31 research outputs found

    A Novel Protocol For Barrier K-Coverage In Wireless Sensor Networks

    Get PDF
    One of major problems in the wireless sensor networks is the barrier coverage problem. This problem deals with the ability to minimizing the probability of undetected penetration through the barrier (sensor network). The reliability and fault tolerance problems are very important for long strip barrier coverage sensor networks. Also, another design challenge in sensor networks is to save limited energy resources to prolong the lifetime of wireless sensor network. In this paper we propose the fault tolerant k-barrier coverage protocol, called APBC. The proposed protocol maintains a good balance in using nodes energy, in order to prolong the network lifetime. The proposed protocol presents a proper way to provide the k-barrier coverage at nodes fails without reexecuting the algorithm. The simulation results show that this method prolongs the lifetime of the network in comparison with RIS method

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Validating an integer non-linear program optimization model of a wireless sensor network using agent-based simulation

    Get PDF
    Deploying wireless sensor networks (WSN) along a barrier line to provide surveillance against illegal intruders is a fundamental sensor-allocation problem. To maximize the detection probability of intruders with a limited number of sensors, we propose an integer non-linear program optimization model which considers multiple types of sensors and targets, probabilistic detection functions and sensor-reliability issues. An agent-based simulation (ABS) model is used to validate the analytic results and evaluate the performance of the WSN under more realistic conditions, such as intruders moving along random paths. Our experiment shows that the results from the optimization model are consistent with the results from the ABS model. This increases our confidence in the ABS model and allows us to conduct a further experiment using moving intruders, which is more realistic, but it is challenging to find an analytic solution. This experiment shows the complementary benefits of using optimization and ABS models

    Belt-Barrier Construction Algorithm for WVSNs

    Get PDF
    [[abstract]]Previous research of barrier coverage did not consider breadth of coverage in Wireless Visual Sensor Networks (WVSNs). In this paper, we consider breadth to increase the Quality of Monitor (QoM) of WVSNs. The proposed algorithm is called Distributed β-Breadth Belt-Barrier construction algorithm (D-TriB). D-TriB constructs a belt-barrier with β breadth to offer β level of QoM, we call β-QoM. D-TriB can not only reduce the number of camera sensors required to construct a barrier but also ensure that any barrier with β-QoM in the network can be identified. Finally, the successful rate of the proposed algorithm is evaluated through simulations.[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20120401~20120404[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Shanghai, Chin

    Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network

    Get PDF
    Barrier coverage has been widely used to detect intrusions in wireless sensor networks (WSNs). It can fulfill the monitoring task while extending the lifetime of the network. Though barrier coverage in WSNs has been intensively studied in recent years, previous research failed to consider the problem of intrusion in transversal directions. If an intruder knows the deployment configuration of sensor nodes, then there is a high probability that it may traverse the whole target region from particular directions, without being detected. In this paper, we introduce the concept of crossed barrier coverage that can overcome this defect. We prove that the problem of finding the maximum number of crossed barriers is NP-hard and integer linear programming (ILP) is used to formulate the optimization problem. The branch-and-bound algorithm is adopted to determine the maximum number of crossed barriers. In addition, we also propose a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works heuristically to guarantee efficiency while maintaining near-optimal solutions. Several conventional algorithms for finding the maximum number of disjoint strong barriers are also modified to solve the crossed barrier problem and for the purpose of comparison. Extensive simulation studies demonstrate the effectiveness of MSPA

    Secluded Connectivity Problems

    Full text link
    Consider a setting where possibly sensitive information sent over a path in a network is visible to every {neighbor} of the path, i.e., every neighbor of some node on the path, thus including the nodes on the path itself. The exposure of a path PP can be measured as the number of nodes adjacent to it, denoted by N[P]N[P]. A path is said to be secluded if its exposure is small. A similar measure can be applied to other connected subgraphs, such as Steiner trees connecting a given set of terminals. Such subgraphs may be relevant due to considerations of privacy, security or revenue maximization. This paper considers problems related to minimum exposure connectivity structures such as paths and Steiner trees. It is shown that on unweighted undirected nn-node graphs, the problem of finding the minimum exposure path connecting a given pair of vertices is strongly inapproximable, i.e., hard to approximate within a factor of O(2log1ϵn)O(2^{\log^{1-\epsilon}n}) for any ϵ>0\epsilon>0 (under an appropriate complexity assumption), but is approximable with ratio Δ+3\sqrt{\Delta}+3, where Δ\Delta is the maximum degree in the graph. One of our main results concerns the class of bounded-degree graphs, which is shown to exhibit the following interesting dichotomy. On the one hand, the minimum exposure path problem is NP-hard on node-weighted or directed bounded-degree graphs (even when the maximum degree is 4). On the other hand, we present a polynomial algorithm (based on a nontrivial dynamic program) for the problem on unweighted undirected bounded-degree graphs. Likewise, the problem is shown to be polynomial also for the class of (weighted or unweighted) bounded-treewidth graphs

    Finding and Mending Barrier Gaps in Wireless Sensor Networks

    Full text link
    Constructing sensing barriers using wireless sensor networks has important applications in military operations and homeland security. The goal of forming a sensing barrier is to detect intruders attempting to cross the network. Early studies often assume that sensors remain static once deployed. We note that barrier gaps may occur at deployment if sensors are deployed at random. Barrier gaps may also occur in an existing barrier if some sensors used to form the barrier start malfunctioning or run out of power. We present an efficient solution to solve this problem. In particular, we devise an efficient algorithm to find sensing gaps and relocate mobile sensors to form a new barrier while balancing the energy consumption among mobile sensors. We also investigate the related design issues and performance tradeoffs. Simulation results show that our algorithms can effectively improve the barrier coverage of a wireless sensor network under a wide range of deployment parameters. These results provide insights and guidelines to the deployment, design, and performance of mobile wireless sensor networks for barrier coverage
    corecore