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Abstract
In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated
smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving
distance for Reeb graphs. Intuitively, we “chop off” parts near local minima and maxima during
the course of smoothing, where the amount cut is controlled by a parameter τ . After formalizing
truncation as a functor, we show that when applied after the smoothing functor, this prevents
extensive expansion of the range of the function, and yields particularly nice properties (such as
maintaining connectivity) when combined with smoothing for 0 ≤ τ ≤ 2ε, where ε is the smoothing
parameter. Then, for the restriction of τ ∈ [0, ε], we have additional structure which we can take
advantage of to construct a categorical flow for any choice of slope m ∈ [0, 1]. Using the infrastructure
built for a category with a flow, this then gives an interleaving distance for every m ∈ [0, 1], which is
a generalization of the original interleaving distance, which is the case m = 0. While the resulting
metrics are not stable, we show that any pair of these for m, m′ ∈ [0, 1) are strongly equivalent
metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by
discussing implications of this metric within the broader family of metrics for Reeb graphs.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases Reeb graphs, interleaving distance, graphical signatures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.22

Related Version Full Version: https://arxiv.org/abs/2007.07795v3

Funding Erin Wolf Chambers: This work was funded in part by the National Science Foundation
through grants CCF-1907612 and DBI-1759807.
Elizabeth Munch: This work was funded in part by the National Science Foundation through grants
CCF-1907591 and DEB-1904267.
Tim Ophelders: This work was funded in part by the National Science Foundation through grant
CCF-1907591.

Acknowledgements The authors wish to thank the anonymous reviewers for their helpful feedback
and insights that tightened the bounds of Theorem 5.3.

1 Introduction

The Reeb graph, originally defined in the context of Morse theory [44], represents a portion
of the underlying structure of a topological space X through the lens of a real valued function
h : X → R; the pair of data (X, h) is known as an R-space. Specifically, points in the Reeb
graph correspond to connected components in the levelsets of the function; as such, the
Reeb graph inherits a real valued function from the original input data. For nice enough
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Figure 1 From left to right: an R-space (X, f̃), its Reeb graph (G, f), smoothings are shown for
two parameters, ε and 2ε. Function values are shown by height.

inputs, the resulting object is a finite graph. So, at its core, we focus our study on objects
of the form (G, f) where G is a graph and f : G → R is a function given on vertices and
interpolated linearly on the edges. See Figure 1 for an example.

Reeb graphs have become increasingly useful in a wide range of applications, including
settings such as shape comparison [35, 29], denoising [52], shape understanding [25, 34],
reconstructing non-linear 1-dimensional structure in data [42, 32, 19, 50], summarizing
collections of trajectory data [15], and allowing for informed exploration of otherwise hard-
to-visualize high-dimensional data [51, 33]; see [5] for a survey of these and more topics. As
a result, there is interest in defining metrics on these objects, to evaluate their quality in
the face of noisy input data as well as to allow for more accurate shape comparison and
analysis. In this setting, we are focused on metrics that incorporate both the graph and
function information: so d((G, f1), (G, f2)) should be non-zero if f1 ̸= f2 even though they
are defined on the same underlying graphs.

Several metrics have arisen recently to do this, taking inspiration from different math-
ematical backgrounds [23, 4, 3, 16, 27, 28, 1, 47, 2]. In this paper, we focus on the Reeb
graph interleaving distance [23]. The basic idea is to work with a notion of smoothing,
which returns a parameterized family of Reeb graphs, Sε(G, f) for every ε ≥ 0, starting with
ε = 0 which leaves the input unchanged. This procedure simplifies the loop structures and
stretches tails [54]; see Figure 1 for an example. Then the goal is to find an ε-interleaving,
which is a pair of families of maps making a particular diagram commute. If ε = 0, this
diagram simplifies down to finding an isomorphism between the two Reeb graphs; increasing
ε provides more flexibility to find such pairs of maps. Then we have a metric by defining
dI((G, f), (Hh)) to be the infimum over the set of ε for which such a diagram exists.

This metric takes root in the interleaving distance defined for persistence modules [18],
and is largely inspired by the subsequent category theoretic treatment [14, 12]. This viewpoint
comes from encoding the data of a Reeb graph in a constructible set-valued cosheaf [21, 22].
It was later shown that these metrics are special cases of a more general theory of interleaving
distances given on a category with a flow [24, 48, 20]. This framework encompases common
metrics including ℓ∞ distance on points or functions, regular Hausdorff distance, and the
Gromov-Hausdorff distance [48, 13]. Using this framework, interleaving metrics have been
studied in the context of R-spaces [8], multiparameter persistence modules [38], merge trees
[39], and formigrams [36, 37], and on more general category theoretic constructions [10, 45].
There are also interesting restrictions to labeled merge trees, where one can pass to a matrix
representation and show that the interleaving distance is equivalent to the point-wise ℓ∞
distance [40, 31, 53, 49].
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On the negative side, it has been shown that Reeb graph interleaving is graph isomorphism
complete [23, 6], and that many other variants are also NP-hard [6, 7]. All of this means
that these metrics, while mathematically interesting, may not lead to feasible algorithms for
comparison and analysis. However, a glimmer of hope arises with work investigating fixed
parameter tractable algorithms [30, 49]. Despite the issues of computational complexity,
notions of similarity for graphs in general, and Reeb graphs in particular, are of pressing
interest due to their extensive use in data analysis; in many such settings, we are concerned
with questions of quality in the face of noise, and understanding convergence of approximations
to a true underlying structure. For example, the interleaving distance has been used in
evaluating the quality of the mapper graph [46], which can be proven to be a approximation
of the Reeb graph using this metric [41, 11]. Furthermore, there is considerable interest in
unifying the interleaving distance with the emerging collection of other Reeb graph metrics.

In this paper, we introduce a truncation operation, which intuitively cuts off portions of
the Reeb graph near local extrema with respect to f ; this operation is easy to compute for
any Reeb graph and tends to result in a simplified Reeb graph. We show that truncation is a
functor, and when combined with the smoothing functor, defines a flow on the the category
of Reeb graphs. We investigate and prove particularly desirable geometric and topological
properties of truncated smoothing for certain ranges of the two parameters controlling the
functors. We then introduce a new family of metrics for Reeb graphs, called truncated
interleaving distances. They are parameterized by m ∈ [0, 1], and generalize the interleaving
distance, with the setting m = 0 being the original interleaving distance. We show that the
metrics arising from m ∈ [0, 1) are strongly equivalent. Although the metrics are not stable
in the sense of [3], strong equivalence implies that they are at least stable up to a constant.

When combined with preliminary work on geometric implications of smoothing [54],
truncated smoothing is interesting in its own right, as it provides a collection of paths for
Reeb graph space to be studied in terms of the resulting persistence diagrams. It also is useful
when considering algorithms to test planarity for Reeb graphs, or find planar representations
of them. The new family of metrics also provide the possibility for new approaches for
approximation algorithms for the interleaving distance, as well as new avenues for further
unification of the broader family of Reeb graph metrics.

Outline. We give the basic background on Reeb graphs, smoothing, and the Reeb graph
interleaving distance in Section 2. Next, we introduce our definition of truncated smoothing
in Section 3. In Section 4 we check properties of the truncated smoothing operation. We then
take a categorical view of truncated smoothing to develop a family of metrics and investigate
their properties in Sections 5 and 6. Finally, the results are discussed in Section 7. Note that
many proofs and technical details, as well as full background, several equivalent alternative
formulations, and more examples are included in the full version of the paper [17].

2 Background: Reeb graphs, smoothing, and interleaving

Given a topological space X along with a continuous R-valued function f : X → R, we call
the pair (X, f) an R-space. For two R-spaces (X, f) and (X′, g), we call a continuous map
φ : X → X′ function-preserving if f = g ◦ φ, and write φ : (X, f) → (X′, g) in that case.

For an R-space (X, f), we define an equivalence relation ∼f on the points of X, such
that x ∼f x

′ if and only if x and x′ lie in the same path-connected component of f−1(y)
for some y ∈ R. For sufficiently nice functions1, the quotient space X/∼f is a graph,

1 e.g. a Morse function on a manifold, or a constructible space and function [23], or a space with a
levelset-tame function [26].

SoCG 2021
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Figure 2 Left: the up-set (red) and down-set (blue) of a point. Although the up-set is a tree,
it is not an up-tree as it contains down-forks of the ambient graph. Right: the sets Uδ and Dδ of
points with no length δ up-path or down-path, respectively. The leftmost component of Dδ does not
contain the down-fork.

called a Reeb graph, and we denote the quotient map by qf : (X, f) → (X/∼f , g). Since
f(x) = f(x′) whenever x ∼f x

′, we can treat the Reeb graph as an R-space (X/∼f , g) by
defining g(qf (x)) = f(x), so that qf is function-preserving. Most but not all functions in
this paper are function preserving. Figure 1 illustrates the construction of a Reeb graph of
an R-space.

For the purposes of this work, we will largely divorce the idea of the Reeb graph from
the need for a starting space that was used to construct it. Thus for our purposes, a Reeb
graph is a pair (G, f) where G = (VG, EG) is a finite multigraph and f : G → R, referred
to as the height function, is a continuous map that is linearly interpolated along edges
of G, and for which no two neighboring vertices have the same function value. We write
Im(G, f) := f(G) ⊂ R for the image of the graph in R. The function can equivalently be
stored by defining f : VG → R as a function on the vertices, and extending it to the edges
implicitly. We treat G as a topological space, so that a point x ∈ G lies either on a vertex of
G, or interior to an edge of G. For succinctness, we also write x ∈ (G, f) to mean x ∈ G.
Since no two adjacent vertices have the same function value, a level set f−1(y) for y ∈ R is a
finite set of points in G which could be vertices and/or points in the interior edges.

Together, the collection of Reeb graphs (treated as R-spaces) with function-preserving
maps as morphisms forms a category, Reeb. For the reader without a background in category
theory, the basic idea is that that this collection of objects and morphisms satisfy some
basic axiomatic structures that make their analysis easier to view as a collection. It also
makes available the viewpoint of functors between categories, which are essentially structure
preserving maps. For now, we will largely hand-wave past the categorical constructions, and
defer the technicalities to the full version of the paper.

Define a path from x to x′ in (G, f) to be a continuous map π : [0, 1] → G such that
π(0) = x and π(1) = x′. A path is called an up-path if it is monotone-increasing with respect
to the function, i.e. f(π(t)) ≤ f(π(t′)) for t ≤ t′. Symmetrically, a path is a down-path if it
is monotone-decreasing. In the case of an up- or down-path π, we call |f(π(0)) − f(π(1))|
the height of the path.

In a Reeb graph (G, f), let the up-paths of a point x be the set of f -monotone paths that
have x as minimum. The up-set of a point x is the set of points reachable from x by an
up-path, including x itself. Define an up-fork to be a vertex x whose up-set contains at least
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Figure 3 From left to right: a Reeb graph (G, f), its ε-thickening (G × [−ε, ε], f + Id), and the
Reeb graph Sε(G, f) of the ε-thickening. The product of an edge with an interval is drawn to reflect
the function value at a given height.

two edges adjacent to x. We define down-paths, down-sets, and down-forks symmetrically.
Call the up-set of a point x an up-tree if it contains no down-forks of (G, f), and say that x
roots an up-tree in such case. The concept of rooting a down-tree is defined symmetrically.
See Figure 2.

▶ Definition 2.1. Fix a Reeb graph (G, f) and ε ≥ 0. Define the ε-thickening of G to be
the space G × [−ε, ε] with the product topology, and define (f + Id): G × [−ε, ε] → R by
(f + Id)(x, t) = f(x) + t. We define the ε-smoothing Sε(G, f) to be the Reeb graph of (f + Id),
and denote the corresponding quotient map by q : G× [−ε, ε] → Sε(G, f). The composition
of q with the the inclusion G ↪→ G× [−ε, ε];x 7→ (x, 0) is denoted η = q ◦ (Id, 0).

See Figure 3 for an example. In essence, smoothing eliminates small cycles whose height
is ≤ 2ε, and shrinks all other cycles; it also moves every up-fork and local maximum up and
every down-fork and local minimum down. Under the lens of studying the topology of the
graph (and in turn the original space), this serves as a functor that can be used to remove
noise and simplify topology in a parameterized fashion.

The smoothing construction, Sε, holds quite a bit more useful structure as not only is it
a functor, it is an example of a flow [24]. While we do not provide the full definition here,
the specifics are given in the full version of the paper. In particular, this comes from using
the additional structure afforded by the function preserving map η : (G, f) → Sε(G, f). We
will reserve the full investigation of η until the full version of the paper, but will use the
following property of categories with a flow.

▶ Theorem 2.2 ([24, Thm. 2.7]). A category with a flow gives rise to an interleaving distance
on the objects of the category; specifically, this construction is an extended pseudometric.

This construction is quite useful since simply by finding some relatively easy to check
structure on a category, we immediately get a distance measure on the objects. Depending
on the category and flow, this construction encompasses many standard metrics such as the
Hausdorff distance; and with a choice of other categories and flows we can construct new
metrics. We are particularly interested in the special case of the interleaving distance for
Reeb graphs as studied in [23].

SoCG 2021
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▶ Definition 2.3. An ε-interleaving with respect to Sε is a pair of maps, φ : (G, f) → Sε(H,h)
and ψ : (H,h) → Sε(G, f) such that the diagram

(G, f) Sε(G, f) S2ε(G, f)

(H,h) Sε(H,h) S2ε(H,h)

η

φ

Sε[η]

Sε[φ]

η

ψ

Sε[η]

Sε[ψ]

commutes. The interleaving distance is defined to be

dI((G, f), (H,h)) = inf
ε

{there exists an ε-interleaving of (G, f) and (H,h)}.

In the construction on this category, dI is an extended metric since the interleaving distance
between Reeb graphs with different numbers of connected components is ∞ as there is no
interleaving available for any ε [23]. One particularly useful property we will make use of
is understanding how the image of the smoothed Reeb graph, Im(Sε(G, f)) := f(G) ⊆ R,
changes under smoothing. Note that if G is connected, Im(G, f) is connected so it is an
interval.

▶ Proposition 2.4. For a connected Reeb graph (G, f) with Im(G, f) = [a, b],

Im(Sε(G, f)) = [a− ε, b+ ε].

Proof. For any c ∈ Im(Sε(G, f)), we show that c ∈ [a− ε, b+ ε]. There is some x ∈ Sε(G, f)
with fε(x) = c, where fε is the induced function on Sε(G, f). Then there is a (y, t) ∈ G×[−ε, ε]
with f(y) + t = c. Combining a ≤ f(y) ≤ b and −ε ≤ t ≤ ε gives that a− ε ≤ c ≤ b+ ε.

For the other direction, let c ∈ [a−ε, b+ε]. There exists some d ∈ [a, b] with c−d ∈ [−ε, ε].
Because Im(G, f) = [a, b], there exists some x ∈ f−1(d) and (x, c− d) ∈ G× [−ε, ε] quotients
to some y ∈ Sε(G, f) with fε(y) = c, so Im(Sε(G, f)) = [a− ε, b+ ε]. ◀

3 Truncated smoothing

We can now introduce our new, modified smoothing of Reeb graphs. Notice from Proposi-
tion 2.4 that as the Reeb graph is smoothed, the image becomes larger. The basic idea of
truncated smoothing is to cut off some of those expanding tails in a well-defined way.

Let Uτ (G, f) be the set of points of G that do not have a length τ up-path, and define
Dτ (G, f) symmetrically for down-paths. Note that for any point x ∈ Uτ (G, f), all up-paths
from x also lie in Uτ (G, f); the symmetric property is true for Dτ (G, f). Both Uτ (G, f) and
Dτ (G, f) are open subsets of (G, f). See Figure 2 for an example. With this, we can define
truncation as follows.

▶ Definition 3.1. The τ -truncation of (G, f), is the subgraph of (G, f) consisting of the
points that have both an up-path and a down-path of height τ ; specifically

T τ (G, f) := (G, f) \ (Uτ (G, f) ∪Dτ (G, f)).

This operation can be seen in the second and third graphs of Figure 4. Notice that T 0(G, f) =
(G, f), and that for large enough τ , it is entirely possible to disconnect the graph, or even
to be left with an empty graph. Utilizing the truncation operation in conjunction with the
Reeb graph smoothing operation is what we call truncated smoothing.
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Figure 4 Example of smoothing and truncating for a range of values, on the graph from Figure 1.

▶ Definition 3.2. Let (G, f), ε ≥ 0 and τ ≥ 0 be given. Then the truncated smoothing of
(G, f) is defined by Sτε (G, f) = T τSε(G, f).

If τ = 0, S0
ε (G, f) = T 0(Sε(G, f)) = Sε(G, f). So S0

ε is the same as Sε, and thus the
truncated smoothing can be thought of as a generalization of the smoothing definition.

Consider Figure 4, which shows why we smooth before truncating and more generally,
why we will soon want to place restrictions on the relationship between τ and ε. Namely, for
this example, we have drawn T ε(G, f) and T 2ε(G, f). In the second case in particular, it is
clear that truncation has massive detrimental effects on the topology as evidenced by the
fact that T 2ε(G, f) has two connected components. However, we can avoid these issues when
we smooth first. In the last four examples, smoothing serves to move cycles away from the
extrema, so that for a limited amount of truncation, no cycles are broken. We will quantify
this “safe” amount of truncation in Section 4. So, while the smoothing parameter still gets
rid of the center circle, the truncation only gets rid of expanding tails.

Algorithm. The τ -truncation of a Reeb graph (G, f) can be computed by first storing the
length of the longest up-path and down-path of each vertex. This can be done in linear
time using a topological sort of the graph based on directing all edges upward. We can for
each local maximum store that it has a 0-length up-path, and for the remaining vertices,
processes in the order given by the topological sort, storing the length of their up-path based
on the stored length of all previously processed neighbors. We store the length of the longest
down-path for each vertex symmetrically. Now, we can compute for each edge how much
of it remains in the truncation, and subdivide the edges if necessary. Finally, remove all
vertices and edges that do not have a sufficiently long up-path or down-path. This procedure
takes O(n+m) time on a graph with n vertices at m edges. The truncated smoothing can
be computed by first computing the smoothing [23] in O(m log(m+ n)) time, giving a total
running time of O(m log(m+ n)).

4 Properties of truncated smoothing

We can visualize the relationship between τ and ε as drawn in Figure 5. For this figure, we
assume we start with a connected Reeb graph (G, f) and study properties of Sτε (G, f) which
is represented by the point (ε, τ) in the plane. In the remainder of this section, we state the
properties of Sτε in different regions of the ε-τ -plane, culminating in the parameter space
labeling of Figure 7. We will focus in this section on the case where G is a connected graph,
although some results can be modified to incorporate disconnected inputs. These results on
disconnected graphs, as well as many of the more technical proofs, are presented in the full
version of the paper.

SoCG 2021
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Figure 5 Visualization of Proposition 4.1. Given a connected G where Im(G, f) = [a, b] ⊂ R,
Sτ

ε (G, f) is empty if it is in the red region and non-empty if it is in the white region. Parameters in
the grey region can be either empty or not.

4.1 When is Sτ
ε (G, f) empty?

We first study the values of ε and τ for which the truncated smoothing is empty. For the
purposes of notation, define Im(G, f) = f(G) ⊂ R. Consider the following simple example:
Let L[a,b] be a Reeb graph consisting of a single edge with image [a, b] ⊆ R, and for an interval
I ⊆ [a, b], let LI ⊆ L[a,b] be the unique subgraph with image I. Then T τ (L[a,b]) = L[a+τ,b−τ ]
if 2τ ≤ b− a, and is the empty Reeb graph for 2τ > b− a. On the other hand, Sε(L[a,b]) is
isomorphic to L[a−ε,b+ε].

In particular, T τ and Sε transform any monotone path with image [a, b] into a monotone
path with image [a+ τ, b− τ ], [a− ε, b+ ε], respectively. In addition, smoothing or truncating
the empty Reeb graph again yields the empty Reeb graph. We can build this intuition into
the following proposition; details are in the full version of the paper. Note that in the case of
a connected graph G, Im(G, f) is connected and thus is an interval.

▶ Proposition 4.1. Let (G, f) be connected with Im(G, f) = [a, b].
If b− a < 2(τ − ε), then Im(Sτε (G, f)) = ∅.
If b− a ≥ 2(τ − ε) and τ ≤ 2ε, then Im(Sτε (G, f)) = [a− (ε− τ), b+ (ε− τ)].

Sketch proof. We first show that b − a < 2(τ − ε) implies the image is empty. We show
in the full version of the paper that for a connected graph (H,h) with image [a′, b′] and
b′ − a′ < 2τ , T τ (H,h) is empty. By Proposition 2.4, Im(Sε(G, f)) = [a − ε, b + ε]. Then
setting Sε(G, f) = (H,h), we have for b − a < 2(τ − ε), that (b + ε) − (a − ε) ≤ 2τ , so
Im(Sτε (G, f)) = Im(T τ (Sε(G, f))) = ∅.

Now, we can assume b − a ≥ 2(τ − ε). One direction of containment is easy since by
Proposition 2.4, Im(Sτε (G, f)) = Im(T τ (Sε(G, f))) ⊆ [a−(ε−τ), b+(ε−τ)]. Thus, it remains
to show that [a− (ε− τ), b+ (ε− τ)] ⊆ Im(Sτε (G, f)). The basic idea is to take two points
s, t ∈ Sε(G, f) with f(s) = a− ε and f(t) = b+ ε, and show that they are connected by a
path π in Sε(G, f) for which the only portions that get truncated are the endpoints. This
is simple if π is itself a monotone path; otherwise we use the fact that G has already been
smoothed and that we do not truncate too much (τ ≤ 2ε) to show that the parts of the path
which are not monotone still have long enough up- and down-paths to not be removed. ◀

This proposition gives us that Sτε (G, f) is an empty graph if (ε, τ) is interior to the red
region of Figure 5, and is empty in the white region. We cannot expand this proposition to
the grey region of Figure 5 as there are examples for which Sτε (G, f) can be either empty or
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τ

τ

Figure 6 A Reeb graph (G, f) for which T τ (G, f) = Sτ
0 (G, f) is empty. This choice of τ is such

that Im(G, f) has diameter greater than 2τ , thus Sτ
0 (G, f) is in the grey region of Figure 5.

not. For instance, in the example of Figure 6, |Im(G, f)| ≥ 2(τ − ε), but each position in the
graph is either missing a long enough up- or down-path, and hence the truncated graph is
empty. On the other hand, for the graph with a single edge L[a,b], any truncation τ < b−a

2 is
non empty.

4.2 When does Sτ
ε (G, f) maintain connectivity?

Our next goal is to understand when truncation preserves the connectivity of the input. As
seen in Figure 4, clearly just truncating the graph can disconnect an originally connected graph.
However, what is interesting is that smoothing first and not truncating too much relative to
the smoothing will maintain the connectivity; this will be made precise in Proposition 4.6.
For this, we introduce two properties, t-tailed and s-safe, and study how they are affected by
smoothing and truncation.

▶ Definition 4.2. A Reeb graph is t-tailed if it has a height t up-path at every down-fork
and a length t down-path at every up-fork. A Reeb graph is weakly s-safe if each component
has a point with both an up-path and a down-path of height at least s. A Reeb graph is s-safe
if it is both s-tailed and weakly s-safe.

Note that every non-empty Reeb graph is 0-safe. For example, the graph drawn in
Figure 2 is not δ-tailed because the bottommost up-fork has no down-path of height δ; in
addition, the topmost down-fork has no up-path of height δ.

We next have two results, proved in the full version of the paper, which show how the
•-tailed and •-safe properties are maintained under smoothing and truncating, albeit with
modified parameters.

▶ Proposition 4.3. If (G, f) is t-tailed, then Sε(G, f) is (t+ 2ε)-tailed. If (G, f) is s-safe,
then Sε(G, f) is (s+ ε)-safe. In particular, Sε(G, f) is always 2ε-tailed and ε-safe.

▶ Lemma 4.4. Fix 0 ≤ τ ≤ ε. If (G, f) is ε-tailed or safe, then T τ (G, f) is (ε− τ)-tailed or
safe, respectively.

Combining Proposition 4.3 and Lemma 4.4, we can see that outside the pink and grey
regions of Figure 7, we know that Sτε (G, f) is (t+ 2ε− τ)-tailed and (s+ ε− τ)-safe.

▶ Proposition 4.5. Fix 0 ≤ ε and 0 ≤ τ , and assume (G, f) is t-tailed and s-safe. If
τ ≤ t+ 2ε and τ ≤ ε+ ∥Im(G, f)∥/2, then Sτε (G, f) is (t+ 2ε− τ)-tailed and (s+ ε− τ)-safe.

Proof. Because (G, f) is t-tailed, Sε(G, f) is (t+ 2ε)-tailed by the first statement of Proposi-
tion 4.3. Since τ ≤ t+2ε, Sτε (G, f) = T τSε(G, f) is (t+2ε−τ)-tailed by Lemma 4.4. Similarly,
since (G, f) is s-safe, Sε(G, f) is (t + ε)-safe by the second statement of Proposition 4.3.
Then since τ ≤ t+ 2ε, Sτε (G, f) = T τSε(G, f) is (s+ ε− τ)-safe by Lemma 4.4. ◀

This brings us to our conclusion of parameters for which the connectivity is maintained,
with full details provided in the full version of the paper.
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ε

τ T τSε(G, f) and
SεT

τ (G, f) empty

?

s

t

‖Im(f)‖
2

(G, f) ∼= T 0S0(G, f)

τ
≤
t
+
2ε

‖I
m
(f
)‖

2

<
τ
−
ε

T τSε(G, f) ∼= SεT
τ (G, f)

SεT
τ (G, f) connected

T τSε(G, f) connected,
(t+2ε− τ)-tailed, and
max(0, s+ ε− τ)-safe

Figure 7 For connected, t-tailed, and s-safe (G, f), properties of Sτ
ε (G, f) = T τ Sε(G, f) and

SεT τ (G, f), parameterized by τ and ε.

▶ Proposition 4.6. If (G, f) is connected and τ ∈ [0, 2ε], then Sτε (G, f) is also connected.

Sketch proof. We show in the full version of the paper that for a connected, t-tailed graph,
T t(G, f) is connected by ensuring disjointness of the portion of the graph G removed because
it is lacking an up-path, and that which is removed because it is lacking a down-path. The
result is then a corollary of Proposition 4.3. ◀

4.3 When do Sε and T τ commute?
We finally investigate the commutativity of smoothing and truncating. The example of
Figure 4 shows why we must be careful with order of operations since T τSε(G, f) is not
necessarily the same as SεT τ (G, f). Specifically, S2ε

2ε(G, f) = T 2εS2ε(G, f) has one connected
component, but any smoothing of T 2ε(G, f) has two connected components. However, the
next two results imply that this issue does not arise if we smooth sufficiently before truncating.

▶ Proposition 4.7. If (G, f) is τ -safe, then SεT
τ (G, f) ∼= T τSε(G, f).

The proof is provided in the full version of the paper. Combining the proposition with
Lemma 4.4 and Proposition 4.3 gives the surprising result that the functors T and S do
commute in the green region of Figure 7. We can next use this result to show that for certain
choices of ε and τ , we can additively combine the parameters for truncated smoothing.

▶ Theorem 4.8. If (1) (G, f) is empty or (2) τ1 ≤ 2ε1 and (G, f) is weakly (τ1 − ε1)-safe,
then Sτ2

ε2
Sτ1
ε1

(G, f) ∼= Sτ1+τ2
ε1+ε2

(G, f).

Proof. Both smoothing and truncating the empty Reeb graph yields the empty Reeb
graph. So we are done if (G, f) is the empty Reeb graph, and we obtain not only an
isomorphism but an equality. Now suppose that (G, f) is not empty. Then Sε1(G, f) is
2ε1-tailed and weakly (τ1 − ε1 + ε1)-safe, and by definition min(2ε1, τ1) ≥ τ1-safe. Therefore
Sε2T

τ1Sε1(G, f) ∼= T τ1Sε2Sε1(G, f), and hence using Proposition 4.7,

Sτ2
ε2
Sτ1
ε1

(G, f) = T τ2Sε2T
τ1Sε1(G, f) ∼= T τ2T τ1Sε2Sε1(G, f) ∼= Sτ1+τ2

ε1+ε2
(G, f). ◀

In particular, the assumptions of the theorem are satisfied if τ1 ≤ ε1 since every non-empty
graph is 0-safe.
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5 Truncated interleaving distance

In this section, we survey the results related to defining the family of truncated interleaving
distances, proving that certain linear subspaces of our two parameter functor space (shown
in Figure 7) form a categorical flow. Since any category with a flow gives an interleaving
distance, we then use truncated smoothing to build a new family of metrics for Reeb graphs.

The whole idea behind building a category with a flow is that the flow itself must
be functorial, which means we must have knowledge of how it acts both on objects and
morphisms. So far, the results discussed in Section 4 only correspond to the object information.
In the full version of the paper, we will describe how to explicitly build the morphisms
Sτε (G, f) → Sτ

′

ε′ (G, f) (i.e., function preserving maps). However, these morphisms are only
available for certain choices of parameters. Restricting our view only to (ε, τ) pairs for which
these morphisms exist gives us that for any choice of m ∈ [0, 1] we can set τ = mε to get
a flow.

▶ Theorem 5.1. For any m ∈ [0, 1], the map Sm : ([0,∞),≤) → End(Reeb); ε 7→ Smεε is a
functor and defines a categorical flow on Reeb.

Essentially, this m can be thought of as defining the slope of a line based at the origin
in the parameter space of Figure 7, and thus using Theorem 2.2, we have an interleaving
distance for any line with slope less than 1.

▶ Corollary 5.2. For any m ∈ [0, 1], Sm gives rise to an interleaving-type distance

dmI ((G, f), (H,h)) := inf{ε ≥ 0 | there exists a ε-interleaving with respect to Sm}.

Specifically, dmI is an extended pseudo-metric.

In the next theorem, we show that with the exception of m = 1, all the metrics created
are closely related in the following sense. Two metrics dA and dB are said to be strongly
equivalent if there are positive constants α1 and α2 such that α1dA ≤ dB ≤ α2dA. In the
following theorem, we show that dmI and dm

′

I are strongly equivalent if (m,m′) is contained
in the white region of Figure 8.

▶ Theorem 5.3. For any pair m,m′ ∈ [0, 1) with 0 ≤ m′ −m < 1 −m′ the metrics dmI and
dm

′

I are strongly equivalent. Specifically, given Reeb graphs (G, f) and (H,h),

dmI ((G, f), (H,h)) ≤ dm
′

I ((G, f), (H,h)) ≤ 1 −m

1 −m′ d
m
I ((G, f), (H,h))

The proof of this theorem is contained in the full version of the paper. Of course, as long
as we are willing to loosen the bounds, this result extends to any pair of m,m′ ∈ [0, 1).

▶ Corollary 5.4. For all pairs 0 ≤ M ≤ M ′ < 1, there exist positive constants C1 and C2
dependent on M and M ′ such that

C1d
M
I ((G, f), (H,h)) ≤ dM

′

I ((G, f), (H,h)) ≤ C2d
M
I ((G, f), (H,h)),

and thus dMI and dM ′

I are strongly equivalent metrics.

Proof. Consider M , M ′ given with M ≤ M ′. If M ′ ≤ 1+M
2 , then Theorem 5.3 applies

directly. Otherwise, we assume that M ′ ≥ 1+M
2 . Then dMI is equivalent to dαI for any α in

the interval (M, 1+M
2 ) and dM

′

I is equivalent to dβI for any β in the interval (2M ′ − 1,M ′).
Then there is a zigzag like the example in Figure 8 between α and β which remains in the
white region and for which each adjacent pair are strongly equivalent metrics. Equivalence
of metrics is transitive, so this implies dMI and dM

′

I are equivalent. ◀
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M ′

M

α

β
m′

m

0

1
2

1

1

m
′ <

1+
m
2

m
′ ≥

m

Figure 8 Parameter space for comparing metrics dm
I and dm′

I . The white region is allowable pairs
for Theorem 5.3. The vertices of the zigzag (shown as red points) give pairs of strongly equivalent
metrics which, when combined, show that M and M ′ are strongly equivalent in Corollary 5.4.

In particular, this corollary gives that the original Reeb graph interleaving distance (where
m = 0) is strongly equivalent to dmI for all m ∈ [0, 1). We note that there are many possible
zigzag paths which can be used to obtain this bound, but further exploration is needed to
determine which, if any, provide optimal constants.

6 Properties of the metrics

As noted, dmI is an extended pseudometric, which means it is possible for dmI ((G, f), (H,h))
to be infinite. However, it turns out this is not the case for broad classes of graphs. In fact,
in order to take infinite value, there must be no ε-interleaving with respect to Sm between
the two Reeb graphs. That being said, there are very specific instances where this metric
takes on infinite value.

The easiest case to handle is when m ∈ [0, 1), since we can use the characterization given
in [23] in conjunction with the equivalence of metrics Corollary 5.4.

▶ Proposition 6.1. Let m ∈ [0, 1). Then dmI ((G, f), (H,h)) < ∞ iff G and H have the same
number of path-connected components.

Proof. Note that d0
I = dI . By [23, Prop. 4.5], dI((G, f), (H,h)) is finite if and only if G and

H have the same number of path connected components. This combined with Corollary 5.4
gives the proposition. ◀

The characterization of when dmI is infinite for m = 1 is more complicated. Consider
a connected graph (G, f) with Im(G, f) = [a, b]. When m = 1, we are interested in
understanding the behavior of Sεε(G, f). By Proposition 4.1, we see that b−a ≥ 2(τ − ε) = 0,
so Sεε(G, f) = [a, b]. That is to say that the image of (G, f) is unchanged by Sεε . Now,
if we wanted to determine the interleaving distance d1

I for a given (G, f) and (H,h), one
requirement is always that we must smooth the given graphs enough for there to be a
morphism (G, f) → Sεε(H,h). However, because Sεε does not change the image, the function
preserving requirement of morphisms mean that if the graphs did not start with the same
image no choice of ε will make this possible. With this example in mind, we can characterize
when dmI takes on infinite values for m = 1.
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▶ Proposition 6.2. Let m = 1 and assume G and H are connected. Then

dmI ((G, f), (H,h)) < ∞ if and only if Im(G, f) = Im(H,h).

Further, if Im(G, f) = Im(H,h), then dmI ((G, f), (H,h)) ≤ |Im(G, f)|.

Proof. Note that by Proposition 4.1, for any connected G′ with Im(G′, f ′) = [a, b], we
have ImSεε(G′, f ′) = [a, b]. So the truncated smoothing maintains the image for every
connected component, and thus for the union of the connected components. Thus, we have
Im(G, f) = Im(Sεε(G, f)) and Im(H,h) = Im(Sεε(H,h)) for any choice of ε.

Assume we have an Sεε interleaving φ : (G, f) → Sεε(H,h) and ψ : (H,h) → Sεε(G, f).
Because φ and ψ are function preserving, φ(G) = Im(G, f) ⊆ Im(Sεε(H,h)) and ψ(H) =
Im(H,h) ⊆ Im(Sεε(G, f)). But since Sεε leaves the images unchanged, this implies that
Im(G, f) = Im(H,h).

Now assume Im(G, f) = Im(H,h). Let ε = |Im(G, f)| and consider the thickening
G× [−ε, ε] and a value a ∈ Im(G, f). We claim that (f + Id)−1(a) ⊆ G× [−ε, ε] is exactly
A = {(x, a − f(x)) | x ∈ G} and in particular, that it is homeomorphic to G. Indeed, for
any x ∈ G, a− f(x) ∈ [−ε, ε] and the point y = (x, a− f(x)) has image (f + Id)(y) = a so
A ⊆ (f + Id)−1(a). Moreover, for any (x, t) ∈ (f + Id)−1(a), f(x) + t = a so t = a− f(x),
thus (f + Id)−1(a) ⊆ A.

So, since G is connected and f is continuous, (f + Id)−1(a) ∼= G is a single connected
component for any a ∈ Im(G, f), and the same is true for (H,h). Because the Sεε smoothing
maintains the image, this implies Sεε(G, f) = Sεε(H, f) is a single line segment with the same
image. We obtain an interleaving by simply sending every point in (G, f) to the unique point
at the same height in Sε(H,h) and vice versa, so the dmI distance is finite. ◀

We next investigate stability, for this collection of metrics.

▶ Definition 6.3. Let (X, f) and (X, g) be R-spaces with the same total space X, and let
R(X, f) and R(Y, g) be the respective Reeb graphs. A metric d is said to be stable if

d(R(X, f), R(X, g)) ≤ ∥f − g∥∞.

The original Reeb interleaving distance, m = 0, is stable [23, Thm 4.4]. Unfortunately, dmI is
not stable in the strictest sense; to see why, consider the following simple example. Consider
two simple line segments for graphs, for example, (L, f1) and (L, f2) where Im(L, f1) = [−a, a]
and Im(L, f2) = [−b, b] for a < b. Then ∥f1 − f2∥∞ = b − a. However, the interleaving
distance requires that we smooth at least until [−b, b] = Im(L, f2) ⊆ Im(Sε(L, f1)). But by
Proposition 4.1, Im(Sε(L, f1)) = [a− (ε−mε), a+(ε−mε)]. Thus dmI (f1, f2) ≥ b−a

1−m ≥ b−a,
and is strictly greater if m ̸= 0. This means that b− a = ∥f1 − f2∥∞ < dmI ((L, f1), (L, f2)),
and thus dmI is not stable.

We can regain at least partial control of the distance, however, as dmI is still Lipschitz
when given a fixed choice of m.

▶ Proposition 6.4. Let m ∈ [0, 1). Assume (X, g1) and (X, g2) are given for a connected
space X and denote the associated Reeb graphs by (G, f) and (H,h) respectively. Then there
is a positive constant C dependent on m for which

dmI ((G, f), (H,h)) ≤ C∥g1 − g2∥∞.

Proof. By Corollary 5.4, d0
I and dmI are strongly equivalent metrics, so there is a positive

constant C for which dmI ≤ Cd0
I . Then because the Reeb graph interleaving distance d0

I is
stable, we have

dmI ((G, f), (H,h)) ≤ Cd0
I((G, f), (H,h)) ≤ C∥g1 − g2∥. ◀
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Because of the dependence on Corollary 5.4 where the optimal choice of zigzag to find the
constant C is unclear, we do not give an explicit formulation here. We conclude by connecting
our extended pseudometric to two other metrics for Reeb graphs, the functional distortion
distance [2] and the bottleneck distance [43]. The proof is a straightforward implication
of inequalities, so due to space constraints we simply state these results without formally
defining either. The interested reader can find further details on the metrics in [2] and [43].
▶ Proposition 6.5. The truncated interleaving distance is strongly equivalent to the functional
distortion distance. Further, defining dB as the bottleneck distance of the level set persistent
homology, we have the inequality dB ≤ 5dmI .
Proof. The interleaving distance, d0

I , is strongly equivalent to the functional distortion
distance by [4, Thm 16]. So by Corollary 5.4 and transitivity of strong equivalence, they are
each strongly equivalent to dmI for any m ∈ [0, 1). To obtain the inequality, we use the bound
on the bottleneck distance of level set persistent homology by the Reeb graph interleaving
distance in [9, Thm. 4.13]. ◀

7 Conclusion and discussion

Our primary aim has been to introduce the concept of truncated smoothing and establish
properties and connections of this operation. We have several reasons for considering this as a
similarity measure on Reeb graphs. First, it has potential for providing bounds for the stable
interleaving distance via the equivalence of metrics. Second, we came to this definition while
investigating drawings of Reeb graphs and when planarity is achievable (that, is whether
a Reeb graph has a planar drawing which respects the function in the y-coordinate). In a
subsequent paper, we will show that while traditional smoothing does not maintain planarity,
the truncated smoothing does for ε ≤ τ ≤ 2ε.

We suspect additional potential applications of truncated smoothing in comparing geo-
metric or planar graphs, since it simplifies the graph’s topology (via smoothing) without
suffering from extensive expansion of the co-domain or destruction of desirable combinatorial
properties like level planarity. Truncated smoothing also allows for interesting manipulation
of the extended persistence diagram of the Reeb graph and computation of morphs between
Reeb graphs; again, we defer details to future work, as a full classification of that manipulation
is necessary.

We suspect that the loss of stability discussed in Section 6 is not as dire as it seems. If
nothing else, Proposition 6.4 gives a Lipschitz constant in advance dependent only on m, so
it is possible to upper bound the difference using these new interleaving distances.

While we are able to connect our collection of metrics to several Reeb metrics (Propos-
ition 6.5), we have not investigated further connections to other metrics as of yet. One
particularly interesting future direction is to determine whether this collection of metrics
provides results related to strong equivalence between the interleaving distance and the
universal distance of [3]. Perhaps this broader collection of metrics will help to provide
stronger bounds between the various metrics on Reeb graphs, since strong equivalence with
one is strong equivalence with all.
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