36 research outputs found

    Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs

    Get PDF
    The Reeb graph is a construction that studies a topological space through the lens of a real valued function. It has been commonly used in applications, however its use on real data means that it is desirable and increasingly necessary to have methods for comparison of Reeb graphs. Recently, several metrics on the set of Reeb graphs have been proposed. In this paper, we focus on two: the functional distortion distance and the interleaving distance. The former is based on the Gromov-Hausdorff distance, while the latter utilizes the equivalence between Reeb graphs and a particular class of cosheaves. However, both are defined by constructing a near-isomorphism between the two graphs of study. In this paper, we show that the two metrics are strongly equivalent on the space of Reeb graphs. Our result also implies the bottleneck stability for persistence diagrams in terms of the Reeb graph interleaving distance

    Local Equivalence and Intrinsic Metrics between Reeb Graphs

    Get PDF
    As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer graphics or topological data analysis literature. Defining good metrics between these objects has become an important question for applications, where it matters to quantify the extent by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing novel distances such as {\em functional distortion} or {\em interleaving} that are provably more discriminative than the so-called {\em bottleneck distance}, being true metrics whereas the latter is only a pseudo-metric. Their main drawback compared to the bottleneck distance is to be comparatively hard (if at all possible) to evaluate. Here we take the opposite view on the problem and show that the bottleneck distance is in fact good enough {\em locally}, in the sense that it is able to discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the other metrics do. This suggests considering the {\em intrinsic metrics} induced by these distances, which turn out to be all {\em globally} equivalent. This novel viewpoint on the study of Reeb graphs has a potential impact on applications, where one may not only be interested in discriminating between data but also in interpolating between them

    Local Equivalence and Intrinsic Metrics between Reeb Graphs

    Get PDF
    As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer graphics or topological data analysis literature. Defining good metrics between these objects has become an important question for applications, where it matters to quantify the extent by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing novel distances such as functional distortion or interleaving that are provably more discriminative than the so-called bottleneck distance, being true metrics whereas the latter is only a pseudo-metric. Their main drawback compared to the bottleneck distance is to be comparatively hard (if at all possible) to evaluate. Here we take the opposite view on the problem and show that the bottleneck distance is in fact good enough locally, in the sense that it is able to discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the other metrics do. This suggests considering the intrinsic metrics induced by these distances, which turn out to be all globally equivalent. This novel viewpoint on the study of Reeb graphs has a potential impact on applications, where one may not only be interested in discriminating between data but also in interpolating between them

    A Family of Metrics from the Truncated Smoothing of Reeb Graphs

    Get PDF
    In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we "chop off" parts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter ?. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for 0 ? ? ? 2?, where ? is the smoothing parameter. Then, for the restriction of ? ? [0,?], we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope m ? [0,1]. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every m ? [0,1], which is a generalization of the original interleaving distance, which is the case m = 0. While the resulting metrics are not stable, we show that any pair of these for m, m\u27 ? [0,1) are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs

    The Reeb Graph Edit Distance Is Universal

    Get PDF
    We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal
    corecore