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conditions in the extended framework are developed, appropriate notions of local
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1. Introduction

The study of constraint satisfaction problems (CSPs) has been remarkably successful. The CSP framework provides a
flexible basis for formulating NP-complete problems, which can then be addressed by a wide range of methods. The study of
systematic search in this framework has yielded techniques for performing searchmore efficiently and characterized classes
of problems for which polynomial time is sufficient to find solutions (see, for example, [16]).
However, the CSP framework also has some weaknesses. In particular, the framework assumes that data values come

from a domain of constants where the only pre-defined relations are equality and its negation. This is in contrast to the use
of many of the ideas from the study of CSPs in practice. Constraint programming systems routinely use interpreted values –
such as integers – use functions – such as addition – and use pre-defined relations – such as ordering or arithmetic relations
– to formulate and solve problems.
The complex constraints used in these systems – the global constraints [3] of CHIP [19], the hard constraints [33] of

CLP(<) [32], non-linear equations in Real-Paver [25] and Numerica [46], constraints in ILOG Solver [29], the demons written
in CHIP or Solver, and predicates defined in Constraint Handling Rules [23], Claire [9], or Oz [47] – all exploit and infer pre-
defined relations when solving problems. In some ways these complex constraints are the counterpart of constraints in the
CSP framework, and searching for solutions of a query in these systems corresponds to search in CSPs. But there are several
aspects of the CSP framework, as generally used, that are not appropriate for these applications.
Traditional treatments of CSPs are not directly applicable to complex constraints because of assumptions and emphases

that are not appropriate for complex constraints. In particular, most treatments: consider only constants as values; assume
relations are finite and defined extensionally; assume that there is only one constraint on a given set of variables; almost
exclusively study binary relations; formulate notions of local consistency that focus on variables and the values that they
may take; and do not address the possibility of other relations between variables. As a consequence of the first two points,
these treatments cannot include anynon-trivial constraint solving. There are severalworks that recognize and/or avoid some
of these assumptions (for example, [41,18,17,48]) but not to the extent that they are applicable to complex constraints.
The aim of this paper is to develop a suitable framework for addressing constraint programming search problems. In

the next section, the CSP framework is extended to include a richer class of relations that are solved to global consistency.
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(Equivalently, the collection of these relations in a problem is tested for satisfiability.) It represents a synthesis of constraint
satisfaction and constraint solving.
The remainder of the paper investigates local consistency in this extended framework. After outlining weaknesses of

existing local consistency conditions for constraint programming search problems in Section 3, several are reformulated
and generalized for the extended framework. In Section 4 the formulation of arc consistency in [38] is derived from the
standard description, following the approach recommended in [37]. This sets the pattern for discussion and reformulation
of node consistency (Section 5), pairwise and k-wise consistency (Section 6), and restricted consistencies (Section 8). A
k-fold consistency is introduced in Section 7 as an extension of the reformulated arc consistency, and its relationship to other
consistency conditions is shown. Singleton consistencies are extended in Section 9. In Section 10 we discuss an orthogonal
generalization of local consistencies that involves relaxing the meaning of constraints. A preliminary version of this work
was presented in [39].
Before going forward, a choice of terminology is needed, because the areas of constraint satisfaction and constraint

solving use the word ‘‘constraint’’ differently. In constraint satisfaction, constraints are the uninterpreted relations that
are the basis of the combinatorial problem to be solved. In constraint solving, constraints are the pre-defined relations
whose conjunctions can be solved to global consistency through algorithmic techniques. The distinction is not always
straightforward in existing work, but in the framework proposed in this paper we will distinguish the two roles played by
relations in these two areas. To avoid confusion, we will use ‘‘constraint’’ only to refer to a class of pre-defined relations that
are solved to global consistency in a constraint solver. Constraints in the sense of constraint satisfactionwill be referred to as
‘‘properties’’. (Thus, in this terminology, CSPs do not involve constraints! Similarly, ‘‘global constraints’’ are not constraints
– they are implementations of properties – and, furthermore, are generally not solved to global consistency.)

2. Extending CSPs

This section proposes an extension of the CSP framework that addresses some of the weaknesses identified in the
introduction. We begin by recalling the definition of a CSP in our modified terminology.
A property over a set of variables V is a pair (x̃,P ) where x̃ is a sequence of n variables in V and P is a relation of arity

n. There is an implicit identification between the variables in the list and the columns/attributes of P . Often this will be
written as P (x̃).
A Constraint Satisfaction Problem (CSP) is a 3-tuple 〈Vars, Prop,D〉where Vars is a set of variables, Prop is a set of properties

over Vars, and Dmaps each x ∈ Vars to a finite set of constants (the domain of the variable). We can alternatively view D as a
conjunction of unary relations, one for each x ∈ Vars. We will use both notations in what follows. A CSP C = 〈Vars, Prop,D〉
is a sub-CSP of another CSP C ′ = 〈Vars′, Prop′,D′〉 iff Vars = Vars′, Prop = Prop′ and ∀x ∈ Vars D(x) ⊆ D′(x). A binary
CSP is a CSP where all properties are formed from binary relations. Usually in a CSP the relation of each property is defined
extensionally, as a set of tuples. A solution to a CSP is a function s mapping each variable to a constant such that for every
x ∈ Vars, s(x) ∈ D(x), and for every (x̃,P ) ∈ Prop, s(x̃) ∈ P .
To extend this framework we need to specify the pre-defined relations (constraints) that are admitted. Following the

formulation in constraint logic programming [31], we specify these with a constraint domain.
A signatureΣ is a set of function and relation symbols, each with an associated arity. We assume that the binary relation

symbol= and the relational constants true and false inΣ .
A constraint domain over a signatureΣ is a pair (D,L)whereD is aΣ-structure andL is a set of logical formulas over

Σ and a set of variables. A constraint is a formula c ∈ L. A primitive constraint c is a constraint of the form r(t1, . . . , tn)
defined byD where r is a relation symbol and the ti are terms. If x̃ is the free variables in c , we sometimes write c(x̃). Thus
L specifies the syntax of constraints andD specifies their semantics. When we need to specify the subclass of constraints
with free variables from a set V , we write L(V ). We assume = is interpreted as identity in D , that true (false) is always
(respectively, never) satisfied, and thatL is closed under variable renaming, conjunction, and existential quantification. The
conjunctive language generated by a set S of constraints is the smallest set that contains all constraints in S, and is closed
under conjunction and variable renaming. For notational simplicity, in most of this paper the constraint domain will be left
implicit and we will write ψ in place ofD |H ψ .

Example 2.1. In finite domain constraint programming, as employed in practice, the constraint domain F D involves
integers and finite domain constraints. The signatureΣ contains no function symbols. It contains=, true, false and infinitely
many unary relation symbols, one for every finite set of integers.1 The primitive constraints have the form x :: S where x is a
variable and S is a finite set of integers. The language of constraintsL is the conjunctive language generated by the primitive
constraints. That is, a constraint is a finite conjunction of primitive constraints. The constraints are interpreted in a structure
ZFD where the values are integers and the primitive constraints x :: S hold only for values v for x such that v ∈ S. Thus F D
is (ZFD,L). �

1 In practice, of course, there are only symbols for sets contained in some fixed finite set.
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Given a set of variables Vars and a constraint domain (D,L), a valuation is a function v : Vars → D . A valuation on a
subset of variables x̃ is the restriction of a valuation to x̃, denoted v|x̃. The complement in a constraint c of a valuation v on
x̃ is a formula equivalent to c ∧ ¬

∧
x∈x̃ x = v(x). We say a constraint domain admits complementation of v in c if there is

a constraint equivalent to c ∧ ¬
∧
x∈x̃ x = v(x). A valuation v satisfies a constraint c(x̃) if c(v(x̃)) evaluates to True in the

structureD . v satisfies a property (x̃,P ) if v(x̃) ∈ P ; if v(x̃) = ãwe sometimes write this as P (ã).
We now extend the CSP framework, following the philosophy of the CLP scheme [30]. A problem is now parameterized

by a constraint domain, and the variable domain D is replaced by an environment of constraints.

Definition 2.1. An Extended Constraint Satisfaction Problem (ECSP) with signature Σ is a 4-tuple 〈(D,L), Vars, Prop, C〉
where (D,L) is aΣ-constraint domain, Vars is a set of variables, Prop is a set of properties over Vars, and C is a constraint
fromL(Vars), called the constraint environment.2
A solution of the ECSP is a valuation v that satisfies the constraints C and the properties in Prop.

A CSP C = 〈Vars, Prop,D〉 can be considered to be an ECSP EC = 〈(DC,LC), Vars, Prop, C〉 where Σ contains all
constants, and unary predicate symbols pS for each subset S of constants; LC is the collection of conjunctions of unary
predicates; DC is the structure with a domain consisting of the constants in Σ that interprets each pS(x) as the relation
x ∈ S; and C is the conjunction

∧
x∈Vars pD(x)(x). We refer to (DC,LC) as a CSP constraint domain.

ECSPs are able to represent a larger array of problems than CSPs, and represent them more naturally. We now outline
several classes of constraint problems that can be formulated as ECSPs.
In most uses of finite domain constraint programming, the primitive constraints restrict a variable to a finite interval

of integers, variables range over integers and lists of integers, and properties are complex constraints such as cumulative,
alldifferent, element, as well as arithmetic relations such as x+ y ≤ z.
The problem of finding solutions to non-linear equations and inequalities over the reals [4] can be formulated as an

ECSP, where the primitive constraints are floating point bounds on variables (for example, x ≤ f , where f is a floating point
number) over the real numbers, and the properties are the non-linear equations and inequalities.
Similarly, the solving of finite set constraints [24] can be formulated as an ECSP, where additional constraints are

containment relations (and, perhaps, other relations [45]) between a set variable and a set (for example, S ⊆ {a, b, c, d}), the
set of values includes the set of finite sets of constants (determined byΣ), and the properties represent relations between
set variables, such as S1 ⊆ S2 or S1 ∩ S2 = S3.
The above examples involve unary primitive constraints, where solving these constraints to global consistency is

straightforward. However, constraints of greater arity, requiring more sophisticated solving techniques, are needed in
applications like temporal reasoning (where there may be precedence constraints x < y), and to reflect languages like
CLP(<), where constraintsmay contain arbitrarilymany variables. CLP(<) querieswithout user-defined predicates are ECSPs
where the constraints are linear arithmetic equations and inequalities over the real numbers, and the properties are non-
linear equations and hard constraints like pow(x, y, z).
Finally, the problem of finding solutions in Mixed Integer Linear Programming can be viewed as an ECSP where the

constraints are linear inequalities over the real numbers and the properties all have the form int(x), where this asserts that
the value of x is an integer.
In all these examples, the underlying values are infinite in number or have internal structure, the properties are not

represented extensionally and generally are not binary, and there are pre-defined relations (constraints) that are central to
the expression and solution of the problems. Although the CSP framework might theoretically be capable of representing
these problems by treating constraints as properties, using possibly infinite relations to represent them, and admitting
infinite domains for variables, such a representation would be far removed from the practice of solving these problems.
An ECSP, like a CSP, comes without any specific operational interpretation. However, an abstract execution model is a

search tree where each node (except, possibly, the root) is an ECSP satisfying the invariant:

the constraint environment is satisfiable and the ECSP satisfies a local consistency condition, or the constraint
environment is unsatisfiable and the node has no children

Such an execution model requires a method for obtaining local consistency and a constraint solver to test satisfiability. A
local consistency condition is a requirement on Prop and C that can be decomposed as conjunction of conditions on parts
of Prop and/or C . We say that a local consistency condition A is weaker than another condition B (or B is stronger than A) if
every ECSP that satisfies B also satisfies A. Two consistency conditions are incomparable if neither is weaker than the other.
Many constraint programs are constructed to generate constraints and properties in a first phase, and then search for

solutions. The ECSP execution model reflects the second, search, phase. Constraint propagation achieved by implemented
properties in that phase corresponds to achieving a formof local consistency in an ECSP. (For example, see [38].) Thus specific
local consistency conditions, such as arc consistency, represent specific levels of constraint propagation.
The following technical lemma relates implication within a logical language of properties and constraints (2) with a

notion of closure (1) that is a meta-logical statement. It will be used to relate formulations of consistency conditions in CSPs
and ECSPs. In the lemma, ∃−x̃ denotes the existential quantification of all variables except x̃, and→ denotes implication.

2 Note that C may be a conjunction of primitive constraints.
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Lemma 2.1. Letψ and φ be formulas involving both properties and constraints in a constraint domainD , c and c ′ be constraints,
and x̃ be a set of variables. Consider the following statements:
(1) (ψ ∧ φ ∧ c)→ c ′ implies (φ ∧ c)→ c ′
(2) (φ ∧ c)→ ∃−x̃ (ψ ∧ φ ∧ c).

1. If vars(c ′) ⊆ x̃ and (2) holds, then (1) holds.
2. IfD admits complementation of valuations on x̃ in c, and (1) holds for all c ′ where vars(c ′) ⊆ x̃, then (2) holds.

Proof. 1. Suppose (ψ ∧φ ∧ c)→ c ′. Since vars(c ′) ⊆ x̃, (∃−x̃ (ψ ∧φ ∧ c))→ c ′. As a consequence of (2), φ ∧ c → c ′. That
is, (1) holds.
2. We prove the contrapositive. Suppose (2) does not hold. Then there is a valuation for x̃ that can be extended to a

valuation v that satisfies φ∧ c but not to a valuation that satisfiesψ ∧φ∧ c. Let c ′ be ∃−x̃ c∧ cv , where cv is the complement
of v in c. Then a valuation v′ for all variables satisfies c → c ′ iff v′ and v are not identical on x̃. Consider any valuation v′. If v′
and v are not identical on x̃ then v′ satisfiesψ ∧ φ ∧ c → c ′. If v′ and v are identical on x̃ then v′ does not satisfyψ ∧ φ ∧ c
(from the choice of v) and hence v′ satisfies ψ ∧ φ ∧ c → c ′.
Thusψ∧φ∧c → c ′ holds for every valuation v′ but φ∧c → c ′ does not hold for v. That is, (1) does not hold for all c ′. �

The two statements in the lemma are equivalent for CSPs if we restrict x̃ to a single variable.

Corollary 2.1. Let (DC,LC) be a CSP constraint domain.
Let x̃ be a singleton set of variables {x}, and consider the statements of Lemma 2.1.
Then (2) holds iff (1) holds for all constraints c ′ with vars(c ′) = {x}.

Proof. It is easy to see that the complement of any valuation on x in a constraint of LC is equivalent to a constraint of LC .
Then the corollary follows from Lemma 2.1. �

3. Local consistency

There have been many different local consistency properties proposed over many years. Almost all are formulated –
whether explicitly or implicitly – in terms of instantiations of variables and extensions of consistent instantiations.3
For example, a large class of local consistency properties is as follows. A CSP is (i, j)-consistent [21] if any consistent

instantiation of i variables can be extended to a further j variables. k-consistency [20] is (k−1, 1)-consistency. In particular,
for binary CSPs,4 arc consistency is (1, 1)-consistency and path consistency is equivalent to (2, 1)-consistency.
The idea of local consistency has been fruitful in improving systematic search for solving CSPs. However, existing

treatments are unsuitable in a number of respects as the basis for systematic search in practical constraint programming
languages, particularly those with non-extensional definitions of properties or non-trivial constraints.
The lack of any constraints beyond domain constraints algorithmically solved to global consistency is inherent in the CSP

framework. An emphasis on binary CSPs can also be tied to the origins of constraint satisfaction, but it is clear that current
practice involves non-binary properties, and encoding these as binary properties seems impractical in general. However
several works have addressed the issue of generalizing local consistency conditions to properties of arbitrary arity. Gener-
alized arc consistency [41] applies to properties of arbitrary arity, as do relational consistencies [17]. In addition, pairwise
consistency [2] and its extension to k-wise consistency [26], because they were defined originally in a database context,
from the beginning were independent of arity, as are later extensions hyper-k-consistency [34] and ω-consistencies [43].
Some consistency conditions, such as path consistency, are enforced by modifying properties. Such an approach is

very difficult if properties are not represented extensionally, and expensive in terms of space if they are represented
extensionally. The latter point has led to further investigation of domain filtering consistencies [15] such as inverse
consistencies [22], restricted path consistencies [7,14] and singleton consistencies [13,44], that only modify variable
domains. Since ‘‘global constraints’’ and related properties are often implemented as reactive threads of computation –
and not extensionally – it is only such consistency conditions that show promise of widespread applicability to constraint
programming search problems.
However, even for these consistency conditions, enforcement algorithms assume that values can be deleted from

variable domains. In general, in constraint programming, this assumption is invalid since many constraint programming
systems provide constraints that cannot express arbitrary variable domains. This has led to several approximations of
arc consistency where domains are replaced by intervals of integers [40], real numbers [6], or finite sets [24], and, more
generally, approximation spaces [12]. [49] proposed a variety of interval consistencies, but that proposal does not consider
the possibility of constraints other than intervals, and cannot apply to languages like CLP(<).
Finally, although it is clear that both variables and properties are essential to the CSP framework, most local consistency

conditions define locality only in terms of variables. For example, (i, j)-consistency addresses various sub-problems (of the
main problem) containing i + j variables. As a consequence, many of these consistency conditions are defined in terms of

3 A consistent instantiation of a set S of variables is an instantiation that satisfies all properties whose variables come only from S.
4 Under the assumption that there is at most one property on a given pair of variables.
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extending a consistent instantiation for a set V of variables. Considering consistent instantiations introduces the effect of
an unknown number of unknown properties with variables from V when determining consistency. The (i, j)-consistencies
and the relational consistencies of [17] are among those formulated this way. Such consistency conditions are practically
impossible to achieve when implementing properties as reactive threads, as is illustrated in [39].
The remainder of this paper formulates local consistency conditions that address the above points. These conditions are:

independent of arity; formulated in a manner independent of the particular class of constraints, as closure requirements;
and the locality of the conditions is based purely on properties, not on variables. In many cases they are generalizations of
consistency conditions for CSPs. These are consistency conditions that have prima facie the potential to reflect the behavior
of implemented properties.

4. Arc consistency

(Generalized) arc consistency of a property is often formulated as requiring that the instantiation of any variable by a
value in the domain of the variable can be extended to an instantiation of all variables that satisfies the property. Originally
formulated for binary properties, it was generalized to properties of arbitrary arity [41].
Using logical notation, we can write this as

x ∈ D(x)→ ∃−x (P ∧ D)

where ∃−x denotes the existential quantification of all variables except x. If we adapt this definition to constraints, instead
of variable domains, we obtain:
For every variable x,

∃−x c → ∃−x (P ∧ c)

This says that every value for x that is consistent with the constraint environment c can be extended to a solution of P and c .
Such a formulation is very close in spirit to the original definition,while generalizing fromdomains to general constraints,

but it considers only one variable at a time. Consequently, the effect of c in this formulation is only to express unary (domain-
like) constraints. We can interpret this formulation as saying that if any unary information is available in P ∧ c , it is already
available in c.
This interpretation provides the basis for the further generalization of arc consistency to a form where variables are less

important. We focus on the notion that certain information in P ∧ c is contained wholly within c.
If we apply this idea too readily we reach a definition

c → (P ∧ c)

which simply implies that P is irrelevant. We must restrict the information required to be embedded in c to certain types.
We cannot do that directly with the above formulation, so we replace it with a weaker statement.

Definition 4.1. A property P is arc consistent with a constraint c if, for every constraint c ′,

(P ∧ c)→ c ′ implies c → c ′

An ECSP 〈(D,L), Vars, Prop, C〉 is arc consistent if every P ∈ Prop is arc consistent with C .

This relaxes the previous statement by restricting it to information expressible with constraints c ′. It formulates the
condition as a closure requirement on the constraint environment c . In terms ofmaintaining arc consistencywhenP cannot
be modified, this definition implies that all information in P ∧ c that is expressible by constraints must be added to c . Such
a formulation emphasizes that enforcing consistency involves expressing information implicit in the problem as explicit
constraints.
This definition unifies several existing forms of local consistency, including generalized arc consistency, interval

consistency and rule consistency for finite domain languages, and some forms of consistency used for floating point intervals
over continuous domains. See [38] formore details. Sound andpropagation-complete implementations of properties achieve
precisely this level of consistency [38].
In [36], Le Provost and Wallace define the constraint extracted by a propagation agent in a way that is essentially

equivalent to Definition 4.1, although formulated differently. That work also employed approximation constraints, which
anticipated the use of constraint classes in the more general Definition 4.2.
It might not be clear that the definition of arc consistency for ECSPs is equivalent to arc consistency for CSPs, but this

follows from Corollary 2.1.

Proposition 4.1. Let C be a CSP and let EC be the equivalent ECSP. Then C is generalized arc consistent iff EC is arc consistent in
the extended sense of Definition 4.1.
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Proof. Suppose the ECSP EC = 〈(DC,LC), Vars, Prop, C〉 is arc consistent in the extended sense. If x̃ is a single variable x
then the complement in C of a valuation v on x is the constraint obtained by replacing pS(x) by pS−{v(x)}(x) in C . (Recall that
pS(x) is the constraint that restricts the possible values of x to S.) Thus part 2 of Lemma 2.1 can be applied for any single
variable x. Hence, for every property P and variable x, ∃−x c → ∃−x (P ∧ c). That is, C is generalized arc consistent.
Suppose the CSP C = 〈Vars, Prop,D〉 is generalized arc consistent. For any constraint c ′, since it is a conjunction of unary

primitive constraints, we can write c ′ as ∧x∈Varsc ′x(x). Suppose P ∧ C → c ′. Then P ∧ C → c ′x(x), for each x. By part 1 of
Lemma 2.1 ifP ∧C → c ′x(x) then C → c ′x(x). Since this holds for every x, C → c ′. That is, EC is arc consistent in the extended
sense. �

The study of the minimum property in [38] indicates that, in some cases, the definition of arc consistency might be too
strong, because c ′ might involve variables not present in the property. Such a situation can make it difficult to implement
the properties to achieve arc consistency. In such cases we can consider a slightly looser form of arc consistency where c ′ is
required to only contain variables appearing inP . It is this looser form that is used in [36]. The above proposition also holds
for loose arc consistency.
Similarly, for arc consistency and the other consistencies we will discuss, it may be too computationally expensive to

infer all constraints c ′. However, we can introduce a range of weaker consistencies by limiting the class of constraints that
must be represented explicitly in the environment.
Definition 4.2. A property P is arc consistent with a constraint c wrt a class of constraints L′ ⊆ L, if, for every constraint
c ′ ∈ L′,

(P ∧ c)→ c ′ implies c → c ′

An ECSP 〈(DC,LC), Vars, Prop, C〉 is arc consistent for a class of constraints L′ ⊆ L if every P ∈ Prop is arc consistent
with C wrtL′.
An ECSP is arc consistent if it is arc consistent forL.
Although arc consistency for ECSPs is a generalization of generalized arc consistency for CSPs, and some forms of arc

consistency (for example, interval consistency) are weaker than generalized arc consistency, it is not true in general that
generalized arc consistency is stronger than the extended form of arc consistency.
Example 4.1. Consider the property P (x, y, z) defined by

P
1 1 1
1 2 1
2 3 2
3 1 3

and the constraint environment C that states that x, y and z are in the interval 1 . . . 3. Then P is generalized arc consistent
wrt the domains of the variables, but it is not arc consistent in the extended sense if the constraint language L contains
equations. This because P ∧ C → x = z but C 6→ x = z. �

This situation arises because of the existence of a constraint languageL that can express relations that cannot be expressed
with domain constraints.

5. Node consistency

Node consistency is the special case of generalized arc consistencywhere the property involved is unary. Thus it is already
covered by the discussion in the previous section. The initial formulation is that

C → P

It is noteworthy that, in an ECSP, a unary property is not necessarily eliminable in the manner that it is in a CSP. The
problem is that the property might not be representable by constraints. Consequently, under the above formulation, node
consistency often cannot be achieved. For example, let odd(x) refer to the property that holds for odd numbers between 0
and 100, and suppose the constraint language admits only interval constraints. Then the constraints are unable to represent
the property.
On the other hand, the formulation as a closure requirement
(P ∧ C)→ c ′ implies C → c ′

concerns only information representable by constraints, and consequently this relaxed form of node consistency is
achievable. Essentially C must contain the tightest outside approximation of P ∧ C by constraints. In the odd example,
consistency is achieved when c is 1 ≤ x ≤ 99.
Even so, there are situations where extended node consistency (and, more generally, arc consistency) is not attainable.

For example, consider a constraint language over the real numbers permitting only rational bounds (for example, x ≤ 1
2 ),

and the property x ≤
√
2. Since there is no least rational upper bound for

√
2, node consistency cannot be achieved for this

property and constraint domain. On the other hand, this problem does not arise for floating point bounds since there is a
least floating point upper bound of

√
2.
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6. k-wise consistency

A collection of properties is pairwise consistent [2] if, for every pair of properties P1 and P2 in the collection

(∃−vars(Pi) P1 ∧ P2)↔ Pi for i = 1, 2
This conditionmeans thatP1 andP2 are essentially independent — that the presence ofP2 does not eliminate any solutions
ofP1, and vice versa. It was proposed in the context of relational databases with no domains or constraints on variables, and
it can be maintained through the use of semi-joins. Adapting it for ECSPs (and CSPs), where we look for consistency with
respect to the constraint environment C (respectively, the variable domains), we have, for i = 1, 2:

(∃−vars(Pi) P1 ∧ P2 ∧ C)↔ (∃−vars(Pi) Pi ∧ C)
which only requires that P1 and P2 are independent on solutions of C .
As with arc consistency, we give a relaxed formulation that makes the closure requirement explicit:
For i = 1, 2 and constraints c ′ with vars(c ′) ⊆ vars(Pi)
(P1 ∧ P2 ∧ C)→ c ′ implies (Pi ∧ C)→ c ′

Pairwise consistency was generalized to k-wise consistency [26] which, after adapting it to CSPs and ECSPs, requires that
for every subset {P1, . . . ,Pk} of properties in the collection and for i = 1, . . . , k(

∃−vars(Pi)

k∧
j=1

Pj ∧ C

)
↔ ∃−vars(Pi) (Pi ∧ C)

After relaxation this definition becomes:
Definition 6.1. An ECSP 〈(D,L), Vars, Prop, C〉 is k-wise consistent if, for every {P1,P2, . . . ,Pk} ⊆ Prop of size k, for
i = 1, . . . , k and all constraints c ′ with vars(c ′) ⊆ vars(Pi)(

k∧
j=1

Pj ∧ C

)
→ c ′ implies (Pi ∧ C)→ c ′

Obviously 1-wise consistency is trivial. Using Lemma 2.1 we find that, for k ≥ 2, this formulation of k-wise consistency
is strictly weaker than the adapted formulation for CSPs.
Proposition 6.1. Let C be a CSP and let EC be the equivalent ECSP. If C is k-wise consistent then EC is k-wise consistent in the
extended sense above. But EC might be k-wise consistent in the extended sense when C is not k-wise consistent, for k ≥ 2.
Proof. Suppose the CSP C = 〈Vars, Prop,D〉 is k-wise consistent. Let C be

∧
x∈Vars pD(x)(x). For any constraint c

′, since
it is a conjunction of unary primitive constraints, we can write c ′ as ∧x∈Varsc ′x(x). Suppose

∧k
j=1 Pj ∧ C → c ′. Then∧k

j=1 Pj ∧ C → c ′x(x), for every x. By part 1 of Lemma 2.1 if
∧k
j=1 Pj ∧ C → c ′x(x) then Pi ∧ C → c ′x(x). Since this holds for

every x,Pi ∧ C → c ′. This argument holds for each i = 1, . . . , k and for any k propertiesP1, . . . ,Pk in Prop, so EC is k-wise
consistent in the extended sense.
For the second half, consider the CSP C with properties P1(x, y) and P2(x, y) defined by

P1 P2
a b a b
b a b a
b b

and a domain of {a, b} for the variables x and y. Then EC is pairwise consistent in the extended sense but (P1 ∧ P2)← P1
does not hold. Hence C is not pairwise consistent.
This argument readily extends to any k > 2, using k − 2 additional properties not sharing any variables with any other

property. �

k-wise consistency is incomparablewith arc consistency, in general. For example, a CSPwith properties that have disjoint
variables is 2-wise consistent even when it is not arc consistent. Conversely, the following example shows a CSP that is arc
consistent but not 2-wise consistent.
Example 6.1. Consider the CSP C with properties P1(w, x, y) and P2(x, y, z) defined by

P1 P2
a b c c b a
b c a a c b
c a b b a c

and a domain of {a, b, c} for the variables w, x, y and z. Then EC is clearly arc consistent but not 2-wise consistent because
(P1 ∧ P2)→ falsewhile neither property on its own causes the inconsistency. �
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7. k-fold consistency

The natural generalization of extended arc consistency is to consider more than one property at a time.

Definition 7.1. An ECSP E = 〈(D,L), Vars, Prop, C〉 is k-fold consistent if, for every {P1,P2, . . . ,Pk} ⊆ Prop of size k, and
every constraint c ′

k∧
i=1

Pi ∧ C → c ′ implies C → c ′

Thus 1-fold consistency is extended arc consistency. As with arc consistency, we can also consider the looser form, where
each variable in c ′ also occurs in a property. k-fold consistency, like the previous local consistency conditions that we have
discussed, defines locality purely in terms of properties, and not in terms of variables.
Relational m-consistency [17] has some similarity to k-wise and k-fold consistency (when m = k), but also involves

variable-based locality. Relationalm-consistency requires that for every set ofm properties and every subset ỹ of variables
used in those properties every solution to the sub-CSP defined by ỹ can be extended to solve allm properties.
Extending the definition to ECSPs, an ECSP 〈(D,L), Vars, Prop, C〉 is relationally m-consistent if, for every

{P1(x̃1),P2(x̃2), . . . ,Pm(x̃m)} ⊆ Prop of sizem, for every set of variables ỹ such that ỹ ⊆ ∪mi=1x̃i

( ∧
vars(P )⊆ỹ

P ∧ C

)
→ ∃−ỹ

m∧
i=1

Pi ∧ C

Weakening with Lemma 2.1, this condition becomes: for all constraints c ′ with vars(c ′) ⊆ vars(Pi)

m∧
i=1

(Pi ∧ C)→ c ′ implies
∧

vars(P )⊆ỹ

P ∧ C → c ′

When ỹ is the empty set this reduces to m-fold consistency. Thus relational m-consistency is stronger than m-fold
consistency. In particular, when m = 1 we have that relational 1-consistency (also called relational arc consistency in
[17]) is stronger than extended arc consistency. Similarly, taking ỹ to be x̃i for each i, we find that relational m-consistency
is stronger thanm-wise consistency whenever we have, for all i and j, x̃i 6⊆ x̃j.
k-fold consistency is also closely related to conjunctive consistency [8], once we extend that notion to ECSPs. Let a

covering of an ECSP E = 〈(D,L), Vars, Prop, C〉 be a set of subsets of Prop such that every property of Prop occurs in at
least one subset. Conjunctive consistency wrt a covering requires that, for each subset, the conjunction of properties in the
subset, when considered as a single property, is arc consistent. k-fold consistency is conjunctive consistency with respect to
a covering that contains exactly subsets of Prop of cardinality k. The proof follows directly from the definitions.

Proposition 7.1. Let C = 〈Vars, Prop,D〉 be a CSP containing at least k properties, and let E be the equivalent ECSP. Let Sk be
the set of all subsets of Prop of cardinality k. Then

E is k-fold consistent iff C is conjunctive consistent wrt Sk.

It is not surprising that k-fold consistency, for the various values of k, forms a hierarchy of local consistency conditions.
This also holds for the looser form where the variables of c ′ must occur in a property.

Proposition 7.2. Let E be an ECSP containing at least k properties.
If E is k-fold consistent, then E is (k − 1)-fold consistent. However, the converse is not true. That is, E might be (k − 1)-fold

consistent, but not k-fold consistent.

Proof. Since any set X of size k− 1 is a subset of some set Y of size k, if∧i∈XPi ∧ c → c ′ then∧i∈YPi ∧ c → c ′. If E is k-fold
consistent, then c → c ′. Thus E is (k− 1)-fold consistent.
To show the converse is not true, consider the cyclic graphwith k vertices and k edges (that is, the k-ring). Let the vertices

be a0, a1, . . . , ak−1, and let e be the relation with tuples 〈ai, a(i+1) mod k〉 for each i ∈ {0, 1, . . . , k − 1}. We take this as a
constraint domain, whereΣ = {=, e, a0, a1, . . . , ak−1},Dk is theΣ-structure determined by the cyclic graph, andL is the
conjunctive language generated byΣ .
Let E = 〈(Dk,L), Vars, Prop, C〉 be an ECSP where Vars = {x1, . . . , xk+1}, Prop is the set of properties {e(x1, x2),

e(x2, x3), . . . , e(xk−1, xk), e(xk, xk+1)}, and C is true.
Then E is not k-fold consistent, since the conjunction of properties implies x1 = xk+1, but this is not reflected in C .

However, for any subset of k− 1 properties no further inference can be drawn, so E is (k− 1)-fold consistent. �
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We now turn our attention to the relationship between k-fold consistency and k-wise consistency.
The relational structure of an ECSP E = 〈(D,L), Vars, Prop, C〉 is a pair 〈Vars, {x̃ | ∃P P (x̃) ∈ Prop}〉. Let E be an ECSP

and let 〈Vars, {x̃1, . . . , x̃m}〉 be the relational structure of E . Let x̃0 = Vars−∪mi=1x̃i. We say that E has lossless decomposition
of constraints if, for every constraint c ∈ L,

c ↔
m∧
i=0

∃−x̃i c

Lossless decomposition of constraints is similar to lossless joins and join dependencies in relational database theory [35].
As there, the relational structure is determined by properties (relations), but here the lossless decomposition applies to the
constraint environment, rather than a universal relation.
It is straightforward to show that any conjunction of unary constraints has a lossless decomposition, independent of the

relational structure. We use this fact and the next lemma to prove the following proposition.

Lemma 7.1. Suppose an ECSP E has lossless decomposition of constraints and is arc consistent and k-wise consistent. Then E is
k-fold consistent.

Proof. Let P1, . . . ,Pm be the properties of E and let x̃i be the variables of Pi. For any constraint c ′, let c ′i denote ∃−x̃i c
′.

For any k properties P1, . . . ,Pk we can reason as follows. If ∧kj=1Pj ∧ C → c ′ then ∧kj=1Pj ∧ C → c ′i , for i = 0, . . . ,m.
By k-wise consistency, Pi ∧ C → c ′i and hence, by arc consistency, C → c ′i , for each i > 0. Since ∧

k
j=1Pj ∧ C → c ′0 we

have (∃−x̃0 ∧
k
j=1 Pj ∧ C) ∧ ∃−x̃0 C → c ′0. If ∧

k
j=1Pj ∧ C is satisfiable then C → c ′0. By lossless decomposition of constraints,

applied to c ′, C → c ′. If ∧kj=1Pj ∧ C is not satisfiable then ∧
k
j=1Pj ∧ C → false. By the same argument as above, we must

have C → false and hence C → c ′, for any c ′. Thus E is k-fold consistent. �

We now show that k-fold consistency is a stronger condition than k-wise consistency, but in a practical sense it is not
much stronger.

Proposition 7.3. Let E be an ECSP.

1. If E is k-fold consistent then E is k-wise consistent.
2. Suppose L is generated conjunctively from unary constraints. If E is k-wise consistent and arc consistent then E is k-fold
consistent.

Proof. Consider E = 〈(D,L), Vars, Prop, C〉.
1. Suppose (

∧k
j=1 Pj ∧ C)→ c ′. By k-fold consistency, C → c ′. Hence, (Pi ∧ C)→ c ′.

2. Every conjunction c of unary constraints can be written in the form
∧
x∈Vars cx(x) where cx(x) is the conjunction of all

unary constraints in c involving x. For any set of variables x̃, ∃−x̃ c ↔
∧
x∈x̃ cx(x). If Vars = ∪

m
i=0x̃i then

C ↔
∧
x∈Vars

Cx(x)

↔

m∧
i=0

∧
x∈x̃i

Cx(x)

↔

m∧
i=0

∃−x̃i C

Thus E has lossless decomposition of constraints.
Hence, by Lemma 7.1, E is k-fold consistent. �

In many settings of interest – CSPs, finite integer domains, finite sets, and interval approaches to continuous domains –
the primitive constraints are unary and arc consistency is maintained. Thus, in these settings there is no practical difference
between k-fold consistency and k-wise consistency. On the other hand, when addressing constraint solvers for non-unary
constraints, as in CLP(<) or in temporal reasoning, the combination of k-wise consistency and arc consistency is not as strong
as k-fold consistency.

Example 7.1. Consider a linearly ordered set, where the only constraint relations are< and≤. For concreteness we choose
the integers.
Consider the two properties P1(x, y) and P2(y, z)with relations defined as follows:

P1 P2
0 4 4 1
1 5 5 3
2 9 9 6
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Consider an ECSP E where the properties are P1 and P2 and the constraint environment c is 0 ≤ x ≤ 2 ∧ 4 ≤ y ≤
9 ∧ 1 ≤ z ≤ 6 ∧ x < y ∧ z < y.
Then E is arc consistent, since neither property implies any stronger constraint. E is 2-wise consistent because (∃z P1 ∧

P2 ∧ c)↔ (∃z P1 ∧ c) and (∃x P1 ∧ P2 ∧ c)↔ (∃x P2 ∧ c). But E is not 2-fold consistent because P1(x, y) ∧ P2(y, z)→
x < z. �

A variation of this example applies to partially ordered sets with 3 separate linearly ordered subsets of length 2 and 3
other elements. Another variation applies to constraint domains with at least 3 elements and only = and 6= as primitive
constraints. A somewhat different example makes the same point when the constraint language permits linear inequalities,
as in CLP(<).

Example 7.2. Consider the two properties P1(x, y) and P2(y, z)with relations defined as follows:

P1 P2
0 99 99 99
10 10 10 20
99 0 0 99

Suppose these are the properties in an ECSP E over the real numberswith linear equations and inequalities as constraints.
Let the constraint environment C be C1 ∧ C2, where C1 is

x+ y ≤ 99 ∧ 89x+ 10y ≥ 990 ∧ 10x+ 89y ≥ 990

and C2 is

z ≤ 99 ∧ 79y+ 10z ≥ 990 ∧ 79y− 89z ≤ −990

Then E is arc consistent, since C1 (C2) expresses the convex closure of P1(x, y) (respectively P2(y, z)). Furthermore, E is
2-wise consistent. Informally, this is because the conjunction of P1(x, y) and P2(y, z) does not eliminate any tuples from
P1 or P2. A detailed argument is left to the reader.
But E is not 2-fold consistent: x+y = z is clearly a consequence ofP1(x, y)∧P2(y, z), but C does not imply x+y = z. �

Currently it is unclear how to systematically separate k-fold consistency from k-wise and arc consistency. Constraint
domains that are sufficiently expressive can represent finite relations as constraints, so that all these consistencies reduce to
constraint satisfiability in such constraint domains. But for less expressive constraints and/or infinite properties separation
remains unclear.
2-fold consistency is a promising alternative to path consistency when a stronger consistency than solely arc consistency

is desired. It has been little investigated,5 perhaps because it reduces to arc consistency on binary CSPs, under the assumption
that there is at most one property between each pair of variables. However, in other constraint domains it is a local
consistency stronger than arc consistency and incomparable to path consistency [39].

Proposition 7.4. Let C be a binary CSP with at most one property between each pair of variables, and let E be the corresponding
ECSP. Then E is 2-fold consistent iff C is arc consistent.

Proof. By Proposition 4.1, C is arc consistent iff E is arc consistent. By Proposition 7.2, and the observation that arc
consistency is 1-fold consistency, if E is 2-fold consistent then E is arc consistent. To address the reverse direction, suppose
E is arc consistent but not 2-fold consistent. Then there are propertiesP1(x, y),P2(y, z) ∈ Prop and a constraint c such that
P1(x, y) ∧ P2(y, z) ∧ C → c but C 6→ c. Since E is arc consistent we must have P1(x, y) ∧ C 6→ c and P2(y, z) ∧ C 6→ c.
Without loss of generality we can assume that c is a constraint on a single variable.
If c is a constraint on y then there must be a valuation x = a, y = b satisfying P1(x, y) ∧ C ∧ ¬c and a valuation

y = b, z = d satisfyingP2(y, z)∧C ∧¬c. But then x = a, y = b, z = d is a valuation satisfyingP1(x, y)∧P2(y, z)∧C ∧¬c ,
contradicting the claim that c is a witness to lack of 2-fold consistency.
If c is a constraint on x then there must be a valuation x = a, y = b satisfying P1(x, y) ∧ C ∧ ¬c . Now, if there is a

valuation y = b, z = d satisfying P2(y, z) ∧ C ∧ ¬c then, as above, we contradict the claim that c is a witness to lack of
2-fold consistency. However, if y = b cannot be extended to a solution of P2(y, z) ∧ C then E is not arc consistent,
contradicting our initial supposition.
If c is a constraint on z the argument is symmetric with the one where c is a constraint on x. Hence, if E is arc consistent

it is also 2-fold consistent. �

When there may bemore than one property on two variables (as can occur in non-binary CSPs or non-normalized binary
CSPs) there is a distinction between arc consistency and 2-fold consistency, as Example 6.1 demonstrates.

5 Although the finite domain constraint solvers discussed in [27] can be viewed as partial implementations of 2-fold consistency, and we have already
noted that k-fold consistency is closely related to conjunctive consistency.



M.J. Maher / Theoretical Computer Science 410 (2009) 4769–4783 4779

8. Restricted consistencies

Restricted path consistency (RPC) [7] was designed to strengthen arc consistency towards path consistency on binary
CSPs without requiring the deletion of tuples from properties. It does this by performing a path consistency check only
when a discovery of inconsistency allows a value to be deleted from a variable domain.
Consider a binary CSP C = 〈Vars, Prop,D〉. A tuple x = a, y = b of P0(x, y) is path consistent [42] if for every variable z,

x = a, y = b can be extended to satisfy all properties on x, y, z. In this case we say that y = b is a path consistent support
for x = a in P0(x, y) and, vice versa, x = a is a path consistent support for y = b. C is path consistent if every tuple of
every property is path consistent. C is restricted path consistent if it is arc consistent and, for every variable x and property
in Prop including x (say P0(x, y)) and for every value a ∈ D(x) such that there is a unique b ∈ D(y) with P0(a, b), the tuple
x = a, y = b is path consistent. (Instead of requiring that x = a, y = b is path consistent we could, equivalently, require
that x = a has a path consistent support.) These definitions vary somewhat from the original by quantifying over properties,
but reduce to the original definitions when we assume a unique property between any two variables.
We also can formulate the definition of path consistency in logic as follows: for every tuple in every property P0(x, y),

and every variable z and corresponding properties P1(x, z) and P2(y, z)

(∃−x,y P0(x, y) ∧ D)→ ∃−x,y (P0(x, y) ∧ P1(x, z) ∧ P2(y, z) ∧ D)

There are many ways in which the idea of path consistency might be extended to properties of greater arity and to ECSPs,
for example, relational (2, 3)-consistency and relational path consistency [17]. Here we will consider only one:
For all properties P0(x̃),P1(ỹ),P2(z̃) such that x̃ ∩ ỹ 6= ∅, x̃ ∩ z̃ 6= ∅, and (ỹ ∩ z̃)− x̃ 6= ∅:(
∃−x̃ P0(x̃) ∧ C

)
→ ∃−x̃ (P0(x̃) ∧ P1(ỹ) ∧ P2(z̃) ∧ C)

Weakening this as suggested by Lemma 2.1, we have:

Definition 8.1. AnECSP 〈(D,L), Vars, Prop, C〉 is path consistent if, for all propertiesP0(x̃),P1(ỹ),P2(z̃) such that x̃∩ỹ 6= ∅,
x̃ ∩ z̃ 6= ∅, and (ỹ ∩ z̃)− x̃ 6= ∅, and for constraints c ′ with vars(c ′) ⊆ x̃,

P0(x̃) ∧ P1(ỹ) ∧ P2(z̃) ∧ C → c ′ implies P0(x̃) ∧ C → c ′

We can see immediately that this formulation of path consistency is weaker than 3-wise consistency. It is strictly weaker,
as demonstrated in [39]. It is also shown in [39] that path consistency is not comparable in strength to pairwise consistency
and 2-fold consistency, even in binary CSPs.
Similarly, the existence of a path consistent support for x = a can be expressed as

∃̃ (P0(x̃) ∧ P1(ỹ) ∧ P2(z̃) ∧ C ∧ x = a)

The idea of a restricted consistency is that a consistency check be performed only when an inconsistency would lead to
a revision of a variable domain. Obviously it can be applied to any local consistency condition in place of path consistency.
For the remainder of the paper we use X-consistency to refer to an unspecified local consistency condition. We now further
generalize the formulation so that it can apply to ECSPs, and base it on an almost arbitrary consistency. We refer to this as
restricted X-consistency or RXC.
We introduce a parameter G that describes the criteria for performing a X-consistency check on a property and the

information derived should the check fail. If 〈φ, c〉 ∈ G then X-consistency should only be applied on tuples satisfying φ; if
the X-consistency check fails then c should be added to the constraint environment.
We need to slightly restrict the class of X-consistency conditions for which we define restricted X-consistency. We say

a consistency condition is uniform if it has the form ∧P∈Propψ(P , C), for some formula ψ . If X-consistency is uniform then,
for any property P ′ (not necessarily in Prop), we say that P ′ is X-consistent in E if ψ(P ′, C) holds. Uniformity ensures that
different properties in Prop are not treated differently. It allows us to consider X-consistency one property at a time. The
local consistency conditions discussed in this paper are uniform, though a little reformulation might be necessary to make
this apparent.
If E = 〈(D,L), Vars, Prop, C〉 we write E ∧ C ′ for the ECSP E ′ = 〈(D,L), Vars, Prop, C ∧ C ′〉 obtained by augmenting

the constraint environment of E by C ′.

Definition 8.2. Let E = 〈(D,L), Vars, Prop, C〉 be an ECSP, let X-consistency be a uniform consistency condition. For any
propertyP (x̃) let G(P , C) be a set of pairs 〈φ, c〉where φ is a formula and c is a constraint, both with free variables from x̃.
A formula φ has X-consistent support in a property P (x̃) ∈ Prop if there is a constraint c ′ ∈ L(x̃) such that c ′ → φ and

the subrelation of P satisfying c ′ is X-consistent in E ∧ c ′.
A property P ∈ Prop is restricted X-consistent wrt G and C if, for every 〈φ, c〉 ∈ G(P , C) such that

P ∧ ¬φ ∧ C → c and C 6→ c

we have that φ has X-consistent support in P .
The ECSP E is restricted X-consistent wrt G (or RXC wrt X-consistency and G) if E is arc consistent and every property

P ∈ Prop is restricted X-consistent wrt G and C .
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The definition can be interpreted as: if knowing ¬φ would enable us, using P , to infer something new (c) then φ must
have X-consistent support in P , where the X-consistent support ensures that ¬φ is not inferred by X-consistency applied
toP . This definition improves on the definition in [39]. If X-consistency is formulated independent of arity, and is local with
regard to properties, then restricted X-consistency also has these characteristics.
To retrieve the original definition of RPC – for the ECSP EC corresponding to a CSP C – we can take X-consistency to be

path consistency and define

G1(P , C) = {〈x = a, pD(x)−{a}(x)〉 | ∃!x̃ P (x̃) ∧ ∃−x̃ C ∧ x = a}

where ∃!z̃ Q (z̃) denotes that there exists a unique value for z̃ such that Q (z̃) holds. In this case, x = a is the formula φ with a
unique tuple of P that satisfies C where x has the value a and pD(x)−{a}(x) (which is the way of expressing x 6= awithinLC)
is the constraint c corresponding to the updated domain of x. We verify that, for these parameters, RXC is restricted path
consistency.

Proposition 8.1. Let C be a binary CSP and let EC be the equivalent ECSP. Let G1(P , C) = {〈x = a, pD(x)−{a}(x)〉 | ∃!x̃ P (x̃) ∧
∃−x̃ C ∧ x = a}.

C is restricted-path consistent iff EC is RXC wrt path consistency and G1.

Proof. Let C = 〈Vars, Prop,D〉 and let the corresponding ECSP be EC = 〈(DC,LC), Vars, Prop, CD〉. By Proposition 4.1, C is
arc consistent iff EC is arc consistent in the extended sense. Thus we need only consider the path consistency aspect of RPC.
In the proof, we refer to path consistency in EC as X-consistency, to distinguish it from path consistency in C.
Suppose EC is RXC wrt G1 and X-consistency, and consider the CSP C. Let x ∈ Vars and value a ∈ D(x), and for each

property in Prop involving x, say P0(x, y), suppose there is a unique value b ∈ D(y) such that P0(a, b). Then G1(P0, CD)
contains 〈x = a, pD(x)−{a}(x)〉, which we will refer to as 〈φ, c〉. Clearly P0 ∧ ¬φ ∧ CD → c and CD 6→ c.
Let z be another variable and suppose there are properties P1(x, z) and P2(y, z) in Prop. Since EC is RXC, x = a has

X-consistent support inP0. That is, there is c ′ such that c ′ → x = a and the subrelation ofP0 satisfying c ′ is X-consistent in
E ∧ c ′. Since y = b is the unique support for x = a in P0, and by X-consistency in E ∧ c ′, there is a value d ∈ D(z) such that
P1(a, d) and P2(b, d), that is, x = a ∧ y = b is path consistent. It follows that C is RPC.
For the other direction, suppose C is RPC and consider EC . Let P0(x, y) be a property and suppose there is 〈φ, c〉 ∈

G1(P0, CD) such thatP0∧¬φ∧CD → c and CD 6→ c . Then φ has the form x = a and c is pD(x)−{a}(x)where 〈a, b〉 is the only
tuple satisfying P0(x, y) ∧ CD ∧ x = a, and hence y = b is the only support for x = a in C. By the definition of RPC for C,
x = a has a path consistent support and hence if there is a variable z and propertiesP1(x, z) andP2(y, z) in Prop then there
is a value d ∈ D(z) such that P1(a, d) and P2(b, d). Taking x = a ∧ y = b as c ′ in the definition of X-consistent support we
see that φ has X-consistent support in P0. It follows that EC is restricted path consistent. �

The above definition also captures k-RPC [14] when G restricts to bindings x = awith k or fewer tuples inP . To retrieve
the original definition of k-RPC – for the ECSP EC corresponding to a CSP C – we can define

Gk(P , C) = {〈x = a, pD(x)−{a}(x)〉 | ∃≤kx̃ P (x̃) ∧ ∃−x̃ C ∧ x = a}

where ∃≤kz̃ Q (z̃) denotes that there exist fewer than (or exactly) k valuations for z̃ such that Q (z̃) holds.
To represent Max-RPC we define

Gmax(P , C) = {〈x = a, pD(x)−{a}(x)〉 | ∃x̃ P (x̃) ∧ C ∧ x = a}

Restricted X-consistency satisfies some monotonicity properties. The proofs are straightforward.

Proposition 8.2. Let E = 〈(D,L), Vars, Prop, C〉 be an extended CSP.

• Let G(P , C) and G′(P , C) be sets of formula-constraint pairs and suppose ∀P ∈ Prop G(P , C) ⊆ G′(P , C).
If E is restricted X-consistent wrt G′ then E is restricted X-consistent wrt G.

• Suppose X-consistency is stronger than Y-consistency then, for any G, restricted X-consistency is stronger than restricted
Y-consistency.

Notice that G1(P , C) ⊆ Gk(P , C) ⊆ Gk+1(P , C) ⊆ Gmax(P , C). Using monotonicity, we have the results of [15] relating
these restricted consistencies, in the context of ECSPs. That is, RPC is weaker than k-RPC, which is weaker than (k+ 1)-RPC,
which is weaker than Max-RPC.

9. Extending singleton consistencies

A CSP C is singleton arc consistent (SAC) if all variable domains are non-empty and the CSP resulting from the restriction
of any one variable domain to a singleton can be made arc consistent [13,44]. That is, for each possible singleton domain
there is an arc consistent sub-CSP of C that has that singleton domain. Clearly, the idea of singleton consistency can be
applied to any consistency condition [13], and not only arc consistency.
We can viewSAC andother singleton consistencies as applying a consistency condition one level deeper in the search tree,

assuming branching in the search tree is done by choosing values for a variable. That suggests we consider other constraints
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that might be the basis for branching during a search. In particular, branching by domain splitting is widely used in interval
reasoning on non-linear constraints over the reals, and also is useful on some integer finite domain problems.
Consequently, we define a notion of singleton consistencies that is parameterized by a set of branching constraints and

a consistency condition. Notice that the use of ‘‘singleton’’ in reference to these extended consistency conditions is now a
misnomer, since domains do not occur explicitly in ECSPs and, in general, the effect of branchingwill not produce a singleton
domain. Perhaps branching consistencies is a more accurate name, but we will refer to these as singleton consistencies, for
consistency with their CSP equivalents.

Definition 9.1. Let E = 〈(D,L), Vars, Prop, C〉 be an ECSP. Let X-consistency be a consistency condition and let S be a set
of constraints.

E is SXCwrt S and X-consistency if for every s ∈ S such that C∧s is satisfiable, there is a satisfiable constraint environment
C ′ such that C ′ → (C ∧ s) and E ∧ C ′ is X-consistent.

Notice that C ′ is not necessarily the constraint environment computed by an X-consistency method from C ∧ c; the
existence of C ′ implies that the computed X-consistent environment also exists.
Let Bind = {x = a | x ∈ Vars, a is a constant inΣ} be the set of all bindings of variables to values in a CSP constraint

domain, andMid = {x ≤ a, x ≥ a | x ∈ Vars,D(x) = [l, h], a = l+h
2 } be the set of all domain splittings at interval midpoints.

SXC consistency wrtMid and arc consistency is an interesting alternative to SAC since it involves exploring fewer branches
(albeit each with a weaker strengthening of the constraint environment). We can recover the original definition of SAC for
CSPs by taking S to be Bind, and taking arc consistency in place of X-consistency.

Proposition 9.1. Let C be a CSP and let EC be the equivalent ECSP.
C is SAC iff EC is SXC consistent wrt Bind and arc consistency.

Proof. Suppose EC is SXC consistent wrt S and X-consistency. For every s ∈ S, let Es = 〈(D,L), Vars, Prop, C ′〉 where C ′is
the constraint environment referred to in Definition 9.1. Then Es is arc consistent, since X-consistency is arc consistency.
Since C ′ → (C∧ s), C ′ incorporates a stronger domain for each variable than in CD and restricts the domain of the variable in
s to a singleton. Thus the CSPwhereC ismodified so thatD is restricted to a singleton by s is arc consistent, by Proposition 4.1.
Thus C is singleton arc consistent.
Suppose C is singleton arc consistent. For each binding s used to make a singleton domain, let Ds be the domain of the

corresponding arc consistent sub-CSP and Cs be the constraint environment corresponding to Ds. Then Cs is satisfiable and
Cs → (CD∧s). By Proposition 4.1, 〈(D,L), Vars, Prop, Cs〉 is arc consistent. Since this holds for any binding s that is consistent
with D, EC is SXC consistent wrt S and X-consistency. �

Wenow establish a relationship between restricted and singleton consistencies. Because RXC and SXC are parameterized
in different ways, we restrict attention to parameterizations that are compatible.
We say RXCwrt G is in tune with SXC wrt S (or, simply, G is in tune with S) if, for all propertiesP (x̃) ∈ Prop, all constraint

environments C , and all 〈φ, c〉 ∈ G(P , C) such that P ∧ ¬φ ∧ C → c and C 6→ c , there is a constraint cS(x̃) ∈ S such that
C ∧ cS is satisfiable and C ∧ cS → φ. In this case, whenever an X-consistency check must be made in enforcing RXC there is
a branching constraint that focuses SXC on this case.
The following result is the counterpart of Theorem 6 of [15], which showed that Max-RPC is weaker than SAC on binary

CSPs.

Proposition 9.2. Let E = 〈(D,L), Vars, Prop, C〉 be an ECSP. Let G(P , C) be a set of pairs 〈φ, c〉 and S be a set of constraints
such that G is in tune with S. Let X-consistency be a uniform local consistency.
If E is arc consistent and SXC-consistent wrt S and X-consistency then E is restricted X-consistent wrt G.

Proof. Suppose E is SXC-consistent and arc consistent, but is not restricted X-consistent wrt G. By the latter, there is a
property P and 〈φ, c〉 ∈ G(P , C) such that P ∧ ¬φ ∧ C → c and C 6→ c , but φ does not have X-consistent support in P ,
that is, for every c ′ ∈ L(x̃) such that c ′ → φ, the subrelation ofP satisfying c ′ is not X-consistent in E . SinceG is in tunewith
S, there is a constraint cS ∈ S such that C∧cS → φ and C∧cS is satisfiable. Since E is SXC-consistentwrt S and X-consistency,
there is a satisfiable constraint C ′ such that C ′ → (C ∧ cS) and E ′ = 〈(D,L), Vars, Prop, C ′〉 is X-consistent. Clearly C ′ → φ.
But, because φ does not have X-consistent support inP , the subrelation ofP satisfying C ′ is not X-consistent in E ∧ C ′. This
contradiction shows that E must be restricted X-consistent wrt G. �

10. Consistencies using a relaxed domain

In addition to modulating consistencies with variations in the language of constraints used within the consistency
definition, as in Section 4, we can also vary the constraint domain that defines the constraints. In particular, we can relax a
consistency by interpreting the constraints and/or properties within a relaxed domain. First we must define this concept.

Definition 10.1. Let R and D be structures over a signature that define both constraints and properties. We say R is a
relaxation ofD ifD is a substructure ofR and, for every conjunction ψ of properties and constraints, every solution of ψ
inD is also a solution of ψ inR.
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Relaxation has been used in related contexts. In integer programming, a standard approach to solving a problem involves
first relaxing the problem and solving it over the real numbers [28]. It is straightforward to see that integer constraints
interpreted over the real numbers form a relaxation of those constraints in the sense of the previous definition. Similarly,
CAL [1] uses non-linear constraints over the reals, but solves them over the complex numbers. The use of box consistency
[4] for interval reasoning on non-linear functions and relations is an example where the underlying domain is not relaxed;
the relaxation comes from an interval extension of the original properties [4]. Other work [11,5] has used a relaxation of a
constraint domain to characterize the behavior of an incomplete constraint solver.
Using a relaxation we can define a weaker form of any consistency by requiring only that the information that can be

inferred in the relaxed domain must be made explicit in the constraint environment C .
Thus, for example, extended arc consistency wrt a relaxationR ofD requires that

R |H (P ∧ C)→ c ′ impliesD |H C → c ′

This is, in general, aweaker consistency than extended arc consistency becauseRwill entail a subset of the formulas entailed
by D (of course, if R is chosen to be D this reduces to Definition 4.1). The use of a relaxed consistency condition occurs
in the constraint domain of integer finite domain constraints. [10] notes the difference between bounds consistency based
on the integers and the reals (called, respectively, bounds(Z) and bounds(R) consistency in [10]) in this constraint domain,
and cites uses in the literature of each. For more information on the relationship between these consistencies, the reader is
referred to [10].
Although the variety of ways that consistencies can be defined makes a general result difficult to formulate, we can at

least express the effect of relaxation on consistencies presented as an implication.

Proposition 10.1. LetD1,D2,R1,R2 be structures whereRi is a relaxation ofDi, for i = 1, 2.
A consistency of the form

D1 |H ψ impliesD2 |H φ

is stronger than

R1 |H ψ impliesD2 |H φ

and weaker than

D1 |H ψ impliesR2 |H φ

The result follows immediately from the structure of the consistency and the definition of relaxation. It applies to arc, path,
k-wise and k-fold consistencies according to the formulations in previous sections.

11. Conclusion

This paper has developed the framework of extended constraint satisfaction problems. This represents a synthesis
of constraint satisfaction and constraint solving that is suitable for studying search problems that arise in constraint
programming. It provides a uniform framework in which we can study finite domain constraint programming, interval
methods on non-linear real arithmetic constraints, and search in languages such as CLP(<). In addition, several generalized
local consistency conditions have been developed, with a focus on locality of properties, rather than variables, which ismore
appropriate in handling relations that are implemented as reactive threads of computation. Of these, we have identified
some, such as 2-fold consistency, restricted 2-fold consistency, and SXC consistencywrtMid and arc consistency, that appear
worthy of further investigation.
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