There are several inequalities in physics which limit how well we can process
physical systems to achieve some intended goal, including the second law of
thermodynamics, entropy bounds in quantum information theory, and the
uncertainty principle of quantum mechanics. Recent results provide physically
meaningful enhancements of these limiting statements, determining how well one
can attempt to reverse an irreversible process. In this paper, we apply and
extend these results to give strong enhancements to several entropy
inequalities, having to do with entropy gain, information gain, entropic
disturbance, and complete positivity of open quantum systems dynamics. Our
first result is a remainder term for the entropy gain of a quantum channel.
This result implies that a small increase in entropy under the action of a
subunital channel is a witness to the fact that the channel's adjoint can be
used as a recovery map to undo the action of the original channel. Our second
result regards the information gain of a quantum measurement, both without and
with quantum side information. We find here that a small information gain
implies that it is possible to undo the action of the original measurement if
it is efficient. The result also has operational ramifications for the
information-theoretic tasks known as measurement compression without and with
quantum side information. Our third result shows that the loss of Holevo
information caused by the action of a noisy channel on an input ensemble of
quantum states is small if and only if the noise can be approximately corrected
on average. We finally establish that the reduced dynamics of a
system-environment interaction are approximately completely positive and
trace-preserving if and only if the data processing inequality holds
approximately.Comment: v3: 12 pages, accepted for publication in Physical Review