542 research outputs found

    Multi-Terabyte EIDE Disk Arrays running Linux RAID5

    Full text link
    High-energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. Grid Computing is one method; however, the data must be cached at the various Grid nodes. We examine some storage techniques that exploit recent developments in commodity hardware. Disk arrays using RAID level 5 (RAID-5) include both parity and striping. The striping improves access speed. The parity protects data in the event of a single disk failure, but not in the case of multiple disk failures. We report on tests of dual-processor Linux Software RAID-5 arrays and Hardware RAID-5 arrays using a 12-disk 3ware controller, in conjunction with 250 and 300 GB disks, for use in offline high-energy physics data analysis. The price of IDE disks is now less than $1/GB. These RAID-5 disk arrays can be scaled to sizes affordable to small institutions and used when fast random access at low cost is important.Comment: Talk from the 2004 Computing in High Energy and Nuclear Physics (CHEP04), Interlaken, Switzerland, 27th September - 1st October 2004, 4 pages, LaTeX, uses CHEP2004.cls. ID 47, Poster Session 2, Track

    A Case for Redundant Arrays of Hybrid Disks (RAHD)

    Get PDF
    Hybrid Hard Disk Drive was originally concepted by Samsung, which incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage and the low-power and fast read access of NAND technology inspires us to construct Redundant Arrays of Hybrid Disks (RAHD) to offer a possible alternative to today’s Redundant Arrays of Independent Disks (RAIDs) and/or Massive Arrays of Idle Disks (MAIDs). We first design an internal management system (including Energy-Efficient Control) for hybrid disks. Three traces collected from real systems as well as a synthetic trace are then used to evaluate the RAHD arrays. The trace-driven experimental results show: in the high speed mode, a RAHD outplays the purely-magnetic-disk-based RAIDs by a factor of 2.4–4; in the energy-efficient mode, a RAHD4/5 can save up to 89% of energy at little performance degradationPeer reviewe

    Filesystems performance in GNU/Linux multi-disc data storage

    Get PDF
    This paper introduces research results of I/O performance for modern filesystems configured on multi-disk storage configuration in GNU/Linux operating system. Filesystem performance tests include basic file operations statistics depending on local disks management software RAID or logical volume manager LVM. The results allow to choose the appropriate filesystem to data storage space configuration in GNU/Linux, that provides bests performance

    Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Get PDF
    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications

    Introduction to Multiprocessor I/O Architecture

    Get PDF
    The computational performance of multiprocessors continues to improve by leaps and bounds, fueled in part by rapid improvements in processor and interconnection technology. I/O performance thus becomes ever more critical, to avoid becoming the bottleneck of system performance. In this paper we provide an introduction to I/O architectural issues in multiprocessors, with a focus on disk subsystems. While we discuss examples from actual architectures and provide pointers to interesting research in the literature, we do not attempt to provide a comprehensive survey. We concentrate on a study of the architectural design issues, and the effects of different design alternatives
    corecore