289,647 research outputs found

    Inclusive Decays of Heavy Quarkonium to Light Particles

    Get PDF
    We derive the imaginary part of the potential NRQCD Hamiltonian up to order 1/m^4, when the typical momentum transfer between the heavy quarks is of the order of Lambda_{QCD} or greater, and the binding energy E much smaller than Lambda_{QCD}. We use this result to calculate the inclusive decay widths into light hadrons, photons and lepton pairs, up to O(mv^3 x (Lambda_{QCD}^2/m^2,E/m)) and O(mv^5) times a short-distance coefficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number of unknown non-perturbative parameters and, therefore, we obtain new model-independent QCD predictions. All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the origin and six universal non-perturbative parameters. The wave-function dependence factorizes and drops out in the ratio of hadronic and electromagnetic decay widths. The universal non-perturbative parameters are expressed in terms of gluonic field-strength correlators, which may be fixed by experimental data or, alternatively, by lattice simulations. Our expressions are expected to hold for most of the charmonium and bottomonium states below threshold. The calculations and methodology are explained in detail so that the evaluation of higher order NRQCD matrix elements in this framework should be straightforward. An example is provided.Comment: 61 pages, 9 figures. Minor change

    Reliable random error estimation in the measurement of line-strength indices

    Get PDF
    We present a new set of accurate formulae for the computation of random errors in the measurement of atomic and molecular indices. The new expressions are in excellent agreement with numerical simulations. We have found that, in some cases, the use of approximated equations can give misleading line-strength index errors. It is important to note that accurate errors can only be achieved after a full control of the error propagation throughout the data reduction with a parallel processing of data and error frames. Finally, simple recipes for the estimation of the required signal-to-noise ratio to achieve a fixed index error are presented.Comment: 9 pages, LaTeX file + 5 PostScript figures, psfig.sty and laa-s.sty required, to be published in Astronomy & Astrophysics Supplement Serie

    The Two-Loop Finite-Temperature Effective Potential of the MSSM and Baryogenesis

    Get PDF
    We construct an effective three dimensional theory for the MSSM at high temperatures in the limit of large-mAm_{A}. We analyse the two-loop effective potential of the 3D theory for the case of a light right handed stop to determine the precise region in the mhm_{h}-mt~Rm_{\tilde{t}_{R}} plane for which the sphaleron constraint for preservation of the baryon asymmetry is satisfied. We also compare with results previously obtained usind 3D and 4D calculations of the effective potential. A two-stage phase transition still persists for a small range of values of mt~Rm_{\tilde{t}_{R}}. The allowed region requires a value of m_{\tilde{t}_{R}} \lsi m_{t} and m_{h} \lsi 100 (110) GeV for mQ=300m_{Q} = 300 GeV (1 TeV).Comment: 40 pages, 6 Postcsript figures, uses eps

    Vortex tilt modulus in Fulde-Ferrell-Larkin-Ovchinnikov state

    Get PDF
    Vortex tilt response in Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex lattice is theoretically examined as a probe reflecting the spatial structure of this state. In the FFLO state with nodal planes perpendicular to the magnetic field in a quasi 2D material under a parallel field, the tilt modulus E_{2} {\it of the nodal planes} decreases as the paramagnetic effect is effectively enhanced, and this reduction of E_{2} in turn reduces the vortex tilt modulus. This reduction of vortex tilt modulus, more remarkable in more anisotropic systems, accompanying the FFLO transition may be an origin of the monotonous reduction of sound velocity detected upon cooling in a ultrasound measurement for CeCoIn5.Comment: 14 pages, 5 figures. Accepted for publication in Phys. Rev.

    On the strength of the nonlinearity in isotropic turbulence

    Full text link
    Turbulence governed by the Navier-Stokes equations shows a tendency to evolve towards a state in which the nonlinearity is diminished. In fully developed turbulence this tendency can be measured by comparing the variance of the nonlinear term to the variance of the same quantity measured in a Gaussian field with the same energy distribution. In order to study this phenomenon at high Reynolds numbers, a version of the Direct Interaction Approximation is used to obtain a closed expression for the statistical average of the mean-square nonlinearity. The wavenumber spectrum of the mean-square nonlinear term is evaluated and its scaling in the inertial range is investigated as a function of the Reynolds number. Its scaling is dominated by the sweeping by the energetic scales, but this sweeping is weaker than predicted by a random sweeping estimate. At inertial range scales, the depletion of nonlinearity as a function of the wavenumber is observed to be constant. At large it is observed that the mean-square nonlinearity is larger than its Gaussian estimate, which is shown to be related to the non-Gaussianity of the Reynolds-stress fluctuations at these scales.Comment: Accepted for publication in J. Fluid Mec

    System Measure for Persistence in Holographic Recording and Application to Singly-Doped and Doubly-Doped Lithium Niobate

    Get PDF
    We define a measure for persistence in holographic recording. Using this measure and the known measures for dynamic range and sensitivity, we compare the performance of singly-doped and doubly-doped LiNbO3 crystals. We show that the range of performance that can be obtained using doubly-doped crystals is much larger than that obtained using singly-doped ones
    • 

    corecore