1,238 research outputs found

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Performance of a ATM Lan switching fabric

    Get PDF
    This thesis provides a focus on the architecture of a high-speed packet switching fabric and its performance. The switching fabric is suited for existing transparent protocols, based on Asynchronous Transfer Mode (ATM) technology and standards in an environment of Local Area Network (LAN). A high-speed switching fabric architecture which adopts Time Division mode and bases on a shared medium approach is proposed. This is an architecture for nonblocking performance, no congestion and high reliability. Its principle for performance is a method of sequentially scheduling the inputs and the transferring of bits in parallel. To study the performance of the switching fabric architecture one uses OPNET communication simulation software. Some parameters including the throughputs, the transfer (the switching fabric) delay, the switching overflow and the packet size in the buffer (the input buffer and the output buffer) are implemented through the simulation. And finally, an analysis for the results of the simulation for local ATM IDS fabric architecture is discussed. The results display an architecture that provides a rational design with some expected characteristics

    Performance study of voice over frame relay : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Information Engineering, Massey University, Albany, New Zealand

    Get PDF
    Frame Relay (FR) represents an important paradigm shift in modern telecommunication. This technology is beginning to evolve from data only application to broad spectrum of multimedia users and potential to provide end users with cost effective transport of voice traffic for intra office communication. In this project the recent development in voice communication over Frame relay is investigated. Simulations were carried out using OPNET, a powerful simulation software. Following the simulation model, a practical design of the LAN-to-LAN connectivity experiment was also done in the Net Lab. From the results of the simulation, Performance measures such as delay, jitter, and throughput are reported. It is evident from the results that real-time voice or video across a frame relay network can provide acceptable performance

    The Design of a single chip 8x8 ATM switch in 0.5 micrometers CMOS VLSI

    Get PDF
    This thesis illustrates the design of a single chip Asynchronous Transfer Mode (ATM) protocol switch using Very Large Scale Integration (VLSI). The ATM protocol is the data communications protocol used in the implementation of the Broadband Integrated Services Digital Network (B-ISDN), A number of switch architecture are first studied and a new architecture is developed based on optimizing performance and practicality of implementation in VLSI. A fully interconnected switch architecture is implemented by permanently connecting every input port to all the output ports. An output buffering scheme is used to handle cells that cannot be routed right away. This new architecture is caned the High Performance (HiPer) Switch Architecture. The performance of the architecture is simulated using a C++ model. Simulation results for a randomly distributed traffic pattern with a 90% probability of cells arriving in a time slot produces a Cell Loss Ratio of 1.Ox 10^-8 with output buffers that can hold 64 cells. The device is then modeled in VHDL to verify its functionality. Finally the layout of an 8x8 switch is produced using a 0.5 micrometer CMOS VLSI process and simulations of that circuit show that a peak throughput of 200 Mbps per output port can be achieve

    Simulation of LAN Interconnection via ATM

    Get PDF
    http://www.worldcat.org/oclc/3088061

    The Design, modeling and simulation of switching fabrics: For an ATM network switch

    Get PDF
    The requirements of today\u27s telecommunication systems to support high bandwidth and added flexibility brought about the expansion of (Asynchronous Transfer Mode) ATM as a new method of high-speed data transmission. Various analytical and simulation methods may be used to estimate the performance of ATM switches. Analytical methods considerably limit the range of parameters to be evaluated due to extensive formulae used and time consuming iterations. They are not as effective for large networks because of excessive computations that do not scale linearly with network size. One the other hand, simulation-based methods allow determining a bigger range of performance parameters in a shorter amount of time even for large networks. A simulation model, however, is more elaborate in terms of implementation. Instead of using formulae to obtain results, it has to operate software or hardware modules requiring a certain amount of effort to create. In this work simulation is accomplished by utilizing the ATM library - an object oriented software tool, which uses software chips for building ATM switches. The distinguishing feature of this approach is cut-through routing realized on the bit level abstraction treating ATM protocol data units, called cells, as groups of 424 bits. The arrival events of cells to the system are not instantaneous contrary to commonly used methods of simulation that consider cells as instant messages. The simulation was run for basic multistage interconnection network types with varying source arrival rate and buffer sizes producing a set of graphs of cell delays, throughput, cell loss probability, and queue sizes. The techniques of rearranging and sorting were considered in the simulation. The results indicate that better performance is always achieved by bringing additional stages of elements to the switching system

    Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey

    Full text link
    Broadband Integrated Services Digital Network (R-ISDN) provides a range of narrowband and broad-band services for voice, video, and multimedia. Asynchronous Transfer Mode (ATM) has been selected by the standards bodies as the transfer mode for implementing B-ISDN; The ability to digitize images has lead to the prospect of reducing the physical space requirements, material costs, and manual labor of traditional film handling tasks in hospitals. The system which handles the acquisition, storage, and transmission of medical images is called a Picture Archiving and Communication System (PACS). The transmission system will directly impact the speed of image transfer. Today the most common transmission means used by acquisition and display station products is Ethernet. However, when considering network media, it is important to consider what the long term needs will be. Although ATM is a new standard, it is showing signs of becoming the next logical step to meet the needs of high speed networks; This thesis is a survey on ATM, and PACS. All the concepts involved in developing a PACS are presented in an orderly manner. It presents the recent developments in ATM, its applicability to PACS and the issues to be resolved for realising an ATM-based complete PACS. This work will be useful in providing the latest information, for any future research on ATM-based networks, and PACS

    Architecture, Design, Simulation and Performance Evaluation for Implementing ALAX -- The ATM LAN Access Switch Integrating the IEEE 1355 Serial Bus

    Get PDF
    IEEE 1355 is a serial bus standard for Heterogeneous Inter Connect (HIC) developed for "enabling high-performance, scalable, modular and parallel systems to be built with low system integration cost." However to date, few systems have been built around this standard specification. In this thesis, we propose ALAX -- an internetworking switching device based on IEEE 1355. The aim of the thesis is two-fold. First, we discuss and summarize research works leading to the architecture, design and simulation development for ALAX; we synthesize and analyze relevant data collected from the simulation experiments of the 4- port model of ALAX (i.e., 4-by-4 with four input and output queues) -- these activities were conducted during the 2-year length of the project. Secondly, we expand the original 4-by-4 size of the ALAX simulation model into 8-, 12- and 16-port models and present and interpret the outcomes. Thus, overall we establish a performance assessment of the ALAX switch, and also identify several critical design measurements to support the ALAX prototype implementation. We review progresses made in Local Area Networks (LANs) where traditional software-enabled bridges or routers are being replaced in many instances by hardware-enabled switches to enhance network performance. Within that context, ATM (Asynchronous Transfer Mode) technology emerges as an alternative for the next generation of high-speed LANs. Hence, ALAX incarnates our effective approach to build an ATM-LAN interface using a suitable switching platform. ALAX currently provides the capability to conveniently interconnect legacy Ethernet and ATM- based networks. Its distributed architecture features a multi- processor environment of T9000 transputers with parallel processing capability, a 32-by-32 way non-blocking crossbar fabric (C104 chipset) partitioned into Transport (i.e., Data) and Control planes, and many other modules interlaced with IEEE 1355- based connectors. It also employs existing and emerging protocols such as LANE (LAN Emulation), IEEE 802.3 and SNMP (Simple Network Management Protocol). We provide the component breakdown of the ALAX simulation model based on Optimized Network Engineering Tools (OPNET). The critical parameters for the study are acceptable processor speeds and queuing sizes of shared memory buffer at each switch port. The performance metric used is the end-to-end packet delay. Finally, we end the thesis with conclusive recommendations pertaining to performance and design measurement, and a brief summary of areas for further research study

    Modeling and Analysis of Fault Tolerant Multistage Interconnection Networks

    Get PDF
    Performance and reliability are two of the most crucial issues in today\u27s high-performance instrumentation and measurement systems. High speed and compact density multistage interconnection networks (MINs) are widely-used subsystems in different applications. New performance models are proposed to evaluate a novel fault tolerant MIN arrangement, thereby assuring performance and reliability with high confidence level. A concurrent fault detection and recovery scheme for MINs is considered by rerouting over redundant interconnection links under stringent real-time constraints for digital instrumentation as sensor networks. A switch architecture for concurrent testing and diagnosis is proposed. New performance models are developed and used to evaluate the compound effect of fault tolerant operation (inclusive of testing, diagnosis, and recovery) on the overall throughput and delay. Results are shown for single transient and permanent stuck-at faults on links and storage units in the switching elements. It is shown that performance degradation due to fault tolerance is graceful while performance degradation without fault recovery is unacceptable

    DSL-based triple-play services

    Get PDF
    This research examines the triple play service based on the ADSL technology. The voice over IP will be checked and combined with the internet data by two monitoring programs in order to examine the performance that this service offers and then will be compared with the usual method of internet connection.This research examines the triple play service based on the ADSL technology. The voice over IP will be checked and combined with the internet data by two monitoring programs in order to examine the performance that this service offers and then will be compared with the usual method of internet connection.
    • 

    corecore