89 research outputs found

    Domain k-Wise Consistency Made as Simple as Generalized Arc Consistency

    Get PDF
    Abstract. In Constraint Programming (CP), Generalized Arc Consistency (GAC) is the central property used for making inferences when solving Constraint Satisfaction Problems (CSPs). Developing simple and practical filtering algorithms based on consistencies stronger than GAC is a challenge for the CP community. In this paper, we propose to combine k-Wise Consistency (kWC) with GAC, where kWC states that every tuple in a constraint can be extended to every set of k − 1 additional constraints. Our contribution is as follows. First, we derive a domain-filtering consistency, called Domain k-Wise Consistency (DkWC), from the combination of kWC and GAC. Roughly speaking, this property corresponds to the pruning of values of GAC, when enforced on a CSP previously made kWC. Second, we propose a procedure to enforce DkWC, relying on an encoding of kWC to generate a modified CSP called k-interleaved CSP. Formally, we prove that enforcing GAC on the k-interleaved CSP corresponds to enforcing DkWC on the initial CSP. Consequently, we show that the strong DkWC can be enforced very easily in constraint solvers since the k-interleaved CSP is rather immediate to generate and only existing GAC propagators are required: in a nutshell, DkWC is made as simple and practical as GAC. Our experimental results show the benefits of our approach on a variety of benchmarks.

    Local consistency for extended CSPs

    Get PDF
    AbstractWe extend the framework of Constraint Satisfaction Problems to make it more suitable for/applicable to modern constraint programming languages where both constraint satisfaction and constraint solving have a role. Some rough principles for local consistency conditions in the extended framework are developed, appropriate notions of local consistency are formulated, and relationships between the various consistency conditions are established

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier

    Strong consistencies for weighted constraint satisfaction problems

    Get PDF
    Cette thèse se focalise sur l'étude de cohérences locales fortes afin de résoudre des problèmes d'optimisation sur des réseaux de fonctions de coûts (ou réseaux de contraintes pondérées). Ces méthodes fournissent le minorant nécessaire pour des approches de type "Séparation-Evaluation". Nous étudions dans un premier temps la cohérence d'Arc virtuelle (VAC), une des plus fortes cohérences d'arcs du domaine, qui est établie via l'établissement de la cohérence d'arc dure dans une séquence de réseaux de contraintes classiques. L'algorithme itératif pour établir VAC est amélioré via l'introduction d'une incrémentalité accrue, exploitant la cohérence d'arc dynamique. La nouvelle méthode est aussi capable de maintenir VAC efficacement pendant la recherche lorsque les réseaux de contraintes pondérées sont dynamiquement modifiés par les opérations de branchement. Dans une seconde partie, nous nous intéressons à des cohérences de domaines plus fortes, inspirées de cohérences similaires dans les réseaux de contraintes classiques (cohérence de chemin inverse, réduite ou Max-réduite). Pour chaque cohérence dure, plusieurs cohérences souples ont été proposées pour les réseaux de contraintes pondérées. Les nouvelles cohérences fournissent un minorant plus fort que celui des cohérences d'arc souples en traitant les triplets de variables connectées deux à deux par des fonctions de coûts binaires. Dans cette thèse, nous étudions les propriétés des nouvelles cohérences, les implémentons et les testons sur une variété de problèmes.This thesis focuses on strong local consistencies for solving optimization problems in cost function networks (or weighted constraint networks). These methods provide the lower bound necessary for Branch-and-Bound search. We first study the Virtual arc consistency, one of the strongest soft arc consistencies, which is enforced by iteratively establishing hard arc consistency in a sequence of classical Constraint Networks. The algorithm enforcing VAC is improved by integrating the dynamic arc consistency to exploit its incremental behavior. The dynamic arc consistency also allows to improve VAC when maintained VAC during search by efficiently exploiting the changes caused by branching operations. Operations. Secondly, we are interested in stronger domain-based soft consistencies, inspired from similar consistencies in hard constraint networks (path inverse consistency, restricted or Max-restricted path consistencies). From each of these hard consistencies, many soft variants have been proposed for weighted constraint networks. The new consistencies provide lower bounds stronger than soft arc consistencies by processing triplets of variables connected two-by-two by binary cost functions. We have studied the properties of these new consistencies, implemented and tested them on a variety of problems
    • …
    corecore