40 research outputs found

    Universal recovery maps and approximate sufficiency of quantum relative entropy

    Get PDF
    The data processing inequality states that the quantum relative entropy between two states ρ\rho and σ\sigma can never increase by applying the same quantum channel N\mathcal{N} to both states. This inequality can be strengthened with a remainder term in the form of a distance between ρ\rho and the closest recovered state (RN)(ρ)(\mathcal{R} \circ \mathcal{N})(\rho), where R\mathcal{R} is a recovery map with the property that σ=(RN)(σ)\sigma = (\mathcal{R} \circ \mathcal{N})(\sigma). We show the existence of an explicit recovery map that is universal in the sense that it depends only on σ\sigma and the quantum channel N\mathcal{N} to be reversed. This result gives an alternate, information-theoretic characterization of the conditions for approximate quantum error correction.Comment: v3: 24 pages, 1 figure, final version published in Annales Henri Poincar\'

    The Fidelity of Recovery is Multiplicative

    Get PDF
    Fawzi and Renner [Commun. Math. Phys. 340(2):575, 2015] recently established a lower bound on the conditional quantum mutual information (CQMI) of tripartite quantum states ABCABC in terms of the fidelity of recovery (FoR), i.e. the maximal fidelity of the state ABCABC with a state reconstructed from its marginal BCBC by acting only on the CC system. The FoR measures quantum correlations by the local recoverability of global states and has many properties similar to the CQMI. Here we generalize the FoR and show that the resulting measure is multiplicative by utilizing semi-definite programming duality. This allows us to simplify an operational proof by Brandao et al. [Phys. Rev. Lett. 115(5):050501, 2015] of the above-mentioned lower bound that is based on quantum state redistribution. In particular, in contrast to the previous approaches, our proof does not rely on de Finetti reductions.Comment: v2: 9 pages, published versio

    On multivariate trace inequalities of Sutter, Berta and Tomamichel

    Get PDF
    We consider a family of multivariate trace inequalities recently derived by Sutter, Berta and Tomamichel. These inequalities generalize the Golden-Thompson inequality and Lieb's three-matrix inequality to an arbitrary number of matrices in a way that features complex matrix powers. We show that their inequalities can be rewritten as an nn-matrix generalization of Lieb's original three-matrix inequality. The complex matrix powers are replaced by resolvents and appropriate maximally entangled states. We expect that the technically advantageous properties of resolvents, in particular for perturbation theory, can be of use in applications of the nn-matrix inequalities, e.g., for analyzing the rotated Petz recovery map in quantum information theory.Comment: 14 pages; comments welcom

    Universal recoverability in quantum information

    Get PDF
    The quantum relative entropy is well known to obey a monotonicity property (i.e., it does not increase under the action of a quantum channel). Here we present several refinements of this entropy inequality, some of which have a physical interpretation in terms of recovery from the action of the channel. The recovery channel given here is explicit and universal, depending only on the channel and one of the arguments to the relative entropy

    Approximate reversibility in the context of entropy gain, information gain, and complete positivity

    Get PDF
    There are several inequalities in physics which limit how well we can process physical systems to achieve some intended goal, including the second law of thermodynamics, entropy bounds in quantum information theory, and the uncertainty principle of quantum mechanics. Recent results provide physically meaningful enhancements of these limiting statements, determining how well one can attempt to reverse an irreversible process. In this paper, we apply and extend these results to give strong enhancements to several entropy inequalities, having to do with entropy gain, information gain, entropic disturbance, and complete positivity of open quantum systems dynamics. Our first result is a remainder term for the entropy gain of a quantum channel. This result implies that a small increase in entropy under the action of a subunital channel is a witness to the fact that the channel's adjoint can be used as a recovery map to undo the action of the original channel. Our second result regards the information gain of a quantum measurement, both without and with quantum side information. We find here that a small information gain implies that it is possible to undo the action of the original measurement if it is efficient. The result also has operational ramifications for the information-theoretic tasks known as measurement compression without and with quantum side information. Our third result shows that the loss of Holevo information caused by the action of a noisy channel on an input ensemble of quantum states is small if and only if the noise can be approximately corrected on average. We finally establish that the reduced dynamics of a system-environment interaction are approximately completely positive and trace-preserving if and only if the data processing inequality holds approximately.Comment: v3: 12 pages, accepted for publication in Physical Review

    Observational entropy, coarse quantum states, and Petz recovery: information-theoretic properties and bounds

    Full text link
    Observational entropy provides a general notion of quantum entropy that appropriately interpolates between Boltzmann's and Gibbs' entropies, and has recently been argued to provide a useful measure of out-of-equilibrium thermodynamic entropy. Here we study the mathematical properties of observational entropy from an information-theoretic viewpoint, making use of recently strengthened forms of the monotonicity property of quantum relative entropy. We present new bounds on observational entropy applying in general, as well as bounds and identities related to sequential and post-processed measurements. A central role in this work is played by what we call the ``coarse-grained'' state, which emerges from the measurement's statistics by Bayesian retrodiction, without presuming any knowledge about the ``true'' underlying state being measured. The degree of distinguishability between such a coarse-grained state and the true (but generally unobservable) one is shown to provide upper and lower bounds on the difference between observational and von Neumann entropies.Comment: 18 pages, 1 figure. v2 Greatly revised and restructured, adds new results. Questions and comments welcom

    Monotonicity of quantum relative entropy and recoverability

    Get PDF
    The relative entropy is a principal measure of distinguishability in quantum information theory, with its most important property being that it is non-increasing with respect to noisy quantum operations. Here, we establish a remainder term for this inequality that quantifies how well one can recover from a loss of information by employing a rotated Petz recovery map. The main approach for proving this refinement is to combine the methods of [Fawzi and Renner, arXiv:1410.0664] with the notion of a relative typical subspace from [Bjelakovic and Siegmund-Schultze, arXiv:quant-ph/0307170]. Our paper constitutes partial progress towards a remainder term which features just the Petz recovery map (not a rotated Petz map), a conjecture which would have many consequences in quantum information theory. A well known result states that the monotonicity of relative entropy with respect to quantum operations is equivalent to each of the following inequalities: strong subadditivity of entropy, concavity of conditional entropy, joint convexity of relative entropy, and monotonicity of relative entropy with respect to partial trace. We show that this equivalence holds true for refinements of all these inequalities in terms of the Petz recovery map. So either all of these refinements are true or all are false.Comment: v3: 22 pages, 1 figure, accepted for publication in Quantum Information and Computatio
    corecore