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Abstract
The Reeb graph is a construction that studies a topological space through the lens of a real valued
function. It has been commonly used in applications, however its use on real data means that it
is desirable and increasingly necessary to have methods for comparison of Reeb graphs. Recently,
several metrics on the set of Reeb graphs have been proposed. In this paper, we focus on two: the
functional distortion distance and the interleaving distance. The former is based on the Gromov–
Hausdorff distance, while the latter utilizes the equivalence between Reeb graphs and a particular
class of cosheaves. However, both are defined by constructing a near-isomorphism between the
two graphs of study. In this paper, we show that the two metrics are strongly equivalent on the
space of Reeb graphs. Our result also implies the bottleneck stability for persistence diagrams
in terms of the Reeb graph interleaving distance.
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1 Introduction

The Reeb graph is a construction that can be used to study a topological space with a real
valued function by tracking the relationships between connected components of level sets. It
was originally developed in the context of Morse theory [21], and was later introduced for
shape analysis by Shinagawa et al. [23]. Since then, it has attracted much attention due to its
wide use for various data analysis applications, such as shape comparison [15, 11], denoising
[25], and shape understanding [7, 14]; see [2] for a survey. Recently, the applications of
Reeb graphs have been further broadened to summarizing high-dimensional and/or complex
data, in particular, reconstructing non-linear 1-dimensional structure in data [18, 12, 4]
and summarizing collections of trajectory data [3]. Its practical applications have also been
facilitated by the availability of efficient algorithms for computing the Reeb graph from a
piecewise-linear function defined on a simplicial complex [20, 13, 9].

In addition to the standard construction, a generalization of the Reeb graph construction,
known as Mapper, [24], has proven extremely useful in the field of topological data analysis
[26, 19]. A variant of Mapper for real-valued functions, called the α-Reeb graph, was used in
[4] to study data sets with 1-dimensional structure.
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Figure 1 A simple example of the Reeb graph (right) of a space (left). Here and in all other
drawn examples in this paper, the real valued function is indicated by vertical height.

Given the popularity of the Reeb graph and related constructions for practical data
analysis applications, it is desirable and increasingly necessary to understand how robust
(stable) these structures are in the presence of noise. Consequently, several metrics for
comparing Reeb graphs have been proposed recently. These include the functional distortion
distance [1], the interleaving distance [6], and the combinatorial edit distance [8]. We note
that the latter is limited to Reeb graphs resulting from Morse functions defined on surfaces.
In addition, Morozov et. al proposed an interleaving distance for a simpler variant of the
Reeb graph, the merge tree [17].

In this paper, we study the relation between two recently proposed distances for general
Reeb graphs: the functional distortion distance of [1] and the interleaving distance of [6]. The
former is based on concepts from metric geometry, and is defined by treating both graphs
as metric spaces and inspecting continuous maps between them. The latter, on the other
hand, is defined using ideas of category theory, utilizing the equivalence between Reeb graphs
and a particular class of cosheaves. However, in essence, both construct a near-isomorphism
between the two input graphs of study. In Sections 3 and 4, we explore this connection
between the two distances, and show that indeed, the functional distortion distance and the
interleaving distances are strongly equivalent on the space of Reeb graphs, meaning that
they are within a constant factor of each other. This immediately leads to the bottleneck
stability result for the Reeb graph interleaving distance.

2 Definitions

Given a topological space W with a real valued function f : W → R, we define the Reeb
graph of (W, f) as follows. We say that two points in W are equivalent if they are in the
same path component of a level set f−1(a) for a ∈ R. This is denoted as x ∼f y, or x ∼ y if
the function is obvious. Then the Reeb graph is the quotient space W/ ∼f . Note that the
Reeb graph inherits a real valued function from its parent space. See Fig. 1 for an example.

2.1 Category of Reeb Graphs
For nice enough functions f : W→ R, such as Morse functions on compact manifolds or PL
functions on finite simplicial complexes, the Reeb graph is, in fact, a finite graph [6]. We will
tacitly make this assumption on the Reeb graph throughout the paper. Thus, we will define
the category of Reeb graphs, following [6], intuitively to be finite graphs with real valued
functions that are strictly monotonic on the edges. Morphisms will be given by function
preserving maps between the underlying spaces as given in the following definition.
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Figure 2 An example of a smoothed Reeb graph. Shown on the left is the original graph X, with the
function f given by height. The middle space is Xε = X× [−ε, ε] with the function fε(x, t) = f(x) + t

still given by height. On the right is the Reeb graph of (Xε, fε), which is the smoothed Reeb graph
Uε(X).

I Definition 1. An object of the category Reeb is a finite graph, seen as a topological
space X (specifically, as a regular CW complex of dimension 1), together with a real valued
function that is strictly monotonic on edges. This will equivalently be written as either
f : X → R or (X, f). A morphism between (X, f) and (Y, g) is a function preserving map
ϕ : X→ Y, i.e., the following diagram commutes:

X Y

R

ϕ

f
g

Note that since we assume that the function is strictly monotonic when restricted to the
edges, it is defined up to isomorphism by the values on the vertices. As an aside, notice that
the quotient map sending a space with a function to its Reeb graph is an isomorphism when
the space is in Reeb.

2.2 Interleaving Distance
Given a Reeb graph (X, f), let Xε denote the space X× [−ε, ε], and define the ε-smoothing
of (X, f) as the Reeb graph of the function

fε : Xε → R,
(x, t) 7→ f(x) + t.

That is, the ε-smoothing is the quotient space Xε/ ∼fε
. Denote this space by Uε(X, f) and

note that Uε(Uε(X, f)) ∼= U2ε(X, f) [6]. Sometimes when we are focusing on the underlying
topological space and the function is obvious, we will denote this as Uε(X). See Fig. 2 for an
example.

An ε-interleaving of (X, f) and (Y, g) is a pair of function preserving maps (as in Defin-
ition 1) ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f) with the following requirements.
Consider the maps

ι : (X, f)→ Uε(X, f), x 7→ [x, 0],
ιε : Uε(Y, g)→ U2ε(Y, g), [x, t] 7→ [x, t],
ϕε : Uε(X, f)→ U2ε(Y, g), [x, t] 7→ [ϕ(x), t],

where [x, t] = q(x, t) is the equivalence class of (x, t) under the quotient map q : Xε → Uε(X, f).

SoCG’15
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Note that the diagram

(X, f) Uε(X, f)

Uε(Y, g) U2ε(Y, g)

ι

ϕ ϕε

ιε

commutes. Analogously defining maps ι : (Y, g)→ Uε(Y, g), ιε : Uε(X, f)→ U2ε(X, f), and
ψε : Uε(Y, g)→ U2ε(X, f), we have the following definition of an ε-interleaving.

I Definition 2 (ε-Interleaving). The maps ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f)
are an ε-interleaving if both of them are function preserving, and the following diagram

(X, f) Uε(X, f) U2ε(X, f)

(Y, g) Uε(Y, g) U2ε(Y, g)

ι

ϕ

ιε

ϕε

ι

ψ

ιε

ψε

commutes.

We can use this definition of interleavings to define a distance on Reeb graphs.

I Definition 3 (Interleaving Distance, [6]). The interleaving distance between two Reeb
graphs (X, f) and (Y, g) is defined to be

dI((X, f), (Y, g)) = inf {ε | there exists an ε-interleaving between (X, f), (Y, g)} .

The definition of the interleaving distance was motivated by the cosheaf structure of Reeb
graphs. It was shown in [6] that the category of Reeb graphs is equivalent to a particular class
of cosheaves, which can be thought of as functors F : Int→ Set giving a set for each open
interval. Specifically, given a real-valued function f : X→ R, we can construct the associated
functor F = π0 ◦ f−1, where π0 sends a topological space to its set of path components.
This equivalence allows us to work with either the topological construction or the category
theoretic one, whichever is easier or more appropriate. An excellent introduction to cellular
cosheaves can be found in [5].

2.3 Functional Distortion Distance
For a given path π from u to v in (X, f) ∈ Reeb, we define the height of the path to be

height(π) = max
x∈π

f(x)−min
x∈π

f(x).

Then we define the distance

df (u, v) = min
π:u v

height(π)

where π ranges over all paths from u to v in X. Note that this can be equivalently defined
by the minimum length of any closed interval I such that u and v are in the same path
component of f−1(I).

The functional distortion distance between (X, f) and (Y, g) is now defined as follows:
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I Definition 4 (Functional Distortion Distance, [1]). Given (X, f), (Y, g) ∈ Reeb and maps
Φ : X→ Y and Ψ : Y→ X, let

C(Φ,Ψ) = {(x, y) ∈ X× Y | Φ(x) = y or x = Ψ(y)}

and

D(Φ,Ψ) = sup
(x,y),(x′,y′)
∈C(Φ,Ψ)

1
2 |df (x, x′)− dg(y, y′)| .

Then the functional distortion distance is defined to be

dFD(f, g) = inf
Φ,Ψ

max{D(Φ,Ψ), ‖f − g ◦ Φ‖∞, ‖g − f ◦Ψ‖∞}.

Note that since the maps Φ,Ψ are not required to preserve the function values, they are not
necessarily Reeb graph morphisms in the sense of Definition 1.

2.4 Multivalued Maps and Continuous Selections
In order to prove our main result, we will make heavy use of the theory of multivalued maps
and the notion of a selection of such a map. We briefly introduce the required definitions
and a central result asserting the existence of a continuous selection.

A multivalued map (or multimap) F : X → Y is a relation F ⊆ X × Y that sends a
point x ∈ X to a nonempty set F (x) = {y ∈ Y | ∃x ∈ X : (x, y) ∈ F} ⊂ Y . A selection of
a multimap is a map f : X → Y such that f(x) ∈ F (x) for every x ∈ X. See [22] for an
introduction to multimaps.

Note that using the axiom of choice, a selection always exists; the difficulty is in finding
a continuous selection. The Michael selection theorem gives a criterion for a multimap to
have a continuous selection. However, in order to state it, we will need several definitions.

I Definition 5. A family S of subsets of a topological space Y is equi-locally n-connected if
for every S ∈ S, every y ∈ S, and every neighborhood W of y, there is a neighborhood V
of y such that V ⊂W and for every S′ ∈ S such that V ∩ S′ 6= ∅, every continuous mapping
of the m-sphere Sm into S′ ∩ V is null-homotopic in S′ ∩W for m ≤ n. This is denoted
by S ∈ ELCn.

In particular, we will be requiring the case where S ∈ ELC0. A sufficient condition for
this to hold is that in the above definition, V can be chosen such that for any S′ ∈ S, the
intersection S′ ∩ V is either empty or path connected.

I Definition 6. A multivalued map F : X → Y is lower semicontinuous (LSC) if for every
open set U ⊂ Y the set F−1(U) = {x ∈ X | F (x) ∩ U 6= ∅} is open in X.

Finally we can state the Michael selection theorem. Since we are working with a space
of covering dimension 1, we paraphrase the more general theorem here to relate it to our
context.

I Theorem 7 (Michael 1956[16]). A multivalued mapping F : X → Y admits a continuous
single-valued selection provided that the following conditions are satisfied:
1. X is a paracompact space with covering dimension dim(X) ≤ 1;
2. Y is a completely metrizable space;
3. F is an LSC mapping;
4. for every x ∈ X, F (x) is a path connected subspace of Y ; and
5. the family of values {F (x)}x∈X is ELC0.

SoCG’15
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3 ε-Interleaving and Functional Distortion

In order to prove the main result, Theorem 16, we will prove each inequality separately as
Lemmas 8 and 15 .

3.1 The Easy Direction
I Lemma 8. Let (X, f), (Y, g) ∈ Reeb. Then

dI(f, g) ≤ dFD(f, g).

Proof. Let ε > dFD(f, g). By definition of the functional distortion metric, there are maps

X Y
Φ

Ψ

that satisfy the requirements of Definition 4. In particular, x and Ψ ◦ Φ(x) are connected by
a path γ of height 2ε. This path is thus contained in the preimage f−1[f(x)− 2ε, f(x) + 2ε].
As a consequence, the points (x, 0) and (Ψ ◦ Φ(x), f(x)− f(Ψ ◦ Φ(x))) are in the same path
component of the level set f−1

2ε (f(x)).
Define

ϕ : (X, f)→ Uε(Y, g), x 7→ [Φ(x), f(x)− g(Φ(x))],
ψ : (Y, g)→ Uε(X, f), y 7→ [Ψ(y), g(y)− f(Ψ(y))],

with the latter inducing the map

ψε : Uε(Y, g)→ U2ε(X, f), [y, t] 7→ [Ψ(y), g(y)− f(Ψ(y)) + t]

appearing in the definition of an interleaving. A visual representation of the map ϕ is given
in Figure 3. We then have

ψε ◦ ϕ(x) = ψε[Φ(x), f(x)− g(Φ(x))]
= [Ψ ◦ Φ(x), g ◦ Φ(x)− f(Ψ ◦ Φ(x)) + f(x)− g(Φ(x))]
= [Ψ ◦ Φ(x), f(x)− f(Ψ ◦ Φ(x))]
= [x, 0] = ιε ◦ ι(x).

By an analogous argument, we also have ϕε ◦ ψ(y) = [y, 0] = ιε ◦ ι(y), and hence ϕ and
ψ are an ε-interleaving. Since the above holds for any ε > dFD(f, g), the claim is now
immediate. J

3.2 The Hard Direction
In order to show dFD((X, f), (Y, g)) ≤ 3dI((X, f), (Y, g)), we need to start with an ε-
interleaving, ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f), and construct a pair of
maps satisfying the requirements of the functional distortion distance. To do this, note that
the map ϕ induces a multimap ϕ : X→ Yε, which sends a point x to the entire equivalence
class of ϕ(x), thought of as a subset of Yε. Concretely, letting q : Yε → Uε(Y) denote the
Reeb graph quotient map, we have ϕ = q−1 ◦ ϕ.

This multimap, however, does not always have a continuous selection (see Figure 4 for
a counterexample), so we will introduce a parameter δ to slightly enlarge the images of
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Figure 3 The definition of the map ϕ : (X, f)→ Uε(Y, g) as given in the proof of Lemma 8.

Figure 4 The map ϕ is not enough for us to have a continuous selection as seen in this
counterexample. The image under ϕ : X→ Uε(Y) is the red line in the rightmost graph. However,
this implies the image under ϕ is the red region in the middle space. Since with ϕ, a selection may
only choose one point from every level, we run into a problem in the center line since no choice of
point will allow for a continuous selection.

ϕ. First, note that we have metrics df and dg for X and Y respectively. For an arbitrarily
small δ > 0, we can construct the multimap, ϕδ : X → Yε sending x to ϕ(Bδ(x)), where
Bδ(x) = {x′ | df (x, x′) < δ}. Explicitly, we have

ϕδ(x) = {(y′, t′) ∈ Yε | x′ ∈ X, df (x, x′) < δ, (y′, t′) ∈ ϕ(x′)}.

See Fig. 5 for an example. For technical reasons, we will assume that δ < L/4, where L is
the minimum height of any edge in Uε(Y).

In order to assert the existence of a continuous selection, we now show that the multimap
ϕδ : X→ Yε satisfies the assumptions of Theorem 7:
1. Since X is a finite CW complex, it is compact and thus trivially paracompact. In addition,

because it is a graph, it has covering dimension 1.
2. Since Y is a finite CW complex, it is completely metrizable. Therefore, Yε is also

completely metrizable, being the product of two completely metrizable spaces.
3. To show that ϕδ is LSC, let U ⊂ Yε be open. We will show that any x ∈ ϕ−1

δ (U)
has an open neighborhood in ϕ−1

δ (U), implying that ϕ−1
δ (U) is open. Expanding the

definition of x ∈ ϕ−1
δ (U), there is an x′ with df (x, x′) < δ such that ϕ(x′) ∩ U 6= ∅. Let

r = δ − df (x, x′). We now want to show that Br(x) ⊆ ϕ−1
δ (U). Let x′′ ∈ Br(x). We

know that x′ ∈ Bδ(x′′) since

df (x′, x′′) ≤ df (x′, x) + df (x, x′′) < (δ − r) + r = δ.

Since ϕ(x′) ∩ U 6= ∅ and x′ ∈ Bδ(x′′), we must have ϕδ(x′′) ∩ U = ϕ(Bδ(x′′)) ∩ U 6= ∅
and hence x′′ ∈ ϕ−1

δ (U).
4. Let q : Yε → Uε(Y) be the quotient map. Then q◦ϕδ(x) = ϕ(Bδ(x)) is the image of a path

component under a continuous map and is therefore path connected. Since ϕ(x) ⊂ Uε(Y)

SoCG’15
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Figure 5 An example for determining the map ϕδ. Given the red point x ∈ X, the red solid
region in X is Bδ(x). Then we can look at ϕ(Bδ(x)), the red region in Uε(Y). The set ϕδ(x) in Yε
consists of the points which map into ϕ(Bδ(x)) in Uε(Y) under the quotient map q.

is by definition the image of a path component of X, it is also path connected. So ϕδ(x)
can be thought of as a fibration with base space ϕ(Bδ(x)) and fibers ϕ(x′), for x′ ∈ Bδ(x).
Since the fibers are path connected by definition of q, and the base is path connected,
the total space is path connected.

5. As checking this property is by far the most complicated, we prove it in Lemma 9.

I Lemma 9. The family of values {ϕδ(x)}x∈X is ELC0.

Proof. Fix x ∈ X. Given an arbitrary (y, t) ∈ ϕδ(x) ⊂ Yε and a neighborhood W of (y, t),
let 0 < r ≤ δ be such that V = Br(y, t) is contained in W . Here Br(y, t) denotes the open
ball of radius r around (y, t) in Yε using the metric

dYε
((y, t), (y′, t′)) = dg(y, y′) + |t− t′|.

It suffices to show that for any x̃ such that ϕδ(x̃)∩V 6= ∅, the set ϕδ(x̃)∩V is path connected.
For brevity, let U = ϕδ(x̃). Let (y1, t1) and (y2, t2) be in the intersection U ∩ V and, seeking
a contradiction, assume that they are in different path components of U ∩V . Since U is path
connected, there is a path γ1 from (y1, t1) to (y2, t2) with Im γ1 ⊂ U = ϕδ(x̃). Thus for every
s ∈ [0, 1] there is an xs ∈ Bδ(x̃) such that γ1(s) ∈ ϕ(xs). The map ϕ is function preserving,
so gε(γ1(s)) = f(xs). Moreover, as xs ∈ Bδ(x̃), we have |f(x̃) − gε(γ1(s))| < δ and thus
height(γ1) < 2δ. On the other hand, V is path connected and so there is a path γ2 from
(y2, t2) to (y1, t1) that stays completely inside of V = Br(y, t), and thus height(γ2) < 2r.

We can now consider the paths q ◦ γ1 and q ◦ γ2 in Uε(Y). As the endpoints of γ2 are in
different path components of U ∩ V and at the same time Im γ2 ⊂ V , there must be a point
v ∈ Im γ2 that is not in U .

We want to show that q(v) 6∈ q(Im γ1) ⊂ q(U). By definition, ϕ is the map such that
q ◦ ϕ(z) = ϕ(z) for any z ∈ X. Thus

q(U) = q ◦ ϕδ(x̃) = q ◦ ϕ(Bδ(x̃)) = ϕ(Bδ(x̃)).

Again seeking a contradiction, assume q(v) ∈ q(U) = ϕ(Bδ(x̃)). Then there is an xv ∈ Bδ(x̃)
such that ϕ(xv) = q(v). But this implies that v ∈ ϕ(xv) and thus v ∈ ϕδ(x̃) = U ,
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contradicting our assumption that v 6∈ U . We conclude that q(v) 6∈ q(U); in particular,
q(v) 6∈ q(Im γ1).

This implies that the loop q(γ1 • γ2) is not nullhomotopic in Uε(Y), where γ1 • γ2 denotes
the concatenation of the two paths. However, since we assumed that r ≤ δ < L/4, where L
is the minimum height of any edge in Uε(Y), we have

height(q(γ1 • γ2)) = height(γ1 • γ2)
≤ height(γ1) + height(γ2)
< 2δ + 2r ≤ 4δ < L,

and therefore must be nullhomotopic in Uε(Y). Thus, the original assumption that ϕδ(x̃)∩ V
is not path connected must be false. J

Thus, since ϕ satisfies the requirements for Theorem 7, there exists a continuous selection
of ϕδ, that is, a map ϕ̃δ : X→ Yε satisfying ϕ̃δ(x) ∈ ϕ(Bδ(x)) for all x ∈ X. Likewise, there
exists a continuous selection ψ̃δ : Y→ Xε for ψδ. Note however that the functional distortion
distance requires a pair of maps X→ Y and Y→ X. To get there, let p1 be either the map
Xε → X or Yε → Y, defined by projection onto the first factor. We define our maps for the
functional distortion distance to be Φ = p1 ◦ ϕ̃δ : X→ Y and Ψ = p1 ◦ ψ̃δ : Y→ X. Note that
Φ and Ψ depend on the choice of δ. The remainder of this section is devoted to showing that
this pair of maps induces a functional distortion of at most 3(ε+ δ), establishing the upper
bound on the functional distortion distance.

Bounding the functional distortion

In order to prove the main result of this section, we need to establish some notation and
technical lemmas. Recall that ι : X → Uε(X, f) is the map that sends x to [x, 0] = q(x, 0).
Moreover, let κ = p1 ◦ q−1. Note that both ι−1 and κ are multimaps, and ι−1 ⊆ κ as
relations of X× Uε(X, f). Similarly, define ιε : Uε(X, f)→ U2ε(X, f) and κε = p1q

−1
ε , where

qε : Uε(X, f)× [−ε, ε]→ U2ε(X, f) is the quotient map. We have analogous maps for (Y, g)
in place of (X, f), for which we use the same identifiers while ensuring that their domains
will always be clear from the context. These maps are summarized in the following diagram.
Note that not all parts of the diagram commute.

Xε Uε(X)× [−ε, ε]

X Uε(X) U2ε(X)

Y Uε(Y) U2ε(Y)

Yε Uε(Y)× [−ε, ε]

p1 q p1 qε

ι
ϕ

ιε

ϕε

κ κε

ι
ψ

ιε

ψε

κ κε

p1 q p1
qε

For t ∈ R and s ≥ 0, let

Is(t) := {r ∈ R | |r − t| ≤ s}

SoCG’15
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denote the thickening of t by s. Given any point x ∈ X, we define

Rr(x) := {x′ ∈ X | ∃ path π : x x′ such that f(Im π) ⊆ Ir(f(x))}.

That is, Rr(x) is the path component of x in f−1(Ir(f(x))). For a subset U ⊆ X, we define
Rr(U) := ∪x∈URr(x). We can define Rr similarly for Y, Uε(X), or Uε(Y). The following
simple observations will be useful later; we omit the easy proof.

I Lemma 10. (i) Br(x) ⊆ Rr(x) ⊆ B2r(x). (ii) Rr(Rs(x)) ⊆ Rr+s(x).

We will now present several technical lemmas that establish how far the above diagram
is from commuting.

I Lemma 11. κ ◦Rr ◦ ι ⊆ Rr+ε.

Proof. iven x ∈ X, let [x̃, t̃] ∈ Rr(ι(x)). We want to show that there exists a path π : x x̃

such that f(Im π) ⊆ Ir+ε(f(x)). An analogous argument also holds for y ∈ Y.
Since fε(ι(x)) = f(x) and [x̃, t̃] ∈ Rr(ι(x)), there is a path γ from ι(x) = [x, 0] to [x̃, t̃] in

Uε(X) satisfying fε(Im γ) ⊆ Ir(f(x)). Because the image of γ is path connected and q induces
an isomorphism on path components, the subspace q−1(Im γ) ⊂ Xε is path connected as
well. In particular, (x, 0) and (x̃, t̃) are in this set, so there is a path ζ between them.
As Im ζ ⊆ q−1(Im γ), we have that fε(Im ζ) ⊆ fε(q−1(Im γ)) = fε(Im γ) ⊆ Ir(f(x)).

Finally, consider the path π = p1 ◦ ζ in X from x to x̃. Since the projection p1 changes the
function value by at most ε, we have that f(Im π) ⊆ Ir+ε(f(x)), and thus x̃ ∈ Rr+ε(x). J

Note that the previous lemma can also be stated using ιε, so we have κε ◦Rr ◦ ιε ⊆ Rr+ε.
Since this lemma holds for r = 0 as well, this also implies that κ ◦ ι ⊆ Rε.

I Lemma 12. ψ ◦ κ ⊆ κε ◦ ψε.

Proof. Let yε = [y, s] ∈ Uε(Y). Note that y ∈ κ[y, s] and thus ψ(y) ∈ ψ ◦ κ[y, s]. Since every
element of ψ ◦κ(yε) can be represented in this form, it suffices to show that ψ(y) ∈ κε ◦ψε(yε)
as well. To see this, note that by definition of ψε we have ψε[y, s] = [ψ(y), s]. Moreover, we
have ψ(y) ∈ κε[ψ(y), s], so the claim follows. J

I Lemma 13. Ψ ◦ Φ ∈ R2ε+2δ.

Proof. By definition of Φ and Ψ, for any x ∈ X we have

Φ(x) = p1 ◦ ϕ̃δ(x)
∈ p1 ◦ ϕ(Bδ(x))
= p1 ◦ q−1 ◦ ϕ(Bδ(x))
= κ ◦ ϕ ◦Bδ(x),

and similarly for any y ∈ Y we have

Ψ(y) ∈ κ ◦ ψ ◦Bδ(y).

The composition yields

Ψ ◦ Φ(x) ∈ κ ◦ ψ ◦Bδ ◦ κ ◦ ϕ ◦Bδ(x).
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Since ψ preserves function values, a path γ in Y is sent to a path ψ ◦ γ of the same height in
Uε(X). Thus, for any r ≥ 0, we have ψ ◦Br ⊆ Br ◦ ψ, and so we obtain:

Ψ ◦ Φ(x) ∈ κ ◦ ψ ◦Bδ ◦ κ ◦ ϕ ◦Bδ(x)
⊆ κ ◦ (Bδ ◦ ψ) ◦ κ ◦ ϕ ◦Bδ(x) since ψ ◦Br ⊆ Br ◦ ψ,
⊆ κ ◦Bδ ◦ (κε ◦ ψε) ◦ ϕ ◦Bδ(x) since ψ ◦ κ ⊆ κε ◦ ψε by Lemma 12,
⊆ κ ◦Bδ ◦ κε ◦ (ιε ◦ ι) ◦Bδ(x) by the definition of an interleaving,
⊆ κ ◦Bδ ◦ (Rε) ◦ ι ◦Bδ(x) since κε ◦ ιε ⊆ Rε by Lemma 11,
⊆ κ ◦ (Rδ+ε) ◦ ι ◦Bδ(x) since Bδ ◦Rε ⊆ Rδ+ε by Lemma 10,
⊆ (Rδ+2ε) ◦Bδ(x) since κ ◦Rδ+ε ◦ ι ⊆ Rδ+2ε by Lemma 11,
⊆ R2δ+2ε(x) since R2ε ◦Bδ ⊆ Rδ+2ε by Lemma 10. J

I Lemma 14. (i) ‖f − g ◦ Φ‖∞ ≤ ε+ δ. (ii) ‖g − f ◦Ψ‖∞ ≤ ε+ δ.

Proof. For any x ∈ X, the image Φ(x) is a point in Y such that there is a x̃ ∈ X with
df (x, x̃) < δ and a t ∈ [−ε, ε] with (Φ(x), t) ∈ ϕ(x̃). So |f(x) − f(x̃)| < δ and f(x̃) =
g(Φ(x)) + t. Thus

|f(x)− g(Φ(x))| = |f(x)− (f(x̃)− t)| = |f(x)− f(x̃) + t| ≤ δ + ε

and hence ‖f − g ◦ Φ‖∞ ≤ ε+ δ. Likewise, ‖g − f ◦Ψ‖∞ ≤ ε+ δ. J

Finally, we can prove the main result of this section.

I Lemma 15. Let f : X→ R and g : Y→ R. Then

dFD(f, g) ≤ 3dI(f, g).

Proof. Let ϕ : (X, f) → Uε(Y, g) and ψ : (Y, g) → Uε(X, f) be an ε-interleaving, and thus
dI(f, g) ≤ ε. As shown above, there exist continuous maps Φ : X → Y and Ψ : Y → X,
constructed from selections for the multimaps ϕδ and ψδ. Let (x, y), (x′, y′) ∈ C(Φ,Ψ).
There are two cases to consider; either the pairs are of the same type (e.g., (x,Φ(x)) and
(x′,Φ(x′))), or they are different.

First assume that they are of the same type, (x,Φ(x)) and (x′,Φ(x′)). Let γ be a
minimum height path in X from x to x′. Then Φ(γ) is a path in Y from Φ(x) to Φ(x′). Since
‖f − g ◦ Φ‖∞ ≤ ε+ δ, the height of Φ(γ) exceeds the height of γ by at most 2(ε+ δ). So

dg(Φ(x),Φ(x′)) ≤ height(Φ(γ))
≤ height(γ) + 2(ε+ δ)
= df (x, x′) + 2(ε+ δ).

(1)

Conversely, to get an upper bound for df (x, x′) in terms of dg(Φ(x),Φ(x′)), let ζ be a
minimum height path in Y between Φ(x) and Φ(x′), i.e., height(ζ) = dg(Φ(x),Φ(x′)). Note
that Ψ ◦ ζ is a path in X from Ψ ◦ Φ(x) to Ψ ◦ Φ(x′). Since ‖g − f ◦Ψ‖∞ ≤ ε+ δ (Lemma
14), we have that

f(Ψ(ζ)) ⊆ Iε+δ(g(Im ζ)), (2)

where Is(A) := {r ∈ R | ∃r′ ∈ A : |r − r′| ≤ s} denotes the thickening of an interval A ⊆ R
by a real number s ≥ 0. Since g(Φ(x)), g(Φ(x′)) ∈ g(Im ζ), we conclude from Lemma 14 that
both f(x) and f(x′) are contained in Iε+δ(g(Im ζ)). Now consider the path γ̂ = γ1 •γ2 •γ3 in
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X connecting x to x′, where γ1 is a mininum height path in X from x to Ψ ◦Φ(x), γ2 = Ψ ◦ ζ
connects Ψ ◦ Φ(x) to Ψ ◦ Φ(x′) as described above, and γ3 is a minimum height path in X
connecting Ψ ◦ Φ(x′) to x′. Combining Lemma 13 and (2), we obtain:

f(Im γ̂) ⊆ f(Im γ1) ∪ f(Im γ2) ∪ f(Im γ3)
⊆ I2ε+2δ(f(x)) ∪ Iε+δ(g(Im ζ)) ∪ I2ε+2δ(f(x′))
⊆ I3ε+3δ(g(Im ζ)) ∪ Iε+δ(g(Im ζ)) ∪ I3ε+3δ(g(Im ζ))
= I3ε+3δ(g(Im ζ)).

We thus conclude

df (x, x′) ≤ height(γ̂) ≤ dg(Φ(x),Φ(x′)) + 6ε+ 6δ. (3)

Combining the two bounds (1) and (3), we obtain

|df (x, x′)− dg(Φ(x),Φ(x′))| ≤ 6(ε+ δ).

Analogously, if we are given two pairs (Ψ(y), y), (Ψ(y′), y′) ∈ C(Φ,Ψ), we can show that

|df (Ψ(y),Ψ(y′))− dg(y, y′)| ≤ 6(ε+ δ).

What remains to consider is the case of two pairs (x,Φ(x)), (Ψ(y), y) ∈ C(Φ,Ψ). Let ξ
be a minimum height path in Y between Φ(x) and y. By Lemma 14, π1 = Ψ ◦ ξ is a path
Ψ(y) to Ψ ◦ Φ(x) in X such that

f(π1) ⊆ Iε+δ(g(Im ξ)).

Since g(Φ(x)) ∈ g(Im ξ), we also have f(x) ∈ Iε+δ(g(Im ξ)). Now let π2 be a minimum
height path in X connecting x to Ψ ◦ Φ(x); by Lemma 13 we have f(π2) ⊆ I2ε+2δ(f(x)).
Concatenating the two, we obtain a path π = π1 • π2 from x to Ψ(y) such that

f(Im π) ⊆ f(Im π1) ∪ f(Im π2)
⊆ Iε+δ(g(Im ξ)) ∪ I2ε+2δ(f(x))
⊆ Iε+δ(g(Im ξ)) ∪ I3ε+3δ(g(Im ξ))
= I3ε+3δ(g(Im ξ)).

We conclude that
df (x,Ψ(y)) ≤ dg(Φ(x), y) + 6ε+ 6δ.

Likewise, by a symmetric argument, we can show that

dg(Φ(x), y) ≤ df (x,Ψ(y)) + 6ε+ 6δ.

Hence |df (x,Ψ(y))− dg(Φ(x), y)| ≤ 6(ε+ δ).
Combining all of these bounds gives

D(Φ,Ψ) = sup
(x,y),(x′,y′)
∈C(Φ,Ψ)

1
2 |df (x, x′)− dg(y, y′)| ≤ 3(ε+ δ).

and therefore, together with Lemma 14,

dFD(f, g) = inf
Φ,Ψ

max{D(Φ,Ψ), ‖f − g ◦ Φ‖∞, ‖g − f ◦Ψ‖∞} ≤ 3(ε+ δ).

Since the above holds for any ε > dI(f, g) and for any δ > 0, this completes the proof. J
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Putting together Lemmas 8 and 15, our main result is immediate.

I Theorem 16. The functional distortion metric and the interleaving metric are strongly
equivalent. That is, given any Reeb graphs (X, f) and (Y, g),

dI(f, g) ≤ dFD(f, g) ≤ 3dI(f, g).

4 Relationship Between the Interleaving and Bottleneck Distances

Having strongly equivalent metrics means that we can quickly pass back and forth many of
the properties associated to the metrics. For example, the bottleneck stability bound for
persistence diagrams in terms of the functional distortion distance [1] says the following (for
the definitions of the persistence diagrams Dg0(f),ExDg1(f) associated to a function f and
of the bottleneck distance dB we refer the reader to [10]):

I Theorem 17 (Bauer, Ge, Wang [1]). Given two Reeb graphs (X, f) and (Y, g),

dB(Dg0(f),Dg0(g)) ≤ dFD(f, g)

and

dB(ExDg1(f),ExDg1(g)) ≤ 3dFD(f, g).

Combining this result with Theorem 16 gives an immediate stability result relating the
interleaving distance with the bottleneck distance.

I Corollary 18. Given two Reeb graphs (X, f) and (Y, g),

dB(Dg0(f),Dg0(g)) ≤ 3dI(f, g)

and

dB(ExDg1(f),ExDg1(g)) ≤ 9dI(f, g).

5 Discussion

In this paper, we study the relationship between two existing distances for Reeb graphs, and
show that they are strongly equivalent on the set of Reeb graphs. This relationship will be a
powerful tool for understanding convergence properties of the different metrics. For example,
if we have a Cauchy sequence in one metric, we have a Cauchy sequence in the other and
can therefore pass completeness results back and forth. This relationship also means that
algorithms for approximation of the metrics can be written using whichever method is most
helpful and applicable to the context.

These two distances may in general not be the same. However, we have yet to find an
example for which it can be shown that the two distances are actually different. It is easy to
construct examples where the bound dI(f, g) ≤ dFD(f, g) of Lemma 8 is tight; the status of
the bound dFD(f, g) ≤ 3dI(f, g) of Lemma 15 is unclear. While that bound is obtained using
an arbitrary selection, a better bound may be achievable using a particular optimal selection.
In addition, this may shed light on whether the bounds given between the bottleneck distance
of the extended persistence diagrams and the two Reeb graph distances are tight. Finally, we
plan to explore the use of these distances for studying the stability of Reeb-like structures,
such as Mapper and α-Reeb graphs [24, 4].
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