
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

1997

Efficient Striping Techniques for Variable Bit Rate
Continuous Media File Servers
Prashant J. Shenoy
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Shenoy, Prashant J., "Efficient Striping Techniques for Variable Bit Rate Continuous Media File Servers" (1997). Computer Science
Department Faculty Publication Series. 201.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/201

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/201?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Efficient Striping Techniques for Variable Bit Rate

Continuous Media File Servers �

Prashant J. Shenoy Harrick M. Vin
Department of Computer Science, Department of Computer Sciences,

University of Massachusetts at Amherst University of Texas at Austin
Amherst, MA 01003 Austin, TX 78712

shenoy@cs.umass.edu vin@cs.utexas.edu

Abstract

The performance of striped disk arrays is governed by two parameters: the stripe unit size and the degree
of striping. In this paper, we describe techniques for determining the stripe unit size and degree of striping for
disk arrays storing variable bit rate continuous media data. We present an analytical model that uses the server
configuration and the workload characteristics to predict the load on the most heavily loaded disk in redundant and
non-redundant arrays. We then use the model to determine the optimal stripe unit size for different workloads. We
also use the model to study the effect of various system parameters on the optimal stripe unit size. To determine
the degree of striping, we first demonstrate that striping a continuous media stream across all disks in the array
causes the number of clients supported to increase sub-linearly with increase in the number of disks. To maximize
the number of clients supported in large arrays, we propose a technique that partitions a disk array and stripes
each media stream across a single partition. Since load imbalance can occur in such partitioned arrays, we present
an analytical model to compute the imbalance across partitions in the array. We then use the model to determine
a partition size that minimizes the load imbalance, and hence, maximizes the number of clients supported by the
array.

Keywords : Continuous media file servers, striping techniques, disk arrays

1 Introduction

1.1 Motivation

Advances in computing and communication technologies over the past few years have triggered the development of
a wide range of information services (e.g., electronic newspapers, distance learning and self-paced education, video
mail, etc.). All of these services involve storing, accessing, and processing multiple types of information (e.g., text,
audio, video, imagery, etc., - which we collectively refer to asmultimedia). Realizing such services will require the
development of file servers that can efficiently handle multiple data types. To do so, such file servers will be required
to employ efficient placement techniques.

To help formulate the problem of efficient placement, let us first introduce some terminology. Digitization of audio
yields a sequence of samples and that of video yields a sequence of frames. A continuously recorded sequence of
audio samples or video frames is referred to as amedia stream. Due to the large storage and bandwidth requirements

�A preliminary version of this paper appeared in the Proceedings of the Seventh IEEE International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV’97), pages 25—36, St. Louis, MO, May 1997.

1

of such media streams, multimedia file servers are generally founded ondisk arrays. To efficiently utilize a disk
array, such servers stripe (i.e., interleave) media streams across disks in the array. A striping policy is governed by
two parameters: thestripe unit size, which denotes the maximum amount of logically contiguous data stored on a
single disk; and thedegree of striping, which refers to the number of disks across which a particular media stream is
striped.

Recently, techniques for determining the stripe unit size and the degree of striping for workloads consisting
of textual and numeric data accesses have been proposed [3, 5, 14]. However, these techniques are not directly
applicable to file servers optimized for storing audio or video (referred to ascontinuous media) due to the following
fundamental characteristics:

� Real-time requirements of continuous media: Textual and numeric data accesses require good response times
but no absolute performance guarantees. In contrast, due to its real-time nature, continuous media accesses
require the file server to provide bounds on response times. Hence, a stripe unit size that minimizes the average
response time is considered optimal for textual and numeric data [3], while a stripe unit size that minimizes
the tail of the response time distribution (possibly at the expense of an increased average response time) is
more desirable for continuous media data.

This fundamental difference in the optimization criterion has a significant impact on the selection of stripe
unit size. To illustrate, consider Figure 1(a), which depicts the histogram of the response time observed for
two different stripe unit sizes (obtained using a workload of 60 video clients accessing an array of 16 disks). It
shows that stripe unit sizes of 32KB and 64KB yield average response times of 30ms and 32ms, respectively.
The figure also shows that the histogram for the 32KB stripe unit size has a longer tail. If data accesses do not
impose any real-time constraints, 32KB would be chosen as the appropriate stripe unit size. For accesses with
real-time constraints, a stripe unit size of 64KB would be more desirable. As shown in Figure 1(b), the block
size that minimizes the average response time continues to differs from one that minimizes the99th percentile
of the response time (i.e., the tail of the histogram) across a wide range of client workloads.

� Periodic and sequential nature of continuous media:In general, textual and numeric data accesses consist of
aperiodic reads and writes, while continuous media workloads consist of reads and writes that are periodic
and sequential. Moreover, continuous media applications have a significantly larger data rate requirement as
compared to textual applications. These differences in workload characteristics affect the optimal stripe unit
size.

Due to the periodic and sequential nature of continuous media, most multimedia file servers employ aserver-
pusharchitecture to service continuous media requests. Such servers service clients by periodically accessing
and transmitting data without an explicit request for each access (in contrast to aclient-pull architectureem-
ployed by conventional file servers that access data only in response to explicit client requests). The workload
seen by disks in a server-push architecture is markedly different from those seen by disks in a client-pull
architecture. Due to these differences, techniques developed for conventional client-pull based servers are
inapplicable to server-push based servers.

Due to these differences, novel techniques that optimize the performance of a multimedia file server for continuous
media data must be developed.

1.2 Research Contributions of This Paper

In this paper, we propose techniques for determining the stripe unit size and the degree of striping for file servers
storing variable bit rate continuous media data. We consider a file server that services clients by proceeding in terms
of periodic rounds and argue that, in such environments, a stripe unit size that minimizes the service time (i.e., the
total time spent in retrieving the data requested in a round) of the most heavily loaded disk is optimal. To determine
the optimal stripe unit size, we develop an analytical model that uses the server configuration and a distribution of

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

Response time (ms)

 (a) 16 disks, 60 clients

stripe unit size = 32kB
stripe unit size = 64kB

0

20

40

60

80

100

20 40 60 80 100 120

O
pt

im
al

 s
tr

ip
e

un
it

si
ze

 (
kB

)

Number of clients

 (b) 16 disks

Average response time
99th percentile of the response time

Figure 1 : Effect of different metrics on the stripe unit size.

the number of blocks accessed by a client in a round to predict the service time of the most heavily loaded disk in
both redundant and non-redundant arrays. By determining the service time of the most heavily loaded disk across a
range of block sizes, a stripe unit size that minimizes the service time can be chosen. We validate the accuracy of our
model through extensive trace-driven simulations. We demonstrate that, contrary to conventional wisdom, a large
stripe unit size does not necessarily yield good server performance. Instead, such a stripe unit size can adversely
affect the quality of service guarantees provided to clients, thereby reducing the number of clients supported by the
server. We also use the model to: (1) evaluate the effect of various system parameters (such as the number of clients,
number of disks, etc.) on the stripe unit size, and (2) derive techniques for selecting an optimal stripe unit size for
various design scenarios.

We then use the model to determine the optimal degree of striping for variable bit rate media streams. We
demonstrate that striping a media stream across the entire array causes the number of clients supported to increase
sub-linearly with increase in number of disks. To maximize the number of clients supported in large arrays, we
propose a technique that partitions a disk array and stripes each media stream across a single partition. Since load
imbalances can occur in such partitioned arrays, we present a model to compute the imbalance across partitions.
We then use the model to determine a partition size that minimizes the load imbalance, and hence, maximizes the
number of clients supported by the array.

The rest of this paper is organized as follows. In Section 2, we address the issue of determining an optimal stripe
unit size. Section 3 describes techniques for determining the degree of striping. Section 4 describes related work,
and finally, Section 5 summarizes our results.

2 Determining the Stripe Unit Size

Consider a multimedia server that interleaves media streams across disks by storing successive blocks of a stream
on consecutive disks in a round-robin manner. The unit of interleaving, referred to as amedia blockor astripe unit,
denotes the maximum amount of logically contiguous data stored on a single disk.1 Due to the periodic nature of
media playback, the server services multiple clients by proceeding in periodicrounds. During each round, the server
retrieves a fixed number ofmedia units(e.g., video frames or audio samples) for each client. To ensure continuous
playback, the number of media units accessed for a client must be sufficient to sustain its playback rate, and the
service time (i.e., the total time spent in retrieving media units during a round) must not exceed the duration of a
round.

If each media stream is compressed using a variable bit rate (VBR) compression algorithm, then the sizes of
successive media units within a stream will vary. Although each client accesses a fixed number of media units in
each round, due to variable media unit sizes, the number of blocks requested by the client canvary from one round

1We shall use the terms media block and stripe unit interchangeably in this paper.

3

to another. The server can service such clients either by retrieving a variable number of blocks across rounds, or
by retrieving a fixed number of blocks across rounds and employing prefetching and buffering schemes to smooth
out the variations. Depending on the amount of variation in the stream bit rate, the latter approach can substantially
increase the initiation latency (since sufficient amount of data must be prefetched before the client can initiate
playback). Our experiments with MPEG-1 video clients indicate that, for a round duration of 1s, accessing data
at the average bit rate can cause the initiation latency to be more than 20s.2 In contrast, since no smoothing is
performed when a variable number of blocks are accessed, the clients can initiate playback without any delay.
However, accessing a variable number of blocks can cause load imbalances across disks in the array and can reduce
the number of clients supported by the server. A key challenge is to devise striping techniques that reduce the load
imbalance so as to maximize the number of clients supported. In this paper, we assume that the server services
clients by accessing a variable number of blocks across rounds, and determine the stripe unit size and the degree of
striping that achieves this objective.

In servers that access a variable number of blocks, the set of disks accessed by different clients during a round are
different, and hence, the total number of blocks accessed can vary from one disk to another. Since some disks are
more heavily loaded than others, the service time of some of these disks may occasionally exceed the round duration,
causing playback discontinuities at client sites. To minimize the frequency of such playback discontinuities, the
server must minimize the service time of the most heavily loaded disk in the array. The service time of the most
heavily loaded disk depends on the media block size. To observe this, consider a small media block size. Such
a block size increases the number of blocks accessed from the array during a round, thereby distributing the load
across disks and reducing the load imbalance. However, it also increases the overhead due to seek and rotational
latency, thereby increasing the service time of the most heavily loaded disk. In contrast, a large block size reduces
the overhead of seek and rotational latency, but increases the load imbalance, and hence, the service time of the
most heavily loaded disk. The server must select a media block size that balances these tradeoffs andminimizes the
service time of the most heavily loaded disk in the array.

In what follows, we present an analytical model that uses the characteristics of the workload and the configuration
of the server to predict the service time of the most heavily loaded disk in non-redundant and redundant disk arrays.
By computing the service time of the most heavily loaded disk across a range of block sizes, a media block size that
minimizes the service time can be chosen.

2.1 Analytical Models for Determining the Load on the Array

2.1.1 A Model for Non-redundant Arrays

Consider a multimedia server that interleaves media streams across a disk array. Given the configuration of the
server (e.g., number of disks, their physical characteristics, the round duration, etc.) and the client characteristics
(e.g., number of clients, trace of the media unit sizes for each client, playback rate, etc.), the service time of the most
heavily loaded disk in redundant and non-redundant disk arrays can be computed as follows:

1. Compute the distribution of the number of blocks accessed from a disk by each client during a round using a
trace of media unit sizes.

2. Compute the distribution of the total number of blocks accessed from a disk by summing the number of blocks
requested by each client from that disk.

3. Compute the distribution of the number of blocks accessed from the most heavily loaded disk.

2The latency is smaller if the client retrieves the file as a piecewise constant bit rate (CBR) stream [18], rather than a pure CBR stream.
However, piecewise CBR retrievals result in a variable load on disks, since bit-rate of clients changes over time and different clients retrieve
data at different rates at any instant. Our models are valid for VBR as well as smoothed piecewise CBR retrievals.

4

R = requested block

1 2 3 j DD−1D−2Disks

R R R R R

First of the requested blocks

Case 1 : Client requests 5 blocks

First of the requested blocks

1 2 3 j DD−1D−2Disks

R R RR

Case 2 : Client requests (D+2) blocks

R R R R

R RRR

Figure 2 : Different scenarios in which clienti accesses a block from diskj.

4. Given the distribution of the number of blocks accessed from the most heavily loaded disk, compute the
service time distribution for the disk using a disk model.

To derive the model for non-redundant arrays, consider a server that interleaves media streams across an array of
D disks. Letn clients access the server, each retrieving a media stream,3 and letB denote the media block size.
Since the server accesses a fixed number of media units for each client during a round, the distribution of the number
of blocks accessed by the client during a round can be determined from a trace of the media unit sizes. Letbki ,
obtained from this distribution, denote the probability that clienti accessesk blocks from the array in a round, and
let pkij denote the probability that clienti accessesk blocks from diskj in a round. To computep1ij, observe that
client i will access exactly one block from diskj in a round if: (1) it requestsm blocks (1 � m � D) from the
array and the first of these blocks is stored either on diskj or any of the previousm � 1 disks; or (2) it requests
D+m blocks (1 � m < D) from the array and the first of these block is stored any diskother thandisk j or any of
the previousm� 1 disks. Figure 2 illustrates these cases. Due to the VBR nature of media streams, the number of
blocks accessed by a client varies from one round to another. Hence, after a small number of rounds, the first block
is equally likely to be accessed from any of the disks in the array. Consequently,

p1ij =
DX

m=1

bmi � m
D

+
D�1X
m=1

bD+mi � D �m

D
(1)

Generalizing, clienti will accessk blocks (k = 1; 2; 3:::) from disk j if: (1) it requests(k � 1) � D + m blocks
(1 � m � D) from the array and the first of these blocks is stored on diskj or any of the previousm� 1 disks; or
(2) it requestsk �D+m blocks (1 � m < D) from the array and the first of these blocks is stored on any disk other
than diskj or any of the previousm� 1 disks. Hence,

pkij =
DX

m=1

b
(k�1)�D+m
i � m

D
+

D�1X
m=1

bk�D+m � D �m

D
(2)

Lastly, the probability that clienti does not access diskj is p0ij = 1�P1
k=1 p

k
ij.

LetXij be a random variable denoting the number of blocks accessed by clienti from diskj during a round. Then,

P (Xij = k) = pkij (3)

Then, the total number of blocks accessed from diskj during a round,Nj, can be computed as

Nj =
nX
i=1

Xij (4)

3Since continuous media requests are dominated by read requests, we confine our focus to read requests.

5

Due to the VBR nature of video streams, the number of blocks accessed by clients from the array are independent
of each other. Thus,X1j;X2j ; :::;Xnj are independent random variables, and hence, the distribution ofNj can be
obtained by applying the the z-transform4 to (4). That is,

Z(Nj) =
nY
i=1

Z(Xij) (5)

where
Z(Xij) = p0ij + z p1ij + z2 p2ij + z3 p3ij + � � � (6)

Then, the number of blocks accessed from the most heavily loaded disk5 is given by

Nmax = max(N1;N2; � � � ;ND) (7)

Due to the round robin nature of media stream placement, the number of blocks accessed from a disk is not inde-
pendent of the load on its neighboring disks. Since the precise dependence of these random variables on each other
is difficult to characterize, and since the maximum ofD dependent random variables is difficult to compute, as an
approximation we assume thatNjs are independent of each other. Later in this section, we demonstrate that this
approximation does not cause any inaccuracies in the predictions of the model. Then, the distribution ofNmax can
be computed as

FNmax
(x) = FN1

(x) � FN2
(x) � � �FND

(x) (8)

whereFNj
is the cumulative probability distribution function of the random variableNj [16].

Having determined the distribution of the number of blocks accessed from the most heavily loaded disk, the
service time of the disk can then be computed by using a disk model. We use one such model that has been proposed
in the literature [14, 22] (see Appendix A for the complete disk model). The service time to accessNmax blocks of
sizeB as predicted by the disk model is:

�max = Nmax � (ts + tr) +Nmax � B � tt (9)

wherets andtr denote the seek time and rotational latency incurred while accessing a block from disk andtt denotes
the transfer time for a unit amount of data.

Thus, given the server configuration and the workload characteristics, the model computes the service time dis-
tribution of the most heavily loaded disk for a particular block size. Moreover, the model also yields the distribution
of the number of blocks accessed from a disk with average load (i.e.,Nj). The service time of such a disk can then
be computed using the disk model.

2.1.2 A Model for Redundant Arrays

Since disk arrays are highly susceptible to disk failures, multimedia servers employ redundancies in data storage to
guarantee high availability of data. Most redundant arrays are based on theRedundant Array of Independent Disks
(RAID)architecture [6, 17]. RAID arrays compute redundant blocks (referred to asparity) by taking an exclusive-or
operation over data blocks stored onG � 1 disks, whereG > 2, and store it on another disk. The parity block
together with all the data blocks over which parity is computed is referred to as aparity group. In the presence of
a disk failure (also referred to as the degraded mode), the server reconstructs a block stored on the failed disk by

4The z-transform of a random variableU is the polynomialZ(U) = a0 + za1 + z2a2 + � � � where the coefficient of theith term in the
polynomial represents the probability that the random variable equalsi. That is,P (U = i) = ai. If U1;U2; :::;Un aren independent random
variables, andY =

Pn

i=1
Ui, thenZ(Y) =

Qn

i=1
Z(Ui). The distribution ofY can then be computed using a polynomial multiplication of

the z-transforms ofU1;U2; � � � ;Un [16].
5Note that the disk that is most heavily loaded will vary from one round to another. Regardless of which disk is the most heavily loaded

in a particular round,Nmax represents its load.

6

accessing the parity block and data blocks of the parity group stored on surviving disks. A commonly used RAID
architecture is RAID-5 which uses block-interleaved parity and uniformly distributes parity blocks across disks in
the array. The multiple RAID-5 architecture is an extension of the RAID-5 array in which the array is partitioned into
clusters of disks, with each cluster independently computing parity information [6]. In the rest of this section, we
assume a multiple RAID-5 architecture for our model. However, the basic approach used in our model is applicable
to other RAID architectures as well.

Consider a multimedia server servicingn clients from a RAID-5 array consisting ofD disks. LetG denote the
parity group size, whereG � D. Then the array containsP = D=G clusters. Let us assume that the server computes
parity blocks over a sequence of successive blocks from the same media stream (i.e., all data blocks of a parity group
are consecutive blocks of the same media stream). Consequently, the server stores successive blocks of a media
stream on disks storing data blocks of the parity group and skips over disks storing the parity blocks. Since each of
theP clusters contains a disk storing a parity block, a request for more thanD�P consecutive blocks causes a disk
to be reaccessed.

Fault-free Case

To compute the service time of the most heavily loaded disk in the fault-free mode, letbki denote the probability that
client i accessesk blocks from the array during a round, and letpkij denote the probability that clienti accessesk
blocks from diskj during a round. To computep1ij , note that clienti will access diskj only if disk j stores a data
block (i.e., does not store a parity block). Moreover, clienti will access a block from diskj if: (1) it requestsm
blocks (1 � m � D�P) from the array and the first of these blocks is stored on diskj or any of the previousm�1

disks storing data blocks; or (2) it requestsD�P +m blocks (1 � m < D�P) from the array and the first of these
blocks is stored on any disk storing data blocks other than diskj or any of the previousm � 1 disks. Since parity
blocks are uniformly distributed across disks, one out of everyG blocks stored on a disk is a parity block. Hence,
the probability that diskj stores a data block is(1� 1=G). Due to the VBR nature of media streams, the first block
is equally likely to be accessed from any of theD � P disks storing data blocks. Hence, we get

p1ij = (1� 1

G
) �

D�PX
m=1

bmi � m

D � P
+

D�P�1X
m=1

b
(D�P)+m
i � D � P �m

D � P

!
(10)

Generalizing, the probability that clienti accessesk blocks from diskj is

pkij = (1 � 1

G
) �

D�PX
m=1

b
(k�1)�(D�P)+m
i � m

D � P
+

D�P�1X
m=1

b
k�(D�P)+m
i � D � P �m

D � P

!
(k = 1; 2; 3; : : :) (11)

SinceP = D
G

, (1 � 1
G
) can be rewritten asD�P

D
. Substituting this value in the above equation and simplifying, we

get

pkij =
D�PX
m=1

b
(k�1)�(D�P)+m
i � m

D
+

D�P�1X
m=1

b
k�(D�P)+m
i � D � P �m

D
(k = 1; 2; 3; : : :) (12)

Let Xij be the random variable representing the number of blocks accessed by clienti from disk j during a round.
ThenP (Xij = k) = pkij. Using this distribution ofXij , the distributions of the number of blocks accessed and
the service time of the most heavily loaded disk in the fault-free state can be derived using the method presented in
Section 2.1.1.

Failure Case

To compute the service time of the most heavily loaded disk in degraded mode, assume that diskf in the array
experiences a failure, where1 � f � D. Since each cluster independently computes parity, disks that do not belong

7

R = requested block
A = additional block

1 2 3 j DD−1D−2Disks

R R

f

A A A A AAR R

1 2 3 j DD−1D−2Disks

R R R R R

f

First block is between disks j and f

Case 1 : Client accesses disk j but not disk f Case 2: Client accesses disk f but not disk j
(an additional block is accessed from disk j)

1 2 3 j DD−1D−2Disks

R R RR R

f

AA AAA

 Case 3 : Client accesses both disks j and f

Figure 3 : Different scenarios in which clienti accesses a block from diskj in degraded mode.

to the cluster containing diskf are unaffected by this failure, and hence, for these disks, the number of blocks
accessed in a round is the same as that in the fault-free state. All disks belonging to the cluster containing diskf ,
however, will experience an increase in load whenever a client accesses a block from diskf . To compute the number
of blocks accessed by clienti from diskj belonging to the cluster containing diskf , let � denote the number of disks
storing data blocks contained between disksj andf (including diskj), and let� denote the number of disks storing
data blocks not contained between disksj andf . Observe that, if no parity block is stored on a disk between disks
j andf , then� =j j � f j. Otherwise� =j j � f j �1. In either case,� = D � P � �.

To computep1ij , note that clienti will access exactly one block from diskj if it requestsm blocks from the array
and one of the following three conditions hold: (1) a block is requested from diskj but not from diskf , or (2) a
block is requested from diskf but not from diskj (and hence, a block must be accessed from diskj to reconstruct
the block on diskf), or (3) a block is requested from both disksj andf and both blocks belong to the same parity
group (and hence, no additional block needs to be accessed from diskj). Figure 3 illustrates these cases for an array
with G = D.

To compute the probability that clienti accesses diskj but not diskf , let us first consider the case whenf < j.
Client i will access diskj only if disk j stores a data block of the parity group. Moreover, clienti will access a block
from disk j but not diskf if: (1) it requestsm blocks (1 � m � �) from the array and the first of these blocks is
stored on diskj or any of the previousm� 1 disks; or (2) it requests�+m blocks (1 � m � �� �) from the array
and the first of these blocks is stored on diskj or any of the previous� � 1 disks; or (3) it requests�+m blocks
(1 � m � � � 1) from the array and the first of these blocks is stored on diskj or any of the previous� �m � 1

disks. A similar argument holds for the case whenf > j, except that we must consider the last block accessed by
the client instead of the first block. Since the first (last) block is equally likely to be stored on any of theD�P disks
storing data blocks, and since the probability that diskj stores a data block is(1� 1

G
), we get

p0 = (1� 1

G
) � (

�X
m=1

bmi � m

D � P
+

���X
m=1

b�+mi � �

D � P
+

�X
m=1

b�+mi � � �m

D � P
) (13)

SubstitutingD�P
D

for (1� 1
G
) in the above equation and simplifying, we get

p0 =
�X

m=1

bmi � m
D

+
���X
m=1

b�+mi � �
D

+
�X

m=1

b�+mi � � �m

D
(14)

By symmetry, the probability that clienti accesses diskf but not diskj is the same as the probability that it accesses
disk j but not diskf .

To compute the probability that clienti accesses a block from both disksj andf , observe that the client must
request at least� blocks from the array (see Figure 3). Moreover, to be able to access diskj andf both disksj and
f must store data blocks. Hence, the client accesses blocks belonging to the same parity group from disksj andf
if (1) it requests(m + �) blocks from the array, (0 � m � �) and the first of these blocks is stored on a disk not

8

contained between disksj andf ; or (2) it accesses(D � P +m) blocks and the first of these blocks is stored on
a disk such that only one block is accessed from disksj andf . Since two out of everyG parity groups will store a
parity block on disksj or f , the probability that neither diskj nor diskf stores a parity block is(1 � 2

G
). Hence,

the probability of accessing blocks belonging to the same parity group from disksf andj is

p00 = (1� 2

G
) �

�X
m=0

bm+�
i � m+ 1

D � P
+

�X
m=1

bD�P+mi � ��m+ 1

D � P

!
(15)

Hence, summing the probability of the three cases, we getp1ij(�;�) = 2 � p0 + p00, That is,

p1ij(�;�) = 2 �

�X
m=1

bmi � m
D

+
���X
m=1

b�+mi � �
D

+
�X

m=1

b�+mi � � �m

D

!
+

(1� 2

G
) �

�X
m=0

bm+�
i � m+ 1

D � P
+

�X
m=1

bD�P+mi � ��m+ 1

D � P

!
(16)

The value ofp1ij computed in the above equation is a function of parameters� and�. Depending on whether or not
a parity block is stored on a disk between disksj andf , we have two cases. If a parity block is stored on a disk
between disksj andf , then we get�1 =j j � f j �1 and�1 = D � P � �1. Since parity blocks are uniformly
distributed across disks in the array, and the probability that of this case is is�1

G
. If no parity block is stored between

disksj andf , then we get�2 =j j � f j and�2 = D � P � �2, and the probability of this case is(1� �1
G
).

Hence, the overall probability that clienti accesses one block from diskj is

p1ij =
�1
G
� p1ij(�1;�1) + (1� �1

G
) � p1ij(�2;�2) (17)

Generalizing, the probability that clienti accessesk blocks from diskj is

pkij =
�1
G
� pkij(�1;�1) + (1� �1

G
) � pkij(�2;�2) (18)

where

pkij(�;�) = 2 �

�X
m=1

bm+�
i � m

D
+

���X
m=1

b�+m+�
i � �

D
+

�X
m=1

b�+m+�
i � � �m

D

!
+

(1� 2

G
) �

�X
m=0

bm+�+�
i � m+ 1

D � P
+

�X
m=1

bD�P+m+�
i � ��m+ 1

D � P

!
(19)

and� = (k � 1) � (D � P). LetXij be the random variable representing the number of blocks accessed by client
i from disk j during a round. ThenP (Xij = k) = pkij. Then, using this distribution ofXij, the distribution of the
number of blocks accessed and the service time of the most heavily loaded disk in the degraded mode can be derived
in a manner similar to that in Section 2.1.1.

2.2 Validation of the Models

To validate our models, we have built an event-based, trace-driven disk array simulator calledDiskSim.6 We digitized
a number of traces and used these traces to run simulations over a wide range of system parameters (e.g., different
number of clients, different number of disks, different round durations, etc.). The characteristics of the traces are

6The source code forDiskSimis publicly available from http://www.cs.utexas.edu/users/dmcl/software/disksim.

9

150

200

250

300

350

400

0 50 100 150 200 250 300

S
er

vi
ce

 ti
m

e
(m

se
c)

Block size (kB)

 (a) RAID-0, 16 disks, 60 clients, 30 frames/s

Average loaded disk (simulator)
Average loaded disk (model)

340

360

380

400

420

440

460

480

500

0 50 100 150 200 250 300

S
er

vi
ce

 ti
m

e
(m

se
c)

Block size (kB)

 (b) RAID-0, 16 disks, 60 clients, 30 frames/s

Most heavily loaded disk (model)
Most heavily loaded disk (simulator)

Figure 4 : Variation in the service time of the average loaded disk and the most heavily loaded disk.

350

400

450

500

550

600

650

700

750

800

850

0 50 100 150 200 250 300

S
er

vi
ce

 T
im

e
(m

se
c)

Block size (kB)

 RAID-0, 16 disks, 60 clients, 30 frames/s

70th percentile (model)
70th percentile (simulator)

80th percentile (model)
80th percentile (simulator)

95th percentile (model)
95th percentile (simulator)

Figure 5 : Validation of the model for various percentiles of the service time.

listed in Table 1. For each combination of parameters, we conducted multiple simulation runs and computed the
95% confidence intervals of the expected number of blocks accessed and the expected service time of the most
heavily loaded disk. To validate the model for non-redundant arrays, we computed the expected number of blocks
accessed and the expected service time of the most heavily loaded disk for each workload. The values predicted by
the model were found to be within the 95% confidence intervals obtained from simulations. Figures 4(a) and (b)
plot these values for one such workload. Similar results were obtained for various percentiles of the service time of
the most heavily loaded disk (see Figure 5). The model for redundant arrays was validated similarly [19]. Thus, the
simulation results validate the predictions made by our analytical models over a large parameter space.

The service time graphs of the average loaded disk and the most heavily loaded disk in Figure 4 lead us to the
following observations:

� As shown in Figure 4(a), the service time of the average loaded disk decreases monotonically with increasing
block size. This is because increasing the block size decreases the number of blocks accessed from the disk,
thereby reducing disk seek and rotational latency overheads.

� The service time of the most heavily loaded disk, on the other hand, decreases initially and then starts in-
creasing with increase in block size (see Figure 4(b)). To explain this behavior, let us first introduce some
terminology. LetcNmax andb�max, respectively, denote the expected number of blocks accessed from the most
heavily loaded disk and the expected service time of the most heavily loaded disk during a round, and letb�avg
denote the expected service time of the average loaded disk. Then, the imbalance in the service times of the
most heavily loaded disk and the average loaded diskIs (referred to as the load imbalance) is defined as

Is =
b�max � b�avgb�max

10

Table 1 : Characteristics of Video Traces

MPEG Encoding Length Frame Bit rate
File Pattern (frames) rate Mb/s
Frasier I(BBP)3BB 5960 30 1.49
Newscast I(BBP)3BB 9000 30 2.33
Flintstones I(BBP)3BB 9000 30 1.67

= 1� b�avgb�max (20)

From (9), the portion of the service time spent in disk seek and rotational latency iscNmax � (ts + tr) =b�max � cNmax �B � tt. Hence, the overhead due to seek and rotational latencyO can be defined as:

O =
b�max � cNmax � B � ttb�max

= 1�
cNmax � B � ttb�max (21)

Assuming a fixed server configuration and workload characteristics, increasing the block size decreases the
number of blocks accessed from the array. The smaller the number of blocks being accessed, the smaller is the
probability of achieving equitable distribution of load across disks (since the array becomes sparsely loaded).
Hence, increasing block size yields an increase in the load imbalanceIs. On the other hand, increasing the
block size causes the seek and rotational latency overhead to decrease. Figure 6 shows these variations inIs
andO.

For each media block size, the service time of the most heavily loaded disk is governed by the relative values of
Is andO. As shown in Figure 6, at small block sizes, the latency overhead dominates, and hence the service
time decreases with increase in block size. At large block sizes, the load imbalance dominates the latency
overhead, and causes the service time to increase with increase in block size. Consequently, the service time
of the most heavily loaded disk decreases initially and then starts increasing with increase in block size.

From the above analysis, we conclude that minimizing the service time of the average loaded disk requires the server
to choose a block size that is as large as possible. In contrast, minimizing the service time of the most heavily loaded
disk requires the server to choose a block size that minimizes the combined effects ofIs andO. To maximize the
number of clients supported for best-effort workloads, the server must minimize the service time of the average
loaded disk, while for continuous media workloads, minimizing the service time of the most heavily loaded disk is
more desirable. Hence, the optimal block size obtained for the two environments can differ significantly.

The precise value of the optimal block size for a continuous media workload depends on the quality of service
requirements of clients and the values of various system parameters (such as the number of clients, their playback
rate, the number of disks, etc.). In what follows, we examine the effect of these factors on the optimal block size.
For each parameter, we also compute the range of block sizes that yields a service time withinx% of the minimum.
The upper and lower bounds of this set of block sizes define thex% optimal envelopefor the workload [3, 22]. By
choosing a block size that is contained within thex% optimal envelope of all values of the parameter, the server can
ensure performance that is withinx% of the optimal regardless of the workload.

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 m
et

ric

Block size (kB)

 RAID-0, 16 disks, 60 clients

Load imbalance
Latency overhead

Figure 6 : Variation in the load imbalance and the latency overhead.

2.3 Factors Affecting the Optimal Block Size

2.3.1 Effect of Quality of Service

Observe that, the model yields a distribution of the service time of the most heavily loaded disk in the array. To
determine the optimal block size, the server must first choose a particular percentile of the service time as the metric
and then compute the block size that minimizes that percentile. The choice of a particular percentile depends on the
QoS requirements of clients (where QoS is defined to be the fraction of request deadlines that can be violated). For
instance, the server can choose the expected value of the service time (which, in our experiments, approximately
corresponds to the70th percentile of the service time distribution) to determine the block size. In such a scenario,
there is a 30% chance that the actual value of the service time during a round will exceed its expected value, resulting
in a large number of request deadline violations. If clients have stringent quality of service (QoS) requirements (i.e.,
they can tolerate only rare violations of request deadlines), then the server must choose higher percentiles of the
service time to provide the desired performance guarantees. For example, by choosing the95th percentile of service
time distribution of the most heavily loaded disk, the server can ensure that the service time does not exceed its
estimated value in more than 5% of the rounds. Since different percentiles of the service time yield different optimal
block sizes (see Figure 7(a)), the server must carefully choose an appropriate percentile of the service time as the
metric based on the QoS requirements of clients.

Figure 7(b) shows the variation in optimal block size and the 5% optimal envelope for different percentiles of
the service time. Larger percentiles of the service time correspond to more stringent QoS requirements. To provide
stringent QoS, the server must minimize the variation in service times of the most heavily loaded disk across rounds.
This can be achieved by selecting a block size which reduces the load imbalance. Since the load imbalance decreases
with decrease in the block size (Figure 6), a small block size yields better performance for more stringent QoS
requirements. Hence, the optimal block size and the 5% optimal envelope decrease with increase in percentile of the
service time.

Observe from Figure 7(a) that, the service time of the most heavily loaded disk increases slowly for block sizes
larger than the optimal block size. This might lead us to believe that choosing a block size that is larger than
the optimal will yield near optimal performance, while reducing disk latency overheads. However, Figure 7(b)
demonstrates that choosing the largest possible block size contained in the optimal envelope for a particular QoS
degrades performance for more stringent QoS. For instance, choosing the upper 5% optimal envelope of the70th

percentile (i.e., 256KB) as the block size will cause a loss in performance for the95th percentile (since 256KB is not
contained in the 5% optimal envelope of the95th percentile). This argument also shows that ad-hoc techniques that
select a large block size (e.g., selecting the track size as the block size) can significantly affect the server performance,
and hence, the number of clients supported. To achieve good performance over a range of QoS requirements, a block
size that is contained within thex% optimal envelope of a wide range of percentiles must be chosen.

12

350

400

450

500

550

600

650

700

750

800

0 50 100 150 200 250 300

S
er

vi
ce

 T
im

e
(m

s)

Optimal block size (kB)

 (a) RAID-0, 16 disks, 60 clients

70th percentile
80th percentile
95th percentile

0

50

100

150

200

250

300

70 75 80 85 90 95 100

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Percentile of service time

(b) RAID-0, 16 disks, 60 clients

Upper 5% envelope
Lower 5% envelope

Optimal block size

Figure 7 : Effect of Quality of Service

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 m
et

ric

Block size (kB)

 (a) RAID-0, 16 disks

Load imbalance, 20 clients
Latency overhead, 20 clients
Load imbalance, 100 clients

Latency overhead, 100 clients

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Number of clients

(b) RAID-0, 16 disks

Upper 5% optimal envelope
Lower 5% optimal envelope

Optimal block size

Figure 8 : Effect of number of clients on the optimal block size.

2.3.2 Effect of system parameters

The model can also be used to study the effect of various system parameters on the optimal block size. Since the
service time of the most heavily loaded disk is minimized when the combined effects ofIs andO are minimized,
the effect of varying a system parameter on the optimal block size can be analyzed by studying its effect onIs and
O. We can intuitively understand the effect of a parameter on the optimal block size by assuming that the point of
intersection ofIs andO governs the minima of the service time curve. Then, if a change in the value of the system
parameter increases the number of blocks accessed from the array, it increases the probability of achieving equitable
load distribution across disks, and hence, reducesIs. Such a reduction causes theIs curve to shift downward. This
shifts the point of intersection ofIs andO (and hence, the minima of the service time curve) to the right, thereby
increasing the optimal block size. On the other hand, if a change in the value of the parameter causes a decrease in
the number of blocks per disk, then the load imbalance increases. Such an increase causes the point of intersection
of theIs andO curves to shift to the left, thereby reducing the optimal block size. To illustrate, consider the effect
of variation in the number of clients on the optimal block size. For a fixed server configuration, increase in the
number of clients increases the number of blocks accessed from the disk array, and thereby increases the probability
of achieving equitable distribution of load across disks. This reduces the load imbalanceIs, causing theIs curve to
shift downwards. In contrast, the latency overhead curve, which is governed mostly by the physical characteristics
of disks, shifts only marginally. This shifts the point of intersection ofIs andO curves to the right (see Figure 8(a)).
Hence, the optimal media block size increases with increase in the number of clients accessing the server (see Figure
8(b)). The 5% optimal envelope also increases with increase in number of clients for similar reasons.

We have determined the effect of various system parameters, such as the number of disks, their physical charac-
teristics, the playback rate of clients, the round duration, etc., on the optimal block size. The effect of all of these

13

Table 2 : Effect of various parameters on the block size

Parameter Effect of increase in parameter
on optimal block size

Number of clients Block size increases
Playback rate Block size increases
Quality of Service (QoS) Block size decreases
Number of disks Block size decreases
Round duration Block size increases
Disk zones Block size increases from

inner zones to outer zones
Parity Group Size Block size increases

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40 45 50

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Number of disks

 (a) RAID-0, 60 clients

Upper 5% envelope
Lower 5% envelope

Optimal block size

Figure 9 : Effect of the number of disks on the optimal block size.

parameters on the optimal block size can be explained using arguments similar to those presented above. In what
follows, we discuss our results in detail (Table 2 summarizes these results).

Number of Disks

For a fixed number of clients, increasing the number of disks in the system decreases the number of blocks accessed
per disk. This decreases the probability of achieving equitable distribution of load across disks, and hence, increases
the load imbalanceIs. An increase inIs causes theIs curve to shift upwards and the point of intersection ofIs and
O to shift to the left. Thus, the optimal block size decreases with an increase in the number of disks (see Figure 9).

Playback Rate and Round Duration

Assuming a fixed round duration (playback rate), increasing the playback rate (round duration) causes a client to
request a proportionately larger amount of data per round to sustain continuous playback. This causes a larger
number of blocks to be accessed from the array, thereby spreading the load across disks and reducing the load
imbalance. Consequently, the optimal block size and the 5% optimal envelope increase with increase in playback
rate (round duration). (see Figures 10(a) and 10(b)).

Disk Characteristics

To evaluate the effect of varying disk characteristics on the optimal block size, we first define thework coefficientof
a disk [3]:

14

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Playback rate (frames/s)

(a) RAID-0, 16 disks, 60 clients

Upper 5% envelope
Lower 5% envelope
Optimal Block Size

0

50

100

150

200

250

300

350

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Round duration (s)

(b) RAID-0, 16 disks, 60 clients

Upper 5% envelope
Lower 5% envelope

Optimal block size

Figure 10 : Effect of the playback rate of clients and the round duration on the optimal block size.

Table 3 : Characteristics of various Seagate Disks

Model Abbrev- Capacity Average Avg Rotational Transfer Transfer Work
iation MB seek (ms) latency (ms) rate (MB/s) time (ms/kB) Coefficient

Medalist M 631 14 7.87 4.875 0.2 9.2 x10�3

Hawk H 1050 9 5.54 6.9 0.142 9.7 x10�3

Barracuda1 B1 2150 8 4.17 7.5 0.13 11 x10�3

Barracuda2 B2 4294 8 4.17 7.5 0.13 11 x10�3

Elite9 E9 9090 11 5.56 6.8 0.144 8.7 x10�3

Definition 1 The work coefficient of a disk is defined as

W =
time to transfer unit amount of data

average seek+ average rotational latency
(22)

The work coefficient measures the relative variation in the latency overheads and transfer times of disks. Table 3
shows the characteristics of various Seagate disks and their work coefficients.

Recall from (9) that b�max = cNmax � (ts + tr) + cNmax � B � tt
Hence, from the definition ofO, we get:

O = 1�
cNmax � B � ttb�max =

(ts + tr)

(ts + tr) +B � tt =
1

1 +B � tt
(ts+tr)

=
1

1 +B �W

Hence, for a particular block size, increasingW decreasesO. This causes the point of intersection of theIs andO
curves to shift to the left. This indicates that the optimal block size varies inversely with the work coefficient. Figure
11(a) and Table 3 demonstrate this behavior for different Seagate disks.

Zoned Disks

Our experiments thus far assumed a single transfer rate for the entire disk. However, modern disks are partitioned
into zones, with outer zones having higher recording densities and larger data transfer rates as compared to inner
zones. Due to larger transfer rates (and hence, smaller transfer times), outer zones have a smaller work coefficient.
Consequently, the optimal block size and the 5% optimal envelope for a zone increases as we proceed from inner
zones to outer zones (see Figure 11(b)).

15

0

50

100

150

200

250

E9 M H B1 B2

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Disk Model

(a) RAID-0, 16 disks, 60 clients

Upper 5% envelope
Lower 5% envelope

Optimal block size

0

50

100

150

200

250

300

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Track transfer rate (MB/s)

(b) RAID-0, 16 disks, 60 clients

Upper 5% envelope
Lower 5% envelope
Optimal block curve

Figure 11 : Variation in the optimal block size with disk characteristics. Figure (a) compares the optimal block size
for different Seagate disks. Disks used in the experiment are Elite9, Medalist, Hawk, Barracuda1, and Barracuda2.
Figure (b) shows the variation in the optimal block size for different transfer rates. Lower transfer rates represent
inner zones.

180

200

220

240

260

280

300

320

340

360

380

400

0 50 100 150 200 250 300

S
er

vi
ce

 ti
m

e
(m

se
c)

Block size (kB)

 (a) 32 disks, 50 clients, normal mode

RAID-5 parity group=4
RAID-5 parity group=8

RAID-5 parity group=16
RAID-5 parity group=32

RAID-0

0

50

100

150

200

0 5 10 15 20 25 30 35

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

Parity group size

 (b) RAID-5, 32 disks, 50 clients, degraded mode

Upper 5% envelope
Lower 5% envelope

Optimal block size

Figure 12 : Effect of parity group size.

Since the optimal block size varies across zones, a multimedia server can: (i) choose an optimal block size for
each zone, or (ii) choose a single block size for all zones. Recently several placement policies that employ different
block sizes for different zones have been proposed [20, 21]. Our models enable us to parameterize these policies by
choosing an appropriate block size for each zone. Since use of a single block size for all zones can cause an increase
in the service time of the most heavily loaded disk, a multimedia server must choose a block size that minimizes
this increase across all zones. To do so, the server must select a block size that is contained within thex% optimal
envelope of all zones. This ensures that the service time of the most heavily loaded disk is always withinx% of the
minimum. To illustrate, Figure 11(b) shows that a block size of 96KB is contained within the 5% optimal envelope
of all zones on the disk. Observe that these policies form two ends of a spectrum. Whereas one yields optimal
performance, the other simplifies storage space management. The server can balance these tradeoffs by choosing an
intermediate policy that groups consecutive zones and selects a single block size for each group.

Parity Group Size

Since non-redundant arrays do not maintain any parity information, the parity group size is a parameter that is
relevant only to redundant disk arrays. Figure 12(a) depicts the service time of the most heavily loaded disk in a
RAID-5 array in the normal operating mode. It demonstrates that, in the absence of a disk failure, the service time of
the most heavily loaded disk in a RAID-5 array is almost identical to that obtained for an equivalent RAID-0 array.
Moreover, the service time of the most heavily loaded disk is independent of the parity group size. Consequently,

16

the optimal block size obtained for a RAID-5 array in the normal operating mode is independent of the parity group
size and is identical to that obtained for a RAID-0 array.

Next consider the RAID-5 array with a single disk failure. LetG denote the parity group size. In such a scenario,
whenever a client accesses a block stored on the failed disk, the server must access the remaining blocks of the
parity groups stored on the survivingG� 1 disks to reconstruct the requested block. Hence, with increase in parity
group size, the number of additional blocks that must be accessed to reconstruct a block on the failed disk increases,
increasing the load on surviving disks. This results in aneffectiveincrease in the playback rate of clients. As
explained in earlier in this section, increasing the playback rate of clients causes an increase in the optimal media
block size and the 5% optimal envelope. Hence, the optimal block size and the optimal envelope in the degraded
mode increase with increase in the parity group size (see Figure 12(b)).

2.4 Selecting an Optimal Block Size

Having examined the effect of the server configuration and the workload characteristics on the block size, we now
present procedures for selecting an optimal block size. The procedure for selecting an optimal block size depends
on the design goals for the multimedia server, which in turn are dictated by the operating environment. To illustrate,
for multimedia servers offering commercial services (e.g., video-on-demand, online news, etc.), the primary goal
is to maximize revenue by maximizing the number of clients that can be supported by the server. In contrast,
for multimedia servers which service clients with heterogeneous QoS, the number of clients that can be supported
depends on the exact workload mix (i.e., the proportion of clients with different requirements). Since the workload
mix can vary over time, the goal for such servers is to provide the best possible performance over a wide range
of workloads. Differing design goals may require the system designer to choose completely different media block
sizes.

To determine a block size that maximizes the number of clients supported, let us assume that all parameters
determining the server configuration (i.e., the number of disks, their physical characteristics, the round duration,
etc.) are known at design time. Also, assume that the data rate of clients and their QoS requirements are known.
Then, a block size that maximizes the number of clients supported can be computed by the following two step
procedure: (1) For a given number of clients,n, determine the service time of the most heavily loaded disk for
different block sizes and select the block size that minimizes the service time; (2) If the service time of the most
heavily loaded disk for this block size is less than the round duration, then incrementn and repeat step (1). The block
size that is obtained when the service time of the most heavily loaded disk equals the round duration maximizes the
number of clients supported by the server.

In general computing environments, due to the heterogeneous nature of the workload, some of the workload
characteristics may be unknown at design time (e.g., the number of clients accessing the server). In such a scenario,
a block size that yields good performance over a wide range of workloads must be chosen [3]. For every parameter
that is unknown at design time, the range over which the parameter is likely to vary must first be estimated. The
optimal block size and thex% optimal envelope for each combination of these parameters is then computed using
the model. LetS1;S2; � � � denote sets, each containing thex% optimal envelope for a particular combination of
these parameters. Then, the set of block sizes that yields service times withinx% of the minimum over all possible
combinations of these parameters isS = S1 \S2 \ : : :. If S is empty, then the entire procedure must be repeated for
a larger values ofx until a non-empty set of block sizes is obtained. Figure 13 illustrates the process of computing a
feasible solution (i.e., a non-empty setS) over a range of client workloads.

3 Determining the Degree of Striping

In addition to determining the stripe unit size, defining a striping policy requires the determination of degree of
striping. A multimedia server can either stripe a media stream across all disks in the array or across a subset of the
disks. Whereas the former policy is referred to aswide striping, the latter policy is referred to asnarrow striping.

17

Number of Clients

B
lo

ck
 S

iz
e

(k
B

)

Upper 7% envelope

Lower 7%
 envelope

 Optimal
block size curve

Upper 5% envelope

Lower 5%
 envelope

Number of Clients
B

lo
ck

 S
iz

e
(k

B
) Optimal

block size
 curve

Infeasible Solution Feasible Solution

Optimal block
 size set S

Figure 13 : Selecting a block size that yields near-optimal performance, regardless of the number of clients accessing
the server. The shaded region denotes the set of block sizesS that yield service times within 7% of the minimum for
all workloads.

To evaluate the relative merits of these policies, consider a multimedia server that employs wide striping to
interleave media streams across disks in the array. Let us assume that the performance of the server is measured in
terms of the maximum number of clients that it can support. In an ideal scenario, increase in the number of disks
in the system should result in a linear increase in the number of clients that can be supported by the server. That is,
the number of clients supported by a disk array consisting ofD disks should beD times the number of clients that
can be supported by a single disk. However, as shown in Figure 14(a), the number of clients supported by the server
increases sub-linearly with increase in the number of disks. This can be attributed to the following two reasons:

� Real-time requirements of clients: Due to the real-time requirements of clients, the number of clients supported
by the server is constrained by the most heavily loaded disk. Specifically, the number of clients accessing the
server reaches its maximum value when the service time of the most heavily loaded disk equals the round
duration. At this point, however, the service time of a disk with average load is smaller than the round
duration. The resulting load imbalance causes most of the disks in the array to be under-utilized.

� Reduction in optimal block size: As explained in Section 2.3.2, an increase in the number of disks in the system
causes the load imbalanceIs to increase. An increase in the number of disks also increases the number of
clients that can be supported by the server. Larger the number of clients accessing the server, the smaller the
load imbalanceIs. Thus, the combined effect of increasing the number of disks and the number of clients
accessing the server governs the actual value ofIs. Figure 14(b) plots the variation in imbalanceIs against the
(number of disks in the system, maximum number of clients supported) pairs. It illustrates that the increase in
Is due to an increase in the number of disks dominates the decrease inIs due to an increase in the number of
clients, causing the actual imbalance to increase. Hence, a small block size must be chosen to compensate for
the increased imbalance, causing a decrease in the optimal block size (see Figure 14(c)). Since a small block
size imposes a larger latency overhead, the overall throughput of the array decreases, causing a reduction in
the number of clients that can be supported.

To minimize the impact of these factors, a server can: (1) partition the disk array into mutually exclusive groups
of disks, and (2) stripe each media stream only within a partition. Since each partition acts as an independent disk
array and the number of disks per partition is small, such an approach: (1) reduces the load imbalance within each
partition, and (2) increases the optimal block size for a partition (and thereby reduces the latency overhead). In such
partitioned arrays, load imbalances can occur if clients are not equitably distributed among all the partitions. Hence,
the partition size must be chosen so as to simultaneously minimize the impact of load imbalance across partitions and
the load imbalance within a partition. In what follows, we first present a model for determining the load imbalance
across partitions, and then describe a procedure for determining the a partition size that maximizes the number of
clients supported.

18

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 c

lie
nt

s
su

pp
or

te
d

Number of disks

(a) Wide Striping

Wide striping (actual)
Wide Striping (ideal)

0.325

0.33

0.335

0.34

0.345

0.35

0.355

(16,214)(24,309)(32,395) (48,580) (64,770)

Lo
ad

 im
ba

la
nc

e

(Number of disks, Maximum number of clients)

(b) Imbalance within a partition

Load imbalance

0

50

100

150

200

250

(16,214)(24,309)(32,395) (48,580) (64,770)

O
pt

im
al

 b
lo

ck
 s

iz
e

(k
B

)

(Number of disks, Maximum number of clients)

(c) Variation in optimal blocks size

Optimal block size

Figure 14 : Loss in the number of clients supported in large disk arrays and factors contributing to this loss.

3.1 Modeling the Imbalance Across Partitions

To compute the load imbalance across partitions, consider a disk array consisting ofD disks that is partitioned into
groups ofd disks each. Let us assume that the server employs a placement policy that assigns streams to partitions
such that each partition is equally likely to be accessed by a new request [8, 23]. That is, the probability that a newly
arriving client accesses a partition isq = d=D. In such a scenario, ifn clients access the server, then the probability
thatm clients access thejth partition is binomially distributed, and is given as:

P (Yj = m) =

n
m

!
� qm � (1� q)n�m (23)

whereYj is a random variable representing the number of clients accessing thejth partition. Then the number of
clients accessing the most heavily loaded partition is

Ymax = max(Y1;Y2; : : : ;YD
d
) (24)

Since the load on a partition is independent of other partitions,Y1;Y2; : : : ;YD
d

are independent random variables.
Hence, the distribution ofYmax can be computed as:

FYmax(x) = FY1(x) � FY2(x) � � �FYD
d

(x) (25)

whereFYj is the cumulative probability distribution function of the random variableYj [16].
Given the distribution ofYi andYmax, we can compute the expected number of requests on the average and the

most heavily loaded partitions (denoted bybY and bYmax, respectively). Using these values, we can define the the
load imbalance across partitions (denoted byIp) as:

Ip =

1�

bYbYmax

!
(26)

Thus, given the number of disks in the array and the partition size, we can compute the load imbalance across
partitions.

3.2 Determining the Partition Size

For a fixed number of disks, increasing the partition size increases the load imbalanceIs within a partition (Figure
14(b)), while decreasing the load imbalanceIp across partitions (Figure 15). Moreover, as shown in Figure 14(c),
increasing the partition size results in a reduction in the optimal block size (thereby increasing the seek and rotational
latency overhead). Consequently, the server must determine the degree of striping (i.e., partition size) that balances
these tradeoffs.

19

Given the models for predicting: (1) the load imbalance across partitions (Section 3.1), (2) the load imbalance
within a partition (Section 2.1.1), a procedure for choosing a partition size that maximizes the number of clients
supported by the server is as follows:
ProcedureComputePartitionSize

1. Choose an initial partition size of d=1.

2. Using the model presented in Section 2.1.1, compute the maximum number of clients,n0, that can be supported
by a single partition of sized (i.e., the number of clients at which the service time of the most heavily loaded
disk equals the round duration).

3. Assuming thatn clients access the array, using the model presented in Section 3.1, compute the expected
number of clients,bYmax, accessing the most heavily loaded partition.

4. If bYmax < n0, then incrementn and repeat step (3). WhenbYmax = n0, thenn denotes the maximum number
of clients that can be supported by the array with a partition size ofd.

5. Increment the partition size d, and repeat steps (2) thorough (4) until no further improvements in the number of
clients is obtained (i.e., untiln starts decreasing with increase ind). This yields a partition size that maximizes
the number of clients that can be supported.

In the above procedure, note that the limit on the number of clients that can be supported by the entire array is
reached when the most heavily loaded partition reaches its maximum capacity. However, at this point, the number
of clients accessing other partitions is less than their maximum capacity. Hence, the total number of clients that can
be supported by the array does not increase linearly with number of partitions (i.e.,n < n0 � D

d
).

Figure 16(a) illustrates the result of executing this iterative procedure for an array of 120 disks. Since the number
of clients that can be supported by the array is maximized atd = 10, the array should be partitioned into 12 partitions
of 10 disks each for optimal performance. Figure 16(b) demonstrates the variation in the optimal partition size with
increase in the number of disks in the array. Finally, Figure 16(c) illustrates the improvement in the number of clients
supported due to partitioning. For small disk arrays, since wide striping is close to the ideal case, the additional gains
due to partitioning are small. For large disk arrays, however, partitioning yields a approximately a 10% increase in
the number of clients supported as compared to the wide striping. Figure 16(c) also demonstrates that partitioning
coupled with static load balancing algorithms does not completely bridge the gap between the number of clients
supported by the array in the ideal case (i.e., when the number of clients increases linearly with array size) and that
obtained using wide striping. To further reduce the loss in the number of clients supported, the server must replicate
streams across partitions and employ dynamic load balancing schemes. The improvement in performance yielded by
such a scheme is at the expense of higher storage space requirement and more complex storage space management
algorithms. Detailed cost-performance tradeoffs of such an approach is beyond the scope of this paper.

4 Related Work

Several research projects have developed simulation and analytical techniques for optimizing the performance of
striped disk arrays for conventional workloads [3, 4, 5, 14]. As demonstrated in Section 1, due to the real-time
nature of continuous media accesses, these techniques are not directly applicable for optimizing performance in
multimedia servers.

The problem of determining the optimal stripe unit size for non-redundant arrays storing continuous media was
studied in [22]. A model that predicts the service time of the most heavily loaded disk for non-redundant arrays
(henceforth referred to as the VRG model) was also proposed in the paper. The VRG model uses worst case as-
sumptions about the number of blocks accessed by a client during a round to compute the service time of the most
heavily loaded disk. In contrast, our model uses actual distributions of the number of blocks accessed by a client

20

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

Lo
ad

 im
ba

la
nc

e

Partition size

 Imbalance across partitions, disks=60

Load imbalance

Figure 15 : Variation in the imbalance across partitions with increase in the partition size

1360

1380

1400

1420

1440

1460

1480

0 20 40 60 80 100 120

N
um

be
r

of
 c

lie
nt

s
su

pp
or

te
d

Partition size

(a) Number of clients supported vs partition size, disks=120

Number of clients

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

O
pt

im
al

 p
ar

tit
io

n
si

ze

Array Size

(b) Optimal parition size

partition size

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

N
um

be
r

of
 c

lie
nt

s
su

pp
or

te
d

Number of disks

(c) Improvement due to partioning

No partioning
Partitoning

Figure 16 : Partitioning large disk arrays.

during a round to compute the service time of the most heavily loaded disk. Due to worst-case assumptions, the
service time predicted by the VRG model is higher than the actual service time of the most heavily loaded disk (see
Figure 17(a)). Since the VRG model is conservative, as illustrated in 17(b), the optimal block size computed using
the VRG model will cause the server to support a smaller number of clients. To derive this graph, we first computed
the optimal block size using both models, and then determined the number of clients supported by the server using
our model. If the VRG model were to be used to determine the number of clients supported by the server (in addition
to using the model to compute the optimal block size), then the number of clients supported would be even lower.
The problem of determining block size in redundant arrays or determining the degree of striping was not addressed
in the paper.

The problem of determining the degree of striping has not received much attention in the literature. A comparison
of wide and narrow striping schemes was presented in [10]. The focus of their effort was to evaluate the effect of

300

400

500

600

700

800

900

1000

1100

1200

1300

0 50 100 150 200 250 300

S
er

vi
ce

 T
im

e
(m

s)

Block Size (kB)

 (a) RAID-0, 16 disks, 60 clients

VRG Model
Our Model
Simulation

165

170

175

180

185

190

195

200

205

210

215

70 75 80 85 90 95 100

N
um

be
r

of
 c

lie
nt

s
su

pp
or

te
d

Percentile of service time

 (b) RAID-0, 16 disks

VRG Model
Our Model

Figure 17 : Comparison with the VRG model.

21

replicating media streams across array partitions on the response time. The problem of determining the partition size
was not addressed in the paper. The problem of assigning media streams to array partitions subject so as to balance
the load across partitions has been dealt in [8, 23]. These efforts complement our work since they do not deal with
the issue of determining an optimal partition size for large disk arrays.

Many other striping related issues that are complementary to the problem addressed in this paper have been
investigated. Striping techniques that minimize buffer requirements in continuous media servers have been proposed
in [2, 7, 24]. Simulation studies of the cost-performance tradeoffs of striped continuous media servers were carried
out in [2, 11]. These studies examine the tradeoffs of using different placement schemes in striped disk arrays.
Striping in continuous media servers employing declustered parity arrays was investigated in [1]. A comparison of
striping in RAID-3 and RAID-5 based continuous media servers was presented in [15]. The paper demonstrates that
bit-interleaved RAID-3 arrays can cause a significant degradation in the number of clients supported as compared
to block-interleaved RAID-5 arrays. A performance evaluation of striping techniques in an actual continuous media
server based on RAID-3 arrays was presented in [13]. The paper investigates application level striping and disk driver
level striping with respect to scalability and performance. The effect of fast-forward operations on the performance
of striped continuous media servers was investigated in [9]. Finally, striping techniques for tertiary storage systems
were analyzed in [12].

5 Concluding Remarks

In this paper, we have described techniques for determining the stripe unit size and the degree of striping for file
servers storing continuous media data. To determine the optimal block size, we presented an analytical model that
uses the server configuration and the workload characteristics to predict the load on the most heavily loaded disk in
redundant and non-redundant arrays. We used the model to evaluate the effect of various parameters on the optimal
block size. We also demonstrated that employing wide striping causes the number of clients supported to increase
sub-linearly with increase in the number of disks. To maximize the number of clients supported in large arrays, we
propose a scheme that partitions such arrays and stripes each media stream across a single disk partition. Since load
imbalances can occur in partitioned arrays, we presented a model to determine the imbalance across partitions and
described a procedure for determining a partition size that maximizes the number of clients supported by the array.
The analytical models presented in this paper are the first to accurately characterize the load on the disk array for
VBR streams. The only previously known model for VBR streams [22] uses worst case assumptions, and hence,
yields sub-optimal results. Furthermore, our models can also be used by multimedia file servers to compute the
number of clients that can be supported, which can then be used for admission control.

As part of future work, we plan to study the effect of large buffer caches and prefecthing strategies on stripe unit
size and degree of striping. We also plan to incorporate the results of our study to design and configure an integrated
multimedia file server being built in our research laboratory.

References

[1] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Staggered Striping in Multimedia Information Systems. InPro-
ceedings of ACM SIGMOD, 1994.

[2] E. Chang and A. Zakhor. Cost Analyses for VBR Video Servers. InProceedings of Multimedia Computing and Network-
ing (MMCN) Conference, pages 381–397, 1996.

[3] P. Chen and D. Patterson. Maximizing Performance in a Striped Disk Array.Proceedings of ACM SIGARCH Conference
on Computer Architecture, Seattle, WA, pages 322–331, May 1990.

[4] P. M. Chen, G. A. Gibson, R. H. Katz, and D. A. Patterson. An Evaluation of Redundant Arrays of Disks using an Amdahl
5890. InProceedings of ACM SIGMETRICS, pages 74–85, May 1990.

[5] P. M. Chen and E. K. Lee. Striping in a RAID Level 5 Disk Array. InProceedings of the 1995 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, May 1995.

22

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-Performance, Reliable Secondary
Storage.ACM Computing Surveys, pages 145–185, June 1994.

[7] A. Cohen, W. A. Burkhard, and P. V. Rangan. Pipelined Disk Arrays for Digital Movie Retrieval. InProceedings of the
International Conference on Multimedia Computing Systems (ICMCS), pages 312–317, 1995.

[8] A. Dan and D. Sitaram. An Online Video Placement Policy based on Bandwidth to Space Ratio (BSR). InProceedings
of ACM SIGMOD’95, San Jose, CA, pages 376–385, May 1995.

[9] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley. Providing VCR Capabilities in Large-Scale Video Servers.
In Proceedings of the Second ACM International Conference on Multimedia, pages 25–32, October 1994.

[10] R. Flynn and W. Tetzlaff. Disk Striping and Block Replication Algorithms for Video File Servers. InProceedings of the
International Conference on Multimedia Computing Systems (ICMCS), pages 590–597, 1996.

[11] S. Ghandeharizadeh and S. H. Kim. Striping in Multi-disk Video Servers. InProceedings of the SPIE High-Density Data
Recording and Retrieval Technologies Conference, Oct 1995.

[12] L. Golubchik, R. R. Muntz, and R. W. Watson. Analysis of Striping Techniques in Robotic Storage Libraries. InPro-
ceedings of the 14th IEEE Symposium on Mass Storage Systems, Also Appeared as a poster at Supercomputing ’94,
Washington, D.C., November 1994.

[13] J. Hsieh, M. Lin, J. C. L. Liu, and D. H. C. Du. Performance of A Mass Storage System for Video-On-Demand.Journal
of Parallel and Distributed Computing, Special Issue on Multimedia Processing and Technology (to appear), 1996.

[14] E.K. Lee and R.H. Katz. An Analytic Performance Model for Disk Arrays. InProceedings of the 1993 ACM SIGMET-
RICS, pages 98–109, May 1993.

[15] B. Ozden, R. Rastogi, and A. Silberschatz. Disk Striping in Video Server Environments. InProceedings of the Interna-
tional Conference on Multimedia Computing Systems (ICMCS), pages 580–589, 1996.

[16] A. Papoulis.Probability, Random Variables, and Stochastic Processes. McGraw Hill, 1991.

[17] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Array of Inexpensive Disks (RAID).ACM SIGMOD’88,
pages 109–116, June 1988.

[18] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley. Supporting Stored Video: Reducing Rate Variability and End-to-End
Resource Requirements through Optimal Smoothing. InProceedings of SIGMETRICS ’96, Philadelphia, PA, May 1996.

[19] P. J. Shenoy and H M. Vin. Efficient Striping Techniques for Multimedia File Servers. Technical Report TR96-27, Dept.
of Computer Sciences, Univ. of Texas at Austin, 1996.

[20] R. Tewari, R P. King, D. Kandlur, and D. Dias. Placement of Multimedia Blocks on Zoned Disks. InProceedings of
ACM/SPIE Multimedia Computing and Networking (MMCN’96), San Jose, January 1996.

[21] S. Tong, Y. Huang, and J C. L. Liu. Study of Disk Zoning for Video Servers. InProceedings of the IEEE International
Conference on Multimedia Computing and Systems (ICMCS’98), Austin, TX, pages 86–95, June 1999.

[22] H.M. Vin, S.S. Rao, and P. Goyal. Optimizing the Placement of Multimedia Objects on Disk Arrays. InProceedings of
the Second IEEE International Conference on Multimedia Computing and Systems, Washington, D.C., pages 158–165,
May 1995.

[23] J. Wolf, P. S. Yu, and H. Shachnai. DASD Dancing- A Disk Load Balancing Optimization Scheme for Video-on-Demand
Computer Systems. InProceedings of ACM SIGMETRICS’95, pages 157–166, 1995.

[24] P. Yu, M.S. Chen, and D.D. Kandlur. Design and Analysis of a Grouped Sweeping Scheme for Multimedia Storage
Management.Proceedings of Third International Workshop on Network and Operating System Support for Digital Audio
and Video, San Diego, pages 38–49, November 1992.

23

A Disk Model to Compute the Service Time

To compute the service time of a disk from the number of blocks obtained, we use a disk model that has recently
proposed in the literature [14, 22]. Assuming that the disk employs the SCAN scheduling algorithm, the service
time for accessingN blocks of sizeB is:

� = N � (ts + tr) +N �B � tt
where ts and tr denote the seek time and rotational latency incurred while accessing a block from disk andtt
denotes the transfer time for a unit amount of data. Assuming that theN blocks are uniformly distributed across
the C cylinders of a disk, the distance between two consecutive blocks isb C

N+1c cylinders. Hence, we define

ts = tseek
�
b C
N+1c

�
, wheretseek(x) is the time to move the disk head acrossx consecutive cylinders and is computed

as:

tseek(x) =

(
0 if x = 0

a
p
x� 1 + b(x� 1) + c otherwise

wherea, b, andc are constants (determined using physical characteristics of a disk) [14]. The rotational latency,tr,
is defined to be half of the maximum rotational latency.

24

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1997

	Efficient Striping Techniques for Variable Bit Rate Continuous Media File Servers
	Prashant J. Shenoy
	Recommended Citation

	head.dvi

