330 research outputs found

    Materializing interaction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, February 2013.Cataloged from PDF version of thesis. "September 2012."Includes bibliographical references (p. 141-148).At the boundary between people, objects and spaces, we encounter a broad range of surfaces. Their properties perform functional roles such as permeability, comfort or illumination, while conveying information such as an object's affordances, composition, or history of use. However, today surfaces are static and can neither adapt to our changing needs, nor communicate dynamic information and sense user input. As technology advances and we progress towards a world imbued with programmable materials, how will designers create physical surfaces that are adaptive and can take full advantage of our sensory apparatus? This dissertation looks at this question through the lens of a three-tier methodology consisting of the development of programmable composites; their application in design and architecture; and contextualization through a broader material and surface taxonomy. The focus is placed primarily on how materials and their aggregate surface properties can be used to engage our senses. A series of design probes and four final implementations are presented, each addressing specific programmable material and surface properties. Surflex, Sprout 1/O, and Shutters are continuous surfaces which can change shape to modify their topology, texture and permeability, and Six-Forty by Four-Eighty is a light-emitting display surface composed of autonomous and reconfigurable physical pixels. The technical and conceptual objectives of these designs are evaluated through exhibitions in a variety of public spaces, such as museums, galleries, fairs, as well as art and design festivals. This dissertation seeks to provide contributions on multiple levels, including: the development of techniques for the creation and control of programmable surfaces; the definition of a vocabulary and taxonomy to describe and compare previous work in this area; and finally, uncovering design principles for the underlying development of future programmable surface aesthetics.by Marcelo Coelho.Ph.D

    The Second Conference on Lunar Bases and Space Activities of the 21st Century, volume 1

    Get PDF
    These papers comprise a peer-review selection of presentations by authors from NASA, LPI industry, and academia at the Second Conference (April 1988) on Lunar Bases and Space Activities of the 21st Century, sponsored by the NASA Office of Exploration and the Lunar Planetary Institute. These papers go into more technical depth than did those published from the first NASA-sponsored symposium on the topic, held in 1984. Session topics covered by this volume include (1) design and operation of transportation systems to, in orbit around, and on the Moon, (2) lunar base site selection, (3) design, architecture, construction, and operation of lunar bases and human habitats, and (4) lunar-based scientific research and experimentation in astronomy, exobiology, and lunar geology

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    25th International Congress of the European Association for Endoscopic Surgery (EAES) Frankfurt, Germany, 14-17 June 2017 : Oral Presentations

    Get PDF
    Introduction: Ouyang has recently proposed hiatal surface area (HSA) calculation by multiplanar multislice computer tomography (MDCT) scan as a useful tool for planning treatment of hiatus defects with hiatal hernia (HH), with or without gastroesophageal reflux (MRGE). Preoperative upper endoscopy or barium swallow cannot predict the HSA and pillars conditions. Aim to asses the efficacy of MDCT’s calculation of HSA for planning the best approach for the hiatal defects treatment. Methods: We retrospectively analyzed 25 patients, candidates to laparoscopic antireflux surgery as primary surgery or hiatus repair concomitant with or after bariatric surgery. Patients were analyzed preoperatively and after one-year follow-up by MDCT scan measurement of esophageal hiatus surface. Five normal patients were enrolled as control group. The HSA’s intraoperative calculation was performed after complete dissection of the area considered a triangle. Postoperative CT-scan was done after 12 months or any time reflux symptoms appeared. Results: (1) Mean HSA in control patients with no HH, no MRGE was cm2 and similar in non-complicated patients with previous LSG and cruroplasty. (2) Mean HSA in patients candidates to cruroplasty was 7.40 cm2. (3) Mean HSA in patients candidates to redo cruroplasty for recurrence was 10.11 cm2. Discussion. MDCT scan offer the possibility to obtain an objective measurement of the HSA and the correlation with endoscopic findings and symptoms. The preoperative information allow to discuss with patients the proper technique when a HSA[5 cm2 is detected. During the follow-up a correlation between symptoms and failure of cruroplasty can be assessed. Conclusions: MDCT scan seems to be an effective non-invasive method to plan hiatal defect treatment and to check during the follow-up the potential recurrence. Future research should correlate in larger series imaging data with intraoperative findings

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    High Throughput Photopatterning and Interactive Manipulation of Microparticles and Microorganisms.

    Full text link
    Recent advances in soft material microfabrication technologies are enabling wide-ranging studies of cellular and organism behavior in vitro; however, these methods are generally time-consuming, challenging to implement by non-experts, are limited to planar features, and cannot be reconfigured within live environments. As a result, it is not possible to manufacture realistic artificial tissue constructs, nor to perform dynamic experimentation with model organisms. This thesis describes an integrated hardware and software platform, based on micro-scale light shaping and high-speed machine vision algorithms that enables real-time, dynamic photo-patterning in response to microscale environmental changes. An optofluidic lithography system designed for the purpose of in-flow polymerization of hydrogel microstructures achieved diffraction limited resolution (r = 0.7µm) with a maximum distortion of the projection of 160nm. This enables continuous production of poly(ethylene-glycol) diacrylate(PEG-DA) microparticles (20-100μm, CoV5-15%). A new pillared microfluidic device design increased throughput up to 1500-fold, capable of synthesizing 2.5×〖10〗^6 particles per minute. Biocompatibility of hydrogels was validated for model organism C. elegans, and hepatocytes. Dynamic assays where structures were built during live culture affirm that proximity of pillared structures increased the swimming speed of C. elegans and showed that worm behavior can be influenced by sequential photopatterning of free-floating structures. A software architecture was designed to enable use of machine vision to in flow, by photopolymer encapsulation in response to image-based decision events. We then evaluated the sensitivity, specificity, RMSE and computational time of candidate machine vision algorithms, and find the Speeded Up Robust Feature (SURF) method was the most robust though Thresholding was 3 orders of magnitude faster than SURF. Using this capability, we sorted poly(styrene) micro particles by size via selective encapsulation (TPR=100% and SPC=99.999%, Mean error 4.7 pixels); and print patterns of hepatocyte aggregates with single cell resolution (<20µm) onto polymer substrates. Last, the thesis describes the design and testing of a six-axis robotic dynamic lithography system for patterning large area curved surfaces. Looking forward, platforms combining micro- and nanofabrication processes with image-driven artificial intelligence algorithms could widely expand capabilities for scalable biofabrication and automation of science, including for custom fabrication of cell-based assays and in vitro organ mimics.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110371/1/croliver_1.pd

    Соціально-гуманітарні аспекти розвитку сучасного суспільства

    Get PDF

    Robotic Crop Interaction in Agriculture for Soft Fruit Harvesting

    Get PDF
    Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics goal for the past several decades. Limiting grower reliance on uncertain seasonal labour is an economic driver of this, but the ability of robotic systems to treat each plant individually also has environmental benefits, such as reduced emissions and fertiliser use. Over the same time period, effective grasping and manipulation (G&M) solutions to warehouse product handling, and more general robotic interaction, have been demonstrated. Despite research progress in general robotic interaction and harvesting of some specific crop types, a commercially successful robotic harvester has yet to be demonstrated. Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft fruit, such as plums, present problems for many of the techniques employed for their more robust relatives and require special focus when developing autonomous harvesters. Adapting existing robotics tools and techniques to new fruit types, including soft skinned varieties, is not well explored. This thesis aims to bridge that gap by examining the challenges of autonomous crop interaction for the harvesting of soft fruit. Aspects which are known to be challenging include mixed obstacle planning with both hard and soft obstacles present, poor outdoor sensing conditions, and the lack of proven picking motion strategies. Positioning an actuator for harvesting requires solving these problems and others specific to soft skinned fruit. Doing so effectively means addressing these in the sensing, planning and actuation areas of a robotic system. Such areas are also highly interdependent for grasping and manipulation tasks, so solutions need to be developed at the system level. In this thesis, soft robotics actuators, with simplifying assumptions about hard obstacle planes, are used to solve mixed obstacle planning. Persistent target tracking and filtering is used to overcome challenging object detection conditions, while multiple stages of object detection are applied to refine these initial position estimates. Several picking motions are developed and tested for plums, with varying degrees of effectiveness. These various techniques are integrated into a prototype system which is validated in lab testing and extensive field trials on a commercial plum crop. Key contributions of this thesis include I. The examination of grasping & manipulation tools, algorithms, techniques and challenges for harvesting soft skinned fruit II. Design, development and field-trial evaluation of a harvester prototype to validate these concepts in practice, with specific design studies of the gripper type, object detector architecture and picking motion for this III. Investigation of specific G&M module improvements including: o Application of the autocovariance least squares (ALS) method to noise covariance matrix estimation for visual servoing tasks, where both simulated and real experiments demonstrated a 30% improvement in state estimation error using this technique. o Theory and experimentation showing that a single range measurement is sufficient for disambiguating scene scale in monocular depth estimation for some datasets. o Preliminary investigations of stochastic object completion and sampling for grasping, active perception for visual servoing based harvesting, and multi-stage fruit localisation from RGB-Depth data. Several field trials were carried out with the plum harvesting prototype. Testing on an unmodified commercial plum crop, in all weather conditions, showed promising results with a harvest success rate of 42%. While a significant gap between prototype performance and commercial viability remains, the use of soft robotics with carefully chosen sensing and planning approaches allows for robust grasping & manipulation under challenging conditions, with both hard and soft obstacles

    Night moves: A mise-en-scene of a luminous economy

    Get PDF
    Since the general electrification of ambient urban lighting in the late nineteenth century, complex arrangements of functional and aesthetic lighting have become increasingly deployed to intensify the capitalization of the city at night. Contemporary solid-state lighting integrated with networked control systems means that scenic effects once contained within theatrical and cinematic production, have infiltrated the built spaces that we occupy. As digital imaging technologies converge with the built environment, the city at night can be considered as a moving image. This research considers the implications of the nocturnal city when it is understood as a manufactured atmosphere, where the distinctions between media interfaces and the construction of urban space are no longer distinguishable as distinct zones of experience. By employing Bertolt Brecht’s and Antonin Artaud’s concepts of a mise-en-scene of light as a critical and transformational tool, the thesis develops connections between current theories of atmosphere and post-cinematic urbanism. The thesis proposes a practice-based analytical and critical mise-en-sce ne that draws on embodied empirical methods for creating lens, light and sound-based artworks within installation art and the urban environment. This research explores the effects of light and digital projection on urban subjectivity and its representations. Recent formulations of atmosphere in Gernot Böhme’s phenomenological conception of architectural atmospheres and Andreas Philippopoulos-Mihalopoulos’ theorisation of lawscape are integrated into a broader corpus of analysis and theory through empirical, theoretical and historical modes of enquiry. Together, the written thesis and body of practice provide the framework phototropia. This aims to establish a transversal platform for critical thought and practice from which to think and remake the city at night. From the perspective of a material practice this method offers ways of understanding the changing relations between imaging technologies and contemporary urban subjectivity
    corecore