f (Cn/∼=) = Dn/∼=.

By this equality we mean:

• f(A) ∈ Dn for every A ∈ Cn;
• for every B ∈ Dn there exists an A ∈ Cn such that f(A) ∼= B.

Proof of the Claim: First observe that by (C2) and (D2) it suffices to show that
f (Cn) ⊆ Dn for all sufficiently large n ∈ N. As f is computable in polynomial
time there is c ∈ N such that for every n ∈ N and A ∈ Cn

the universe of f(A) has ≤
(
2n · 22n

d)c
elements.

We choose n0 ∈ N such that for all n ≥ n0(
2n · 22n

d
)c
< 2n+1 · 22(n+1)d

.

Hence, for n ≥ n0

f

(⋃
q≤n

Cq

)
⊆
⋃
q≤n

Dq.

As
⋃
q≤nCq and

⋃
q≤nDq contain, up to isomorphism, the same number of struc-

tures, the Claim follows.

Now assume that f : C≤isoD. Then the following algorithm A witnesses that
Q ∈ 2EXP. Let n0 be as in the Claim. For x ∈ Σn with n ≥ n0 the algorithm A
computes the structures

f
(
Km(n)·`(n)

)
and f

(
K̄m(n)·`(n)

)
;

they are nonisomorphic and in Dn by the Claim. In particular, by (5) we get a
run of M on input x taking a decision; the algorithm A answers accordingly. �

7. If strong isomorphism reducibility and potential reducibility
are distinct then P 6= #P

In the previous section we have seen that under some complexity-theoretic
assumption the two notions of reduction (strong isomorphism reducibility and
potential reducibility) are distinct. One might wonder whether we can separate
them without any such complexity-theoretic assumption. We show in this section
that this would settle some open problem in complexity theory; more precisely,
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we show the statement of the title of this section.3 In particular, by Proposi-
tion 5.6 (2), if Lou is not a maximum element of ≤iso , then P 6= #P. We prove
the main result in a more general setting.

For a class C consider the equivalence relation E(C) on Σ∗ induced by the
isomorphism relation, that is,

E(C) :=
{

(A,B) | A,B ∈ C and A ∼= B
}

(7)

∪
{

(x, y) | x, y ∈ Σ∗, x /∈ C and y /∈ C
}
.

Of course, E(C) is in NP. In this section we consider arbitrary such equivalence
relations on Σ∗ and show that the corresponding two notions of reduction coincide
if P = #P. We start by introducing all relevant concepts; we do not restrict
ourselves to equivalence relations in NP, but consider equivalence relations in an
arbitrary complexity class (for an equivalence relation E on Σ∗ we also write xEy
for (x, y) ∈ E).

Definition 7.1. (1) Let CC be an arbitrary complexity class. Then we de-
note by CC(eq) the set of equivalence relations E on Σ∗ with E ∈ CC.

(2) Let E and E ′ be equivalence relations on Σ∗. We say that E is strongly
equivalence reducible to E ′ and write E≤eq E

′, if there is a function
f : Σ∗ → Σ∗ computable in polynomial time such that for all x, y ∈ Σ∗

xEy ⇐⇒ f(x)E ′f(y).

We then say that f is a strong equivalence reduction from E to E ′ and
write f : E≤eq E

′.

Clearly, E(C) ∈ NP(eq) for every class C of structures; furthermore, E(Lou) ∈
P(eq). Let Prop and Taut denote the set of all formulas of propositional logic
and the set of tautologies, respectively. Note that Eequiv ∈ co-NP(eq), where

Eequiv :={(α, β) | α, β ∈ Prop and (α↔ β) ∈ Taut}
∪ {(x, y) | x, y /∈ Prop}.

Clearly, if C and D are classes of structures as in the previous sections, then

C≤iso D ⇐⇒ E(C)≤eqE(D).

We generalize the notion of potential reducibility to equivalence relations.

Definition 7.2. Let E and E ′ be equivalence relations on Σ∗. We say that E
is potentially reducible to E ′ and write E≤potE

′ if there is a p ∈ N[X] such that
for all n ∈ N the number |Σ≤n/E| of E-equivalence classes containing a string in
Σ≤n :=

{
x ∈ Σ∗ | |x| ≤ n

}
is at most

∣∣Σ≤p(n)/E ′
∣∣.

3Recall that P = #P means that for every polynomial time nondeterministic Turing machine
M the function fM such that fM(x) is the number of accepting runs of M on x ∈ Σ∗ is computable
in polynomial time. The class #P consists of all the functions fM.
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Due to our definition (7) of E(C), the new notion coincides with the old one
for equivalence relations of the form E(C):

Proposition 7.3. Let C and C ′ be classes. Then

C≤pot C
′ ⇐⇒ E(C)≤pot E(C ′).

Proof. Recall that the empty string is not (the encoding of) a structure. Let C
be a class of τ -structures and C ′ a class of τ ′-structures. By the assumptions
made in Subsection 2.1, there are polynomials pτ , pτ ′ ∈ N[X] such that for every
τ -structure A
(8) |A| ≤ |A| ≤ pτ (|A|)
and for every τ ′-structure B
(9) |B| ≤ |B| ≤ pτ ′(|B|).
Assume first that C≤pot C

′, say #C(n) ≤ #C ′(p(n)) for some polynomial p.
Then

|Σ≤n/E(C)| ≤ #C(n) + 1 ≤ #C ′(p(n)) + 1 ≤ |Σ≤pτ ′ (p(n))/E(C ′)|
(the first inequality holds by (7) and (8), the last one by (7) and (9)). Conversely,
assume that E(C)≤pot E(C ′), say |Σ≤n/E(C)| ≤

∣∣Σ≤p(n)/E(C ′)
∣∣ with p ∈ N[X].

Then

#C(n) + 1 ≤ |Σ≤pτ (n)/E(C)| ≤
∣∣Σ≤p(pτ (n))/E(C ′)

∣∣ ≤ #C ′(p(pτ (n))) + 1. �

Along the lines of the proof of Lemma 5.5, one shows that E≤eq E
′ implies

E≤pot E
′. For equivalence relations we can show that ≤eq is finer than ≤pot

under weaker assumptions than that of Theorem 6.1:

Proposition 7.4. If NP 6= P, then the relations of strong equivalence reduction
and that of potential reducibility do not coincide on NP(eq).

Proof. Assume Q ∈ NP \ P. We define EQ by

xEQy ⇐⇒(
x = y or

(
x = b̂ z and y = (1− b)̂ z for some z ∈ Q and b ∈ Σ

))
.

By our assumptions on Q, we have EQ ∈ NP(eq). We let E be the identity on
Σ∗. Clearly, EQ≤pot E. As Q /∈ P, we get EQ 6≤eq E, as any f : EQ≤eqE would
yield a polynomial time decision procedure for Q. �

Generalizing the proof idea of Theorem 4.7 we show:

Theorem 7.5. If the relations of strong equivalence reduction and that of poten-
tial reducibility do not coincide on NP(eq), then P 6= #P.

To prove this theorem we first generalize the notions of canonization and of
enumeration induced by a canonization.
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Definition 7.6. Let E ∈ CC(eq). A function Can: Σ∗ → Σ∗ is a canonization
for E if it is polynomial time computable and

(1) for all x, y ∈ Σ∗:
(
xEy ⇐⇒ Can(x) = Can(y)

)
;

(2) for all x ∈ Σ∗: xE Can(x).

Let Can be a canonization of E. The enumeration induced by Can is the enu-
meration

x1, x2 . . .

of Can(Σ∗) such that xi <lex xj for i < j.

If E has a canonization, then E ∈ P: to decide whether xEy we compute
Can(x) and Can(y) and check whether Can(x) = Can(y).

Now it is easy to explain the idea underlying the proof of Theorem 7.5. First we
show that (under the assumption P = NP) every E ∈ P(eq) has a canonization
CanE. Then, given E,E ′ ∈ P(eq), we define a strong equivalence reduction
f : Σ∗ → Σ∗ from E to E ′ as follows: Let x ∈ Σ∗. If CanE(x) is the ith element
in the enumeration induced by CanE, then we let f(x) be the ith element in the
enumeration induced by CanE′ . By the properties of canonizations it should be
clear that

xEy ⇐⇒ f(x)E ′f(y)

(we can even replace f(x)E ′f(y) by f(x) = f(y)). So it remains to show (under
suitable assumptions) that f is computable in polynomial time and to show that
every equivalence relation has a canonization.

The following lemma was already proven in [2].

Lemma 7.7. If P = NP, then every E ∈ P(eq) has a canonization; in fact, then
the mapping sending each x ∈ Σ∗ to the ≤lex -first member of the E-equivalence
class of x is a canonization.

Proof. Let E ∈ P(eq) and assume P = NP. Then we know that the polynomial
hierarchy collapses, P = PH. So it suffices to show that the mapping defined
in the statement of this lemma can be computed by an alternating polynomial
time algorithm A with a constant number of alternations. This is easy: on input
x ∈ Σ∗ the algorithm A guesses existentially y ∈ Σ∗ with |y| ≤ |x| and xEy; then
A guesses universally a further z ∈ Σ∗ with |z| ≤ |x| and xEz; if y≤lex z, then A
outputs y otherwise it rejects. �

Lemma 7.8. Let E ∈ P(eq) be an equivalence relation with a canonization Can.
Then the following problem is in #P:

Instance: x ∈ Σ∗.
Problem: Compute i (in binary) such that Can(x) is the ith

element in the enumeration induced by Can.
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Proof. Consider a nondeterministic polynomial time algorithm A which on input
x ∈ Σ∗ runs as follows: It first computes the string y := Can(x). Then A guesses
a string z ∈ Σ∗ with |z| ≤ |y|. Finally it accepts if Can(z) = z and z ≤lex y. It
should be clear that the number of accepting runs of A on x is

|{z | z ≤lex Can(x) and Can(z) = z}|. �

Proof of Theorem 7.5. Assume that P = #P. Let E,E ′ ∈ NP(eq) be equivalence
relations and assume that E≤pot E

′, that is, |Σ≤n/E| ≤ |Σ≤p(n)/E ′| for some
polynomial p and all n ∈ N. We show E≤eqE

′.
As P = #P, we have P = NP. Hence E,E ′ ∈ P(eq). Therefore, by Lemma 7.7

there are canonizations CanE of E and CanE′ of E ′ and there are polynomial
time algorithms A and A′ that solve the problem of the preceding lemma for E
and E ′, respectively. The following nondeterministic polynomial time algorithm
computes an f : E≤eq E

′. On input x ∈ Σ∗, it computes CanE(x) and n :=
|CanE(x)| and guesses a string x′ ∈ Σ≤p(n) with CanE′(x

′) = x′. Simulating A and
A′, it checks whether CanE(x) and x′ are at the same position in the enumeration
induced by CanE and in the enumeration induced by CanE′ , respectively; in the
positive case it outputs x′, otherwise it rejects. As |Σ≤n/E| ≤ |Σ≤p(n)/E ′| such
an x′ ∈ Σ≤p(n) with CanE′(x

′) = x′ at the same position as CanE(x) exists. As
P = NP, the function f is computable in polynomial time. �

We briefly point to the papers [2, 3, 7] that deal with related problems. Let
Inv(eq) be the class of equivalence relations having an invariantization (defined
in analogy to Definition 4.1), Can(eq) the class of equivalence relations having a
canonization and finally, Lexfirst(eq) the class of equivalence relations having a
canonization that maps every string to the ≤lex -first element of its equivalence
class. Clearly

(10) Lexfirst(eq) ⊆ Can(eq) ⊆ Inv(eq) ⊆ P(eq).

Lemma 7.7 shows that Lexfirst(eq) = Can(eq) = Inv(eq) = P(eq) if P = #P.
Blass and Gurevich [2], for example, prove that Lexfirst(eq) 6= Can(eq) unless the
polynomial hierarchy collapses, and Fortnow and Grochow [7] show that Can(eq)
= Inv(eq) would imply that integers can be factored in probabilistic polynomial
time. Blass and Gurevich [2, 3] compare the complexity of the “problems un-
derlying the definition of the sets in (10).” Finally, the book [16], among other
things, deals with the question whether two propositional formulas are logically
equivalent up to a permutation of their variables. It is not hard to see that the
isomorphism problem for a class C can be rephrased in these terms; however no
analogue of ≤iso is considered in [16].

8. On maximum elements in P(eq) and NP(eq)

In this section we study whether there is a maximum element with respect
to strong equivalence reductions in the classes P(eq) and NP(eq), that is, in
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the classes of deterministic and nondeterministic polynomial time equivalence
relations. We already mentioned that the existence of a maximum element in
P(eq) is mentioned as [7, Open Question 4.14]; the notion of strong equivalence
reduction was already introduced in that paper and called kernel reduction there.

Let Sat be the set of satisfiable propositional formulas. Consider the NP-
equivalence relation

Esat :=
{

(α, β) | α, β ∈ Prop and
(
α = β or α, β ∈ Sat

)}
;

more precisely, to get an equivalence relation on Σ∗, we define Esat to be{
(α, β) | α, β ∈ Prop and

(
α = β or α, β ∈ Sat

)}
∪
{

(x, y) | x, y /∈ Prop
}
.

However, henceforth if we speak of an equivalence relation E whose field
Fld(E) := {x | (x, x) ∈ E} is a proper subset of Σ∗, we identify it with the
equivalence relation E ∪

{
(x, y) | x, y ∈ Σ∗ \ Fld(E)

}
. We use Esat to show:

Proposition 8.1. If the polynomial hierarchy PH does not collapse, then
E(Graph) is not a maximum element in (NP(eq),≤eq ); in fact, then Esat 6≤eq

E(Graph).

Proof. For α ∈ Prop and a propositional variable X we have the equivalence
(α ∈ Sat ⇐⇒ αEsatX). By contradiction, assume that f : Esat≤eq E(Graph).
We have f(X) ∈ Graph; otherwise, Sat ∈ P, which contradicts our assumption
that the polynomial hierarchy does not collapse. Then for every α ∈ Prop

α ∈ Sat ⇐⇒ f(α) ∼= f(X).

Thus E(Graph) would be NP-complete. It is well-known [4] that this implies
Σp

2 = PH. �

We show that the existence of a maximum element in (NP(eq),≤eq ) is equiv-
alent to the existence of an effective enumeration of NP(eq). This result is also
true for P(eq) and co-NP(eq). Effective enumerations of problems have been used
to characterize promise classes possessing complete languages, that is, maximum
elements under polynomial time reductions (e.g., see [12, 14]). Even though we
are dealing with a different type of reduction, our method is similar. To state our
precise result we introduce some notions. A deterministic or nondeterministic
Turing machine M is clocked (more precisely, polynomially time-clocked), if (the
code of) M contains a natural number time(M) such that ntime(M) is a bound for
the running time of M on inputs of length n. So, by this definition, all runs of a
clocked machine are of polynomial length. Of course, the function M 7→ time(M),
defined on the set of clocked machines, is computable in polynomial time.
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Definition 8.2. Let CC ∈ {P,NP, co-NP}. Let L be a set of languages L with
L ⊆ Σ∗. We say that

L0, L1, . . .

is a CC-enumeration of L by clocked Turing machines, if L = {L0, L1, . . .} and
there is a computable function M defined on N such that M(i) for i ∈ N is (the
code of) a clocked Turing machine of type CC accepting Li.

Proposition 8.3. Let CC ∈ {P,NP, co-NP}. Then the following are equivalent:

(1) (CC(eq),≤eq ) has a maximum element.
(2) There is a CC-enumeration E0, E1, . . . of CC( eq) by clocked Turing ma-

chines.

Proof. (1) ⇒ (2): Assume that E is a maximum in (CC(eq),≤eq ) and let Mmax

be a Turing machine of type CC accepting E. Of course, there is a computable
function M′ such that M′(i) for i ∈ N is a deterministic clocked Turing machine
computing a function fi : Σ∗ → Σ∗ such that f0, f1, . . . is an enumeration of all
polynomial time computable functions from Σ∗ to Σ∗. We define the machine
Mmax ◦M′(i) in a straightforward manner such that it decides

Ei :=
{

(x, y) | (fi(x), fi(y)) ∈ E
}
.

We let M be the function defined on N with M(i) := Mmax ◦M′(i). As from a
polynomial bounding Mmax and time(M′(i)) we get a time bound for M(i), we can
assume that M(i) is clocked. It should be clear that E0, E1, . . . has the desired
properties.

(2)⇒ (1): Let E0, E1, . . . be as in (2) and let M be a corresponding computable
function. By padding if necessary, we may assume that the graph {(1i, 1|M(i)|) |
i ∈ N} is decidable in polynomial time and that i ≤ |M(i)| for all i ∈ N. We
define the relation E as follows (for better reading we denote here, and in the
proof of Lemma 8.6, the string 1`, that is the string 11 . . . 1 of length `, by 〈`〉):

E :=
{(

(M(i), x, 〈(2 + 2|x|)time(M(i))〉), (M(i), y, 〈(2 + 2|y|)time(M(i))〉)
)

∣∣∣ i ∈ N and (x, y) ∈ Ei
}
.

By the effectivity properties of M, we have E ∈ CC(eq) (more precisely E ∪
{(x, y) | x, y ∈ Σ∗ \ Fld(E)} ∈ CC(eq)). Clearly, for i ∈ N the mapping
x 7→ (M(i), x, 〈(2 + 2|x|)time(M(i))〉) is a strong equivalence reduction from Ei
to E, hence E is a maximum element. �

Below we will show that (NP(eq),≤eq ) has a maximum element if NP = co-NP.
Note that we do not even know whether (P(eq),≤eq ) has a maximum element.
The main result concerning this problem that we have reads as follows (later we
recall the definition of p-optimal proof system):
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Theorem 8.4. If Taut has a p-optimal proof system, then (P(eq),≤eq ) has a
maximum element.

The following observations will lead to a proof of this result.

Definition 8.5. Let M be a deterministic or nondeterministic Turing machine
and n ∈ N. The machine M defines an equivalence relation on Σ≤n if the set{

(x, y) | x, y ∈ Σ≤n and M accepts (x, y)
}

is an equivalence relation on Σ≤n.

An analysis of the complexity of the first of the following problems will be
crucial for our purposes.

Equiv(P)
Instance: A deterministic clocked Turing machine M and n ∈

N.
Problem: Does M define an equivalence relation on Σ≤n?

Equiv(NP)
Instance: A nondeterministic clocked Turing machine M and

n ∈ N.
Problem: Does M define an equivalence relation on Σ≤n?

Lemma 8.6. (1) If (M, n) ∈ Equiv(P) is solvable by a deterministic algo-
rithm in time nf(‖M‖) for some function f : N → N, then P(eq) has a
maximum element.4

(2) If (M, n) ∈ Equiv(NP) is solvable by a nondeterministic algorithm in
time nf(‖M‖) for some function f : N → N, then NP(eq) has a maximum
element.

Proof. Let A be an algorithm, deterministic for (1) and nondeterministic for (2),
witnessing that (M, n) ∈ Equiv(P) in (1) and (M, n) ∈ Equiv(NP) in (2) is
solvable in time nf(‖M‖) for some f : N→ N. An equivalence relation E0 on Σ∗ is
defined by letting uE0v hold if and only if

u = v or
(
u =

(
M, x, (2 + 2 · |x|)time(M), 1t

)
and

v =
(
M, x′, (2 + 2 · |x′|)time(M), 1t

′)
and (i) – (iii) are fulfilled

)
,

where

(i) M is a clocked Turing machine of type CC, where CC = P for (1) and
CC = NP for (2);

(ii) A accepts (M, |x|) in at most t steps and (M, |x′|) in at most t′ steps;
(iii) M accepts (x, x′).

4By ‖M‖ we denote the length of a reasonable encoding of M by a string of Σ∗.
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Clearly, E0 ∈ CC(eq). We show that E0 is a maximum element. Let E ∈ CC(eq)
be arbitrary and let M be a clocked Turing machine deciding E. Then

x 7→ (M, x, (2 + 2 · |x|)time(M), 〈|x|f(‖M‖)〉)
is computable in polynomial time and hence a strong equivalence reduction from
E to E0. �

Theorem 8.7. The following hold:

(1) If E = NE, then P(eq) has a maximum element.
(2) If NP = co-NP, then NP(eq) has a maximum element.

Proof. (1) We may assume that n is written in binary in the instances (M, n)
of Equiv(P) (and that a string of length ‖M‖ · log n is given as an additional
input). We consider the following nondeterministic algorithm A accepting the
complement of Equiv(P). On input (M, n), it guesses one of the three axioms of
an equivalence relation, say, the transitivity axiom; then A guesses x, y, z ∈ Σ≤n,
it simulates M on input (x, y), on input (y, z), and on input (x, z) and accepts
if M accepts the first two inputs but not the third one. As we may assume that
‖M‖ ≥ time(M), the algorithm A runs in time ‖M‖ · nO(time(M)) = 2O(‖M‖·logn).
By the assumption E = NE, there is a deterministic algorithm deciding the
complement of Equiv(P) and hence Equiv(P) itself in time 2O(‖M‖·logn). Now
our claim follows from the preceding lemma.

(2) The following alternating algorithm A decides the complement of Equiv(NP):
On input (M, n) (again we may assume that ‖M‖ ≥ time(M)), it existentially
guesses one of the three axioms of an equivalence relation, say, the transitivity
axiom; then A existentially guesses x, y, z ∈ Σ≤n and runs of M accepting (x, y)
and (y, z); furthermore it yields the string 〈n‖M‖〉. Finally A universally simulates
M on input (x, z) and accepts if M rejects. The algorithm A has one alterna-
tion. By our assumption NP = co-NP, its universal part (an algorithm of type
co-NP with inputs M, (x, z), and 〈n‖M‖〉) can be simulated by a nondetermin-
istic algorithm running in time nO(‖M‖). Altogether we get a nondeterministic
algorithm accepting (the complement of) Equiv(NP) in time nO(‖M‖). Now our
claim follows from the preceding lemma. �

We consider the acceptance problem for nondeterministic Turing machines :

Acc≤
Instance: A nondeterministic Turing machine M and n ∈ N.
Problem: Does M accept the empty input tape in ≤ n steps?

Lemma 8.8. The following are equivalent:

(1) (M, n) ∈ Acc≤ is solvable deterministically in time nf(‖M‖) for some
f : N→ N.

(2) (M, n) ∈ Equiv(P) is solvable deterministically in time nf(‖M‖) for some
f : N→ N.
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Proof. (1) ⇒ (2): Assume that (M, n) ∈ Acc≤ (where M is a nondeterministic
machine and n ∈ N) can be solved by an algorithm A in time nf(‖M‖) for some
f : N → N. Then the following algorithm B will witness that Equiv(P) is de-
cidable in the time claimed in (2). Let (M, n) be an instance of Equiv(P), in
particular M is a deterministic clocked Turing machine. We may assume that

M on input (x, y) runs for exactly |(x, y)|time(M) steps. Let M̃ be the nondeter-
ministic Turing machine that on empty input tape, in the first phase guesses one
of the three axioms of an equivalence relation, say, the transitivity axiom; then in

the second phase M̃ guesses x, y, z ∈ Σ∗; finally in the third phase it simulates M
on input (x, y), on input (y, z), and on input (x, z) and accepts if M accepts the

first two inputs but not the third one. We can assume that M̃ does this simula-
tion in such a way that it runs for exactly (2 + 2 · max{x, y, z})time(M) steps on
each of the tuples (x, y), (y, z), and (x, z).

Let k1, k2(x, y, z), and k3(x, y, z) be the exact time M̃ uses for the first phase,
the second phase and the third phase, respectively. As indicated for the third
phase we may arrange things in such a way that there are (nonconstant) polyno-
mials k′2, k

′
3 such that

k2(x, y, z) = k′2(max{|x|, |y|, |z|}) and

k3(x, y, z) = k′3(max{|x|, |y|, |z|})

and such that if for example M̃ has chosen the symmetry axiom and x, y ∈ Σ∗,

then k′2(max{|x|, |y|}) is also the exact number of steps M̃ uses for the second
phase. As k′2 and k′3 are increasing functions, we get

(M, n) /∈ Equiv ⇐⇒ (M̃, k + k′2(n) + k′3(n)) ∈ Acc≤,

which gives the desired bound.

(2)⇒ (1): For a nondeterministic Turing machine M let M̂ be the deterministic
Turing machine that on input (x, y) with x, y ∈ Σ∗ first checks whether x 6= y; if
so, it accepts; if x = y, it simulates the |x| steps of a run of M on empty input
tape, namely the steps corresponding to (the bits in) x and rejects if in these |x|
steps M accepts; otherwise M̂ accepts. Thus for every n ∈ N

(M, n) ∈ Acc≤ ⇐⇒ M̂ does not define an equivalence relation on Σ≤n.

As from the definition of M̂ we immediately get a polynomial time bound, we can

assume that M̂ is clocked, so that the preceding equivalence immediately gives
the claim. �

A proof system for TAUT is a surjective function S : Σ∗ → TAUT computable
in polynomial time. The proof system S for TAUT is p-optimal if for every proof
system S ′ for TAUT there is a polynomial time computable T : Σ∗ → Σ∗ such
that for all w ∈ Σ∗

S(T (w)) = S ′(w).
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It is not known whether there is a p-optimal proof system for TAUT, even though
it is conjectured there is no such p-optimal proof system. In [5] it has been shown
that:

Proposition 8.9. The following are equivalent:

(1) There is a p-optimal proof system for TAUT.
(2) (M, n) ∈ Acc≤ is solvable in time nf(‖M‖) for some function : N→ N.

Proof of Theorem 8.4. If there is a p-optimal proof system for TAUT, by the
previous proposition and Lemma 8.8 we see that (M, n) ∈ Equiv(P) is solv-
able in time nf(‖M‖) for some function f : N → N. Now the claim follows from
Lemma 8.6. �
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