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1 Introduction

The analysis of the electroweak phase transition in the MSSM has been the subject of intensive

study in recent years. The main motivation is the generation (and preservation) of a possible baryon

asymmetry at the electroweak scale [1, 2] (for reviews, see [3]-[5]). Many different contributions

have given a clearer idea as to where in parameter space the condition of a strong enough first-order

phase transition can occur in order for electroweak baryogenesis to be possible. Mainly two different

analytic approaches have been used in the analysis of the phase transition for the MSSM. The first

one involves the evaluation of the effective potential in the 4D theory. The one-loop analysis [6]-[9]

led to the conclusion that low values of the ratio of the vacuum expectation values of the two Higgs

doublets tan β = v2

v1

, and large values of the pseudoscalar mass mA were favoured. More recently the

effects of a very light right handed stop with a soft SUSY-breaking mass value of m2
U

<
∼ 0 were shown

to strongly strengthen the phase transition by enhancing the cubic term in the effective potential

[10, 11]. As first pointed out by Espinosa [12], two-loop corrections were also shown to be very

important in order to increment the allowed parameter space for which electroweak baryogenesis

can take place. In particular two-loop QCD corrections from stops can strongly affect the value of

the scalar field at the phase transition [12]-[14]. A precise determination of the region in parameter

space for which electroweak baryogenesis is viable was done by Carena et al. [15], using a two-

loop calculation in 4D, with a light right handed stop, and a heavy third generation left squark

doublet, which is decoupled from the thermal bath. They conclude that the Higgs mass must be

lower than 105 GeV and that the right stop mass must be in the range of 110-160 GeV if absolute

stability of the physical vacuum is required. A very recent paper by Cline and Moore [16] use the

two-loop effective potential in 4D, fully incorporating squark and Higgs boson mixing, to determine

the allowed region in parameter space. Their results are in good agreement with those of ref. [15].

In the second approach for the analysis of the phase transition, the aim is to separate the

perturbative and non-perturbative aspects of the theory. The purely perturbative component of

the calculation is performed by constructing an effective 3D theory for the model under consideration

[17]-[23]. The parameters in the 3D Lagrangian are obtained using dimensional reduction at high

temperature by matching the static Green’s functions in the two theories, to a given order in the

perturbative expansion, by integrating out the non-zero Matsubara modes with masses of the order
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of πT , where T is the temperature. A further reduction can also be performed noting that some

of the static modes in the theory have acquired thermal masses proportional to a gauge coupling

multiplied by the temperature, ∼ gwT, gsT . These so-called heavy particles can then be integrated

out as well. The effective potential calculated in the 3D theory reproduces the results obtained with

the 4D effective potential. References [21], [24]-[26] give more details concerning the construction

of effective theories for both the Standard Model and the MSSM. This approach simplifies the

theory as it is now purely bosonic, which facilitates lattice simulations. Numerical studies of the

reduced theory will take into account the non-perturbative effects. We refer the reader to the above

publications for further discussion regarding strengths and weaknesses of 4D and 3D calculations.

For the generic case in which there is a single light scalar doublet field at the phase transition

the constraint on strength of the transition is translated into an upper bound on the ratio of the 3D

Higgs self-coupling and the square 3D gauge coupling λ3

g2
w3

[21]. This ratio has a weak dependence

on the temperature for values close to the critical temperature of the phase transition for the

allowed range of values of the Higgs mass [27]. In addition, the 3D scalar and gauge couplings are

renormalization group invariant. This implies that a 1-loop matching of the 3D coupling constants

and masses to the physical parameters and the temperature suffices to determine the strength of the

phase transition, using the constraint given by the non-perturbative analysis of the phase transition

for a single light scalar field [21].

To clarify an essential point, we recall that the critical temperature for the transition from the

high temperature minimum to the standard electroweak minimum is obtained from the condition

that the value of the effective potential at these two minima are equal, V (0, T ) = V (φc, T ). Therefore

we insist that the value of the critical temperature does depend on a precise determination of the 3D

mass parameter, which is not renormalization group invariant. The scalar mass requires ultraviolet

renormalization and a 2-loop calculation (in 4D) must be performed even for the case of a single

light scalar at the phase transition. However, since the ratio of the vacuum expectation value of

the scalar field to the temperature, φc

Tc
(or equivalently, λ3

g2
w3

), which determines the rate of sphaleron

transitions in the broken phase has only a weak dependence, in this case, on the temperature, the

two-loop calculation is not necessary.

In the initial analysis for the MSSM using the 3D approach [24]-[27], the light stop scenario

could only be investigated for values of the right handed stop soft SUSY-breaking mass of mU
>
∼ 50
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GeV. For lower values of the stop mass the perturbative procedure of integrating out the “heavy”

modes starts to break down as the relevant expansion parameter is of the form
g2

s3

mU3

. In addition, the

numerical constraint from non-perturbative studies is no longer valid and new studies that include

the effect of the SU(3) gauge fields must be performed.

An effective Lagrangian for a light Higgs and a light stop must be constructed to analyse the

phase transition for lower values of mU within the 3D approach [14]. A surprising result of the

perturbative analysis in this scenario was that a possible two-stage phase transition could take

place, in which the Universe would first undergo a transition to a colour-breaking vacuum and, at

a lower temperature, another transition to the physical vacuum would occur. In fact, the work of

Bodeker et al. was the first to point out that, for a small range of values of mt̃R , the phase transition

could occur in two stages for the MSSM. This analysis was based on a 2-loop calculation of the

effective potential in 3D including the leading corrections in the dimensional-reduction procedure.

It is of course of great interest to exactly identify the range of parameter space for which this two-

stage phase transition can occur. In this case it is necessary to determine the critical temperatures

very precisely for the two possible directions of the transition. The most relevant quantities that

determine the critical temperatures are the 3D mass parameters for the Higgs doublet and the right

handed stop. These masses depend logarithmically on two parameters, ΛH3
or ΛU3

, which can only

be determined exactly from the 4D theory. In the initial reduction implemented by [14], the exact

values of ΛH3
and ΛU3

were not determined. An estimate was used instead, based on the value of

the corresponding parameter in the Standard Model. Here we employ a combination of 4D and 3D

calculations of the effective potential to obtain the exact values of ΛH3
and ΛU3

.

Undoubtably, many of the questions that arise from the limitations of perturbation theory

will only be answered when the corresponding lattice calculations are done. However, the first

non-perturbative results show that the 2-loop results for the strength of the phase transition are

conservative in the bounds they impose on the allowed masses for the Higgs and the light stop

[14]. These results were obtained using a simplified model in the reduction procedure. For more

complicated initial Lagrangians the final effective 3D theory is characterized by the same couplings

and masses. We would like to point out a few of the features that can be affected in the perturbative

calculation of the effective theory and their consequent effect on baryogenesis. Additionally, in order

to apply the non-perturbative results, a precise mapping of the 4D to 3D parameters is needed,
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which is presented in this paper. The results obtained with the perturbative 2-loop effective potential

presented here can then be compared with the lattice analysis.

The procedure of constructing an effective 3D theory is based on the mass hierarchy which ap-

pears at finite temperature. The validity of the results depends on an adequate expansion parameter

and the suppression of the higher order terms in the 3D theory. The value of the masses of the

particles which are integrated out will define the regime of validity of the approach. As mentioned

above, previous analyses [24]-[27] of the 3D theory integrating out the right handed stop claimed

that for mU
>
∼ 50 GeV the higher order terms were suppressed and consequently the effective the-

ory was an adequate description. We compare the results obtained for the ratio of the vacuum

expectation value of the Higgs field to the temperature using the two-loop effective potential with

and without integrating out the right handed stop to determine more precisely the value of the

right handed stop mass for which the effective theory is no longer valid. We find that for values of

mU
<
∼ 123 GeV the results obtained having integrated out the right handed stop are unreliable.

The paper is organized as follows: in section 2.1 we present the dimensional reduction to the

effective bosonic theory at one-loop. Section 2.2 presents a further one-loop reduction in the 3D

theory, eliminating the heavy fields. In section 2.3 we give the expression for the 2-loop unresummed

effective potential in 4D, which is necessary for evaluating ΛH3
and ΛU3

. The contribution to the 3D

effective potential from the “heavy” particles that were integrated out at the second stage is given

in section 2.4. Section 2.5 discusses the relevant zero-temperature effects that must be included in

our analysis. In section 3 we present our results for the critical temperatures and the strength of

the phase transition. The allowed region for electroweak baryogenesis to occur is also given here.

A comparison of the results obtained from the effective potential with and without integrating out

the right handed stop is given in this section. Finally, in section 4, we conclude. The appendix

contains the relevant formulae for the case in which the right handed stop is integrated out.

2 Dimensional Reduction

We will now perform dimensional reduction by matching, as has been previously done in refs.

[21],[24]-[26] for different models. Our initial 4D Lagrangian corresponds to the MSSM in the large-

mA limit. The particles that contribute to the thermal bath are the Standard Model particles plus
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third-generation squarks: t̃L, b̃L, t̃R, b̃R. We will only consider here the case of zero squark mixing.

The results for non-zero squark mixing will be presented elsewhere2 [28]. There are two stages of

reduction. The first one corresponds to the integration out of all non-zero Matsubara modes, that

is with a thermal mass of the order of ∼ πT . We calculate all one-loop contributions to mass terms

and coupling constants of the static fields to order g4, where g denotes a gauge or top Yukawa

coupling. The second stage of reduction corresponds to the integration of heavy particles with

masses of the order of gwT , gsT .

2.1 First Stage

The potential in the 3D effective theory after integration over non-zero Matsubara modes is of the

form

V = m2
H3

H†H + λH3
(H†H)2 + m2

U3
U †U + λU3

(U †U)2 + γ3(H
†H)(U †U)

+ m2
Q3

Q†Q + m2
D3

D†D + ΛQ
3 (H†H)(Q†Q) + Λc

4(H
†Q)(Q†H)

+ (Λs
4 + hL

t )|ǫijH
iQj |2 + (hQU

t + gQU
s1

)Q∗
iαU∗

αQiβUβ

+ gQU
s2

UαU∗
αQ∗

jγQjγ + gQD
s1

DαD∗
βQ∗

jβQjα

+ gQD
s2

DαD∗
αQ∗

jγQjγ + gUD
s1

UαU∗
γD∗

γDα

+ gUD
s2

UαU∗
αD∗

γDγ + Λ1(Q
†Q)2 + λD3

(D†D)2 + λQ3
(Q†

iQi)
2

+ gQQ
s1

Q∗
iαQ∗

jαQiγQjγ + gQQ
s2

QiαQ∗
iαQ∗

jγQjγ

+
1

2
m2

A0
Aa

0A
a
0 +

1

2
m2

C0
CA

0 CA
0 +

1

4
g2

w3
(H†H)(Aa

0A
a
0)

+
1

4
g2

s3
CA

0 CB
0 (U∗)†λAλBU∗. (1)

2 The effects of non-zero squark mixing in the case of a relatively light left squark doublet can complicate the
calculation considerably. For a heavy left squark doublet at large values of the mixing parameters, the two-stage
scenario is not realized [15]. However, this effect may not persist for lower values of the mass of the left doublet as
the contribution to the thermal mass of the scalars is changed, see [24, 26, 28]. On the other hand, as was noticed
in previous studies of the phase transition, a non-zero value of the mixing parameters always weakens the strength
of the transition. So lower values of the Higgs mass or the right handed stop mass are necessary to enhance the
strength of the transition for non-zero squark mixing. Thus our results give upper bounds on the scalar masses.
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Here H is the Higgs doublet field, U(D) is the right handed stop(sbottom) field, and Q is the third

generation left squark doublet field. The longitudinal components of the SU(2) and SU(3) gauge

fields are denoted by Ao and Co, respectively. The latin (greek) indices indicate SU(2) (SU(3))

components. As usual, the fields in eq. (1) are the static components of the scalar fields properly

renormalized, the dimension of the fields in 3D is [GeV]1/2. Quartic couplings are of order g2
i (h

2
t )T ,

having dimensions of [GeV]; here gi(ht) denotes a gauge ( top Yukawa) coupling. In the following

we have not included the correction to the quartic coupling between the doublet Higgs field and

the triplet scalar field A0, or the corresponding correction for the SU(3) counterparts. We work

throughout in the Landau gauge. For an analysis of the gauge dependence, we refer the reader to

[24].

We present the full relations between 3D coupling constants and masses in terms of the under-

lying 4D parameters and the temperature. Partial results for the MSSM in the large-mA limit can

be found in ref. [14] 3.

2.1.1 Mass terms

For the Higgs doublet we have4

m2
H3

= m2
H

(

1 +
9

4
g2

w

Lb

16π2
− 3h2

t

Lf

16π2

)

+ T 2
(

λ

2
+

3

16
g2

w +
1

16
g′2 +

1

4
h2

t +
1

4
(2h2

t sin2 β + 2λ3 + λ4)
)

−
Lb

16π2

(

6λm2
H + 3(m2

Q + m2
U)h2

t sin2 β

)

, (2)

where the Higgs mass parameter is denoted by mH , and λ = (g2
w+g′2)

8
cos 2β, λ3 = g2

w

4
, λ4 = −g2

w

2
,

Lb = 2 log µeγ

4πT
≈ 2 log µ

7.055T
, Lf = Lb + 4 log 2. Here µ is the mass scale defined by the modified

3If a light higgsino is included, there will be important effects that are proportional to the top Yukawa coupling
in the dimensionally reduced theory [26].

4We mostly neglect the hypercharge coupling g′, throughout the paper. The only exception is in the contribution
to the tree-level expression of the Higgs self-coupling λ, as this latter quantity is fundamental in determining the
strength of the phase transition.
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minimal substraction scheme (MS) scheme. Similarly, for the third generation squark mass terms

we have

m2
U3

= m2
U

(

1 + 4g2
s

Lb

16π2

)

+ T 2
(

1

3
g2

s +
2

3
λU +

1

6
h2

t sin2 β +
1

6
h2

t

)

−
Lb

16π2

(

4

3
g2

sm
2
U + 2h2

t sin2 β(m2
H + m2

Q)
)

, (3)

m2
Q3

= m2
Q

(

1 + (
9

4
g2

w + 4g2
s)

Lb

16π2

)

+ T 2
(

3

16
g2

w +
λ1

2
+

4

9
g2

s +
1

12
h2

t (1 + sin2 β)
)

−
Lb

16π2

(

4

3
g2

sm
2
Q + 6λ1m

2
Q + h2

tm
2
U + h2

t sin2 βm2
H

)

, (4)

m2
D3

= m2
D

(

1 + 4g2
s

Lb

16π2

)

+ T 2
(

4

9
g2

s

)

−
Lb

16π2

(

4

3
g2

sm
2
D

)

. (5)

where the soft SUSY-breaking masses for the third generation left squark doublet and the right

handed sbottom are denoted by mQ and mD respectively, and λU = g2
s

6
, λ1 = g2

w

8
. The longitudinal

components of the SU(2) and SU(3) gauge fields acquire thermal masses given by

m2
A0

= g2
wT 2

(

2

3
+

Nf

12
+

Nsw

6

)

, (6)

m2
C0

= g2
sT

2
(

1 +
Nf

12
+

Nss

6

)

, (7)

respectively, where Nsw = 4, Nss = 4, Nf = 6 [14].

2.1.2 Couplings

The 3D gauge coupling expressions for a dimensionally reduced SU(N) gauge theory can be found

in ref. [14]. We include them for completeness

g2
3 = Tg2(µ)

[

1 +
g2(µ)

48π2

(

(22N − Ns)
Lb

2
− NfLf + N

)]

. (8)
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Here Ns is the number of scalar fields in the fundamental representation and Nf is the number of

fermions.

For the scalar quartic self-couplings, we have the following relations arising from the diagrams

that have been shown in refs. [24, 26] 5,

λH3
= λT

(

1 +
9

2
g2

w

Lb

16π2
− 6h2

t sin2 β
Lf

16π2

)

− T

[

Lb

16π2

(

9

16
g4

w + 12λ2 + 3(λ2
3 + λ3λ4 + λ2

4 cos4 β + λ2
4 sin4 β

+ h2
t sin2 β(λ3 + λ4 sin2 β) + h4

t sin4 β)
)

+
3

8

g4
w

16π2
+ 3h4

t sin4 β
Lf

16π2

]

, (9)

λU3
=

g2
s

6
T

(

1 + 8g2
s

Lb

16π2

)

− T

[

Lb

16π2

(

23

36
g4

s +
13

12
g4

s −
2

3
h2

t g
4
s

+ h4
t + h4

t sin4 β

)

+
13

18
g4

s

]

, (10)

γ3 = h2
t sin2 βT

(

1 +
9

4
g2

w

Lb

16π2
− 3h2

t sin2 Lf

16π2
+ 4g2

s

Lb

16π2

)

− T

[

Lb

16π2

(

4

3
h2

t sin2 βg2
s + 2h4

t sin4 β + 6λh2
t sin2 β

+ h2
t (2λ3 + λ4 + h2

t sin2 β

)]

, (11)

ΛQ
3 = λ3T

(

1 +
9

2
g2

w

Lb

16π2
− 3h2

t sin2 Lf

16π2
+ 4g2

s

Lb

16π2

)

− T

[

Lb

16π2

(

9

8
g4

w +
4

3
g2

sλ3 + 6λλ3 + 6λ1λ3 + 2λ2
3 + 2λλ4

+ 2λ1λ4 + λ2
4 cos4 β + h4

t sin2 β + 2λh2
t sin2 β + 2λ1h

2
t sin2 β

+ h4
t sin4 β + 2h2

tλ4 sin4 β + λ2
4 sin4 β

)

−
Lf

16π2
2h4

t sin4 β

]

, (12)

5For contributions arising from the rest of the supersymmetric particles and the inclusion of Yukawa couplings
for the other (s)quarks see ref. [26].
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Λc
4 = λ4 cos2 βT

(

1 +
9

2
g2

w

Lb

16π2
− 3h2

t sin2 Lf

16π2
+ 4g2

s

Lb

16π2

)

− T
Lb

16π2

(

2λλ4 cos2 β + 2λ1λ4 cos2 β + g2
wλ4 cos2 β + 2λ2

4 cos4 β

+ 4λ3λ4 cos2 β +
4

3
g2

sλ4 cos2 β

)

, (13)

Λs
4 = λ4 sin2 βT

(

1 +
9

2
g2

w

Lb

16π2
− 3h2

t sin2 Lf

16π2
+ 4g2

s

Lb

16π2

)

−
T

2

Lb

16π2

(

4

3
g2

s(h
2
t + λ4) sin2 β + 2λλ4 sin2 β + 2λ1λ4 sin2 β + 2λ2

4 sin4 β

+ 2h4
t sin4 β + 2λh2

t sin2 β + 2λ1h
2
t sin2 β

+ h4
t sin4 β + 4h2

tλ4 sin4 β + g2
w(h2

t + λ4) sin2 β + 2λ2
4 sin4 β

+ 4λ3λ4 sin2 β + 4h2
t λ3 sin2 β

)

, (14)

hL
t = h2

t sin2 βT

(

1 +
9

2
g2

w

Lb

16π2
− 3h2

t sin2 Lf

16π2
+ 4g2

s

Lb

16π2

)

−
T

2

Lb

16π2

(

4

3
g2

s(h
2
t + λ4) sin2 β + 2λλ4 sin2 β + 2λ1λ4 sin2 β + 2λ2

4 sin4 β

+ 2h4
t sin4 β + 2λh2

t sin2 β + 2λ1h
2
t sin2 β

+ h4
t sin4 β + 4h2

t λ4 sin4 β + g2
w(h2

t + λ4) sin2 β + 2λ2
4 sin4 β

+ 4λ3λ4 sin2 β + 4h2
tλ3 sin2 β

)

. (15)

We include the relations for the couplings among the heavy fields which will be integrated out

at the second stage. These relations are needed only when the 2-loop contribution from these fields

to the effective potential are included, see section 2.4. We obtain

gQU
s1

= −
1

2
g2

sT

(

1 +
(

9

4
g2

w + 8g2
s

)

Lb

16π2

)

−
T

2

(

Lb

16π2

(

3h4
t +

5

4
g4

s

−
7

6
h2

tg
2
s −

5

12
g4

s +
3

8
g2

w(2h2
t − g2

s)
)

+
5

6

g4
s

16π2

)

, (16)

9



h
QU
t = h2

t T

(

1 +
(

9

4
g2

w + 8g2
s

)

Lb

16π2

)

−
T

2

(

Lb

16π2

(

3h4
t +

5

4
g4

s

−
7

6
h2

t g
2
s −

5

12
g4

s +
3

8
g2

w(2h2
t − g2

s)
)

+
5

6

g4
s

16π2

)

, (17)

gQU
s2

=
1

6
g2

sT

(

1 +
(

9

4
g2

w + 8g2
s

)

Lb

16π2

)

− T

(

Lb

16π2

(

h4
t + g2

sλ1

−
1

2
h2

t g
2
s +

7

12
g4

s + 2h2
tλ3 sin2 β + h2

tλ4 sin2 β cos2 2β

+
11

12
g4

s + h4
t sin4 β + h2

tλ4 sin4 β

)

+
11

18

g4
s

16π2

)

, (18)

gUD
s1

=
1

2
g2

sT

(

1 + 8g2
s

Lb

16π2

)

− T

(

Lb

16π2

(

−h2
t g

2
s +

5

2
g4

s

)

+
5

6

g4
s

16π2

)

, (19)

gUD
s2

= −
1

6
g2

sT

(

1 + 8g2
s

Lb

16π2

)

− T

(

Lb

16π2

(

1

3
h2

t g
2
s +

1

36
g4

s +
11

12
g4

s

)

+
11

18

g4
s

16π2

)

, (20)

gQD
s1

= −
1

2
g2

sT

(

1 +
(

9

4
g2

w + 8g2
s

)

Lb

16π2

)

− T

(

Lb

16π2

(

h2
t g

2
s +

5

4
g4

s

−
5

12
g4

s +
3

8
g2

w(2h2
t − g2

s)
)

+
5

6

g4
s

16π2

)

, (21)

gQD
s2

=
1

6
g2

sT

(

1 +
(

9

4
g2

w + 8g2
s

)

Lb

16π2

)

− T

(

Lb

16π2

(

−
1

6
h2

t g
2
s +

11

12
g4

s

+
7

12
g4

s + g2
sλ1 +

3

8
g2

w(2h2
t − g2

s)
)

+
11

18

g4
s

16π2

)

, (22)
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Λ1 = λ1T

(

1 +
(

9

2
g2

w + 8g2
s

)

Lb

(16π2)

)

−
T

2

(

Lb

(16π2)

(

h4
t −

2

3
h2

t g
2
s

+
23

18
g4

s +
5

16
g4

w +
3

4
g2

sg
2
w + 2λ2

3 + 2λ3λ4 + λ2
4 cos4 β + 2h2

t λ3 sin2 β

+ h4
t sin4 β + 2h2

tλ4 sin4 β + λ2
4 sin4 β +

13

12
g4

s

)

+
13

18
g4

s

)

, (23)

λQ3
=

g2
s

6
T

(

1 +
(

9

2
g2

w + 8g2
s

)

Lb

(16π2)

)

−
T

2

(

Lb

(16π2)

(

h4
t −

2

3
h2

t g
2
s

+
23

18
g4

s +
5

16
g4

w +
3

4
g2

sg
2
w + 2λ2

3 + 2λ3λ4 + λ2
4 cos4 β + 2h2

tλ3 sin2 β + h4
t sin4 β

+ 2h2
tλ4 sin4 β + λ2

4 sin4 β +
13

12
g4

s

)

+
13

18
g4

s

)

, (24)

gQQ
s1

=
g2

s

6
T

(

1 +
(

9

2
g2

w + 8g2
s

)

Lb

(16π2)

)

− T

(

Lb

(16π2)

(

h4
t − h2

t g
2
s

+
11

12
g4

s +
5

4
g4

s + λ2
4 cos2 β − 2h2

tλ4 sin2 β cos2 β − 2λ2
4 sin2 β cos2 β + h4

t

+ 2h2
t λ4 sin4 β + λ2

4 sin2 β + g2
sg

2
w −

3

16
g4

w

)

+
5

6

g4
s

(16π2)

)

, (25)

gQQ
s2

=
g2

s

6
T (1 +

(

9

2
g2

w + 8g2
s

)

Lb

(16π2)

)

−
T

2

(

Lb

(16π2)

(

1

3
h2

t g
2
s +

1

36
g4

s

+
11

12
g4

s + 2λ2
3 + 2λ3λ4 + 2h2

tλ3 sin2 β + 2h2
t λ4 sin2 β cos2 β

+ 2λ2
4 sin2 β cos2 β +

1

8
g4

w −
1

4
g2

sg
2
w

)

+
11

18

g4
s

(16π2)

)

. (26)

A few technical comments are in order. We point out that the full one-loop contribution to the

quartic coupling |ǫijH
iQj|2 is given by the sum of eqs. (14) and (15). Similarly, for the quartic

coupling Q∗
iαU∗

αQiβUβ the full contributions arises from eqs. (16) and (17). It is also important

11



to note that there are off-diagonal (in colour space) gluonic contributions to the quartic couplings

involving the strong gauge coupling.

Additionally, when the full supersymmetric spectrum is not included then the running of each

of the strong quartic couplings given in eqs. (16)-(26) is different. Although the gluino contribution

is decoupled under our assumptions, we now write as a check the gluino contributions to the

logarithmic part of the quartic couplings. This shows how, if one includes the full spectrum, then

the relation between the beta-function coefficients is the same as the relation between the couplings.

The gluino contribution, in units of T
Lf

16π2

1
3
g4

s , to the self-couplings is 22
3
. Using the same units,

for gQU
s1

, gQD
s1

the contribution is −4, for gQU
s2

, gQD
s2

the contribution is 20
3
, for gUD

s1
, gQQ

s1
the additional

term is 14, and for gUD
s2

, gQQ
s2

the contribution is 2
3
.

2.2 Second Stage

Another simplification of the effective theory can be obtained by integrating out the scalar fields

which are massive at the transition point. As we have seen the static modes corresponding to the

scalar fields Q, D, Ao, Co, acquired thermal masses proportional to ∼ gw(s)T , as a consequence of

the integration out of the non-zero Matsubara modes. The second stage proceeds in exactly the

same way as in reference [14]. We include the additional corrections arising from the couplings we

have considered.

2.2.1 Couplings

The final expression for the tree level 3D potential is given by

V3D = m2
H3

H†H + λH3
(H†H)2 + m2

U3
U †U + λU3

(U †U)2 + γ3H
†HU †U, (27)

where the scalar couplings are now

λH3
= λH3

−
3

16

g4
w3

8πmA0

−
3

8πmQ3

(

Λ2
3 + Λ3(Λ

c
4 + Λs

4)

+
1

2

(

(Λc
4)

2 + (Λs
4)

2
)

+ hL
t ΛQ

3 + hL
t Λs

4 +
1

2
(hL

t )2
)

, (28)

12



λU3
= λU3

−
13

36

g4
s3

8πmC0

−
1

8πmD3

(

1

2
(gUD

s1
+ gUD

s2
)2 + (gUD

s2
)2

)

−
1

8πmQ3

(

(hQU
t )2 − 2hQU

t gQU
s1

+ 2hQU
t gQU

s2
+ (gUD

s1
+ gUD

s2
)2 + 2(gUD

s2
)2

)

, (29)

γ3 = γ3 −
1

8πmQ3

(hQU
t + gQU

s1
+ 3gQU

s2
)(2ΛQ

3 + Λc
4 + Λs

4 + hL
t ). (30)

The 3D gauge couplings which appear in the SU(2) and SU(3) covariant derivatives of the

effective theory are

g2
w3

= g2
w3

(

1 −
g2

w3

24πmA0

−
g2

w3

16πmQ3

)

, (31)

g2
s3

= g2
s3

(

1 −
g2

s3

16πmC0

−
g2

s3

24πmQ3

−
g2

s3

48πmD3

)

. (32)

2.2.2 Mass terms

The one-loop contribution to the mass terms can be obtained directly as shown in ref. [21]:

m2
H3

= m2
H3

−
3

16π
gw3

mA0
−

3

4π
(2ΛQ

3 + Λc
4 + Λs

4 + hL
t )mQ3

, (33)

m2
U3

= m2
U3

−
1

3π
gs3

mC0
−

1

4π
(2hQU

t + 2gQU
s1

+ 6gQU
s2

)mQ3

−
1

4π
(2gUD

s1
+ 6gUD

s2
)mD3

. (34)

Until now, our procedure has been exactly the same as in previous 3D reductions of the MSSM.

However, in order to precisely fix the scales of the couplings that appear in the thermal polariza-

tions of eqs. (2)-(3), one needs to perform a 2-loop evaluation of the effective potential. In their

13



calculation, Bodeker et al. [14] took the values of the couplings in the screening parts of the 3D

masses to be equal to the 3D values of these couplings. This is the correct result when two-loop

corrections are included [21, 29], see eqs. (67) and (68) below. In addition, the mass parameters

are renormalized in the 3D theory,

m2
H3

(µ) = m2
H3

+
1

(16π2)
f2mH

log
ΛH3

µ
, (35)

m2
U3

(µ) = m2
U3

+
1

(16π2)
f2mU

log
ΛU3

µ
. (36)

The expressions for the 2-loop beta functions f2mH
, f2mU

for the mass parameters have been given

in ref. [14]. As mentioned there in order to fix the values of the parameters ΛH3
and ΛU3

we

must employ the 2-loop effective potential of the 4D theory. In refs. [14, 30] an estimate of

ΛH3
∼ ΛU3

∼ 7T was used. The expressions for the 2-loop effective potential in a H(φ-direction)

and U(χ-direction) background have been given for 4D in the paper by Carena et al. [15], and for

3D by Bodeker et al. [24]. In sections 2.3 and 2.4 we perform a two-loop calculation of the effective

potential, incorporating all of the corrections to the 3D couplings obtained in the previous sections,

to determine the exact values of ΛH3
and ΛU3

.

We will analyse the effect on the critical temperatures when these corrections are included.

Qualitatively we can say that if the net effect increases the value of ΛH3
, then the critical temperature

in the φ-direction decreases, and vice versa. A similar effect occurs in the χ-direction. Thus, as

the range of values of mt̃R , which has been determined to give rise to a two-stage phase transition,

is small, a more precise evaluation of the critical temperatures is of interest. This could have the

effect of either reducing or enhancing the allowed range of values of the right stop mass, mt̃R , for

which a two-stage phase transition can occur.

2.3 Two-loop contributions

The strategy we employ follows that of ref. [21]. The idea is to use the 4D 2-loop effective potential

in order to fix the scales in the 3D theory, and to use the 3D effective potential expressions for the

Higgs and stop fields given in ref. [14] to analyse the phase transition. We calculate the unresummed

14



2-loop effective potential in order to include all 4D corrections to the mass parameters, resummation

is automatically included in the calculation of the 2-loop effective potential in the 3D theory. We

must also include the contributions to the 2-loop effective potential of the static modes, which have

been integrated out at the second stage (includes the effects of resummation of the heavy fields).

There are several effects that must be considered in order to obtain all of the contributions

(constant and logarithmic) to the mass parameters. From the 4D effective potential one finds

the two-loop contributions from the gauge bosons, Higgs, right handed stop, left handed squark

doublet, right handed sbottom, and top quark. The expression for the 2-loop effective potential

can be found in refs. [12, 14, 15]. In particular, within our approximations for the φ-direction,

the appropriate expression is that given in ref. [12], because we are including the 3rd generation

squark doublet and the right handed sbottom in the thermal bath6. The main difference is that

the D functions appearing below correspond to the unresummed expressions. Additionally we must

include the effects arising at the second stage of reduction from the left handed squark doublet, the

right handed sbottom, the scalar triplet and the scalar octet. We now derive the effective potential

at finite temperature using the background fields φ and χ = t̃Rαuα, where we have chosen the unit

vector in colour space uα = (1, 0, 0). We now write the expressions in the shifted theory of the mass

spectrum after the first stage of integration. The gauge bosons masses are

m2
W,Z =

1

4
g2

wφ2, m2
G =

1

4
g2

sχ
2, m2

G =
4

3
m2

G. (37)

With no mixing in the Higgs sector, the Goldstone bosons and Higgs masses are

m2
π = m2

H + λφ2 + h2
t sin2 β

χ2

2
,

m2
h = m2

H + 3λφ2 + h2
t sin2 β

χ2

2
,

m2
ω = m2

ω = m2
U + λUχ2 + h2

t sin2 β
φ2

2
,

m2
u = m2

U + 3λχ2 + h2
t sin2 β

φ2

2
. (38)

6For most of our analysis we will include the third-generation left squark doublet in the thermal bath.
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The masses of the rest of the scalars contributing to the effective potential are given by

m2
t̃L1

= m2
Q + (h2

t sin2 β + λ3 + λ4 sin2 β)
φ2

2
+

(

h2
t −

g2
s

3

)

χ2

2
, (39)

m2
t̃L2,3

= m2
Q + (h2

t sin2 β + λ3 + λ4 sin2 β)
φ2

2
+

(

g2
s

6

)

χ2

2
, (40)

m2
b̃L1

= m2
Q + (λ3 + λ4 cos2 β)

φ2

2
+

(

h2
t −

g2
s

3

)

χ2

2
, (41)

m2
b̃L2,3

= m2
Q + (λ3 + λ4 cos2 β)

φ2

2
+

(

g2
s

6

)

χ2

2
, (42)

m2
b̃R1

= m2
D +

(

g2
s

6

)

χ2

2
, (43)

m2
b̃R2,3

= m2
D −

(

g2
s

3

)

χ2

2
. (44)

2.3.1 φ-direction

The contributions to the terms in m2
H3

(µ) proportional to g4
w, g2

wλH3
and λ2

H3
from Standard Model

particles have been calculated in the paper by Kajantie et al. [21]. The correct expression is

obtained from eq. (151) of [21], substituting λ = 1
8
(g2

w + g′2) cos 2β and g2
Y = h2

t sin2 β. For the

Standard Model, this already includes the finite contributions from counterterms.

The additional corrections that arise from supersymmetric particles can be calculated using

the 2-loop unresummed potential. The expressions in the integral form have been given in ref.

[12] for zero squark mixing, and we include them for completeness. Our notation for the D-

functions corresponds to that of ref. [21]. The contributions from the 2-loop graphs containing

supersymmetric particles are given below. For the φ-direction, we can drop the colour index of the

squark masses:
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(SSV ) = −
g2

w

8
Nc[DSSV (mt̃L , mt̃L , mW ) + DSSV (mb̃L

, mb̃L
, mW ) + 4DSSV (mt̃L , mb̃L

, mW )]

−
g2

s

4
(N2

c − 1)[DSSV (mt̃L , mt̃L, 0) + DSSV (mb̃L
, mb̃L

, 0)

+ DSSV (mt̃R , mt̃R , 0) + DSSV (mb̃R
, mb̃R

, 0)], (45)

(SSS) = −Nc

[(

h2
t sin2 β +

g2
w

4
cos 2β

)2

DSSS(mt̃L , mt̃L , mh) +
(

g2
w

4
cos 2β

)2

DSSS(mb̃L
, mb̃L

, mh)

+ (h2
t sin2 β)2DSSS(mt̃R , mt̃R , mh) +

(

h2
t sin2 β +

g2
w

2
cos 2β

)2

DSSS(mt̃L , mb̃L
, mπ)

]

φ2

2
,(46)

(SV ) = −
1

4
g2

s(N
2
c − 1)[DSV (mt̃L , 0) + DSV (mb̃L

, 0) + DSV (mt̃R , 0) + DSV (mb̃R
, 0)]

−
3

8
g2

wNc[DSV (mt̃L , mW ) + DSV (mb̃L
, mW )], (47)

(SS) =
g2

w

4
Nc(2 − Nc)DSS(mt̃L , mb̃L

) + h2
t Nc[DSS(mt̃L , mt̃R) + DSS(mb̃L

, mt̃R)]

+
(

g2
w

8
+

g2
s

6

)

Nc(Nc + 1)[DSS(mt̃L , mt̃L) + DSS(mb̃L
, mb̃L

)]

+
g2

s

6
Nc(Nc + 1)[DSS(mt̃R , mt̃R) + DSS(mb̃R

, mb̃R
)]

+ Nc

(

1

2
h2

t sin2 β +
1

8
g2

w cos 2β
)

[DSS(mt̃L , mh) + 2DSS(mb̃L
, mπ) + DSS(mt̃L , mπ)]

−
1

8
Ncg

2
w cos 2β[DSS(mb̃L

, mh) + 2DSS(mt̃L , mπ) + DSS(mb̃L
, mπ)]

+
1

2
Nch

2
t sin2 β[DSS(mt̃R , mh) + 3DSS(mt̃R , mπ)]. (48)

There are also counterterm contributions to the mass terms; for the φ-direction they correspond

to eq. (B.3) of ref. [12].

δV = −
T 2

16π2

φ2

96
(3g4

w +
11

9
g′4). (49)
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2.3.2 χ-direction

The two-loop unresummed effective potential in the χ-direction is given by the following contri-

butions7,8:

(V V V ) = −g2
s

Nc

4
[(Nc − 2)DV V V (mG, mG, 0) + DV V V (mG, mG, mG)], (50)

(ηηV ) = −g2
s

Nc

2
[2(Nc − 1)DηηV (0, 0, mG) + DηηV (0, 0, mG)], (51)

(V V ) = −g2
s

Nc

8
[2(Nc − 2)DV V (0, mG) + 2DV V (mG, mG) + (Nc − 1)DV V (mG, mG)], (52)

(SSV ) = −
g2

w

8
[DSSV (mt̃L1

, mt̃L1
, 0) + DSSV (mt̃L2

, mt̃L2
, 0) + DSSV (mt̃L3

, mt̃L3
, 0)

+ DSSV (mb̃L1
, mb̃L1

, 0) + DSSV (mb̃L2
, mb̃L2

, 0) + DSSV (mb̃L3
, mb̃L3

, 0)

+ 4(DSSV (mt̃L1
, mb̃L1

, 0) + DSSV (mt̃L2
, mb̃L2

, 0) + DSSV (mt̃L3
, mb̃L3

, 0))]

− g2
s

1

4
[(Nc − 1)DSSV (mω, mω, mG) + (Nc − 1)DSSV (mω, mu, mG)

+
Nc − 1

Nc
DSSV (mω, mu, mG) +

1

Nc
DSSV (mω, mω, mG)

+ Nc(Nc − 2)DSSV (mω, mω, 0) + 2(Nc − 1)DSSV (mt̃L1
, mt̃L2

, mG)

+
Nc − 1

Nc

DSSV (mt̃L1
, mt̃L1

, mG) +
1

Nc

DSSV (mt̃L2
, mt̃L2

, mG)

+ Nc(Nc − 2)DSSV (mt̃L2
, mt̃L2

, 0)

+ 2(Nc − 1)DSSV (mb̃L1
, mb̃L2

, mG) +
Nc − 1

Nc
DSSV (mb̃L1

, mb̃L1
, mG)

+
1

Nc
DSSV (mb̃L2

, mb̃L2
, mG) + Nc(Nc − 2)DSSV (mb̃L2

, mb̃L2
, 0)

7The expression given for the 4D effective potential would correspond to the usual resummed 2-loop 4D effective
potential if we use the resummed expressions in the D functions appearing below.

8As mt̃L2
= mt̃L3

, mb̃L2
= mb̃L3

, mb̃R2
= mb̃R3

in the χ-direction, we just multiply by a factor of 2 the contributions

from these fields in some of the following expressions.
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+ 2(Nc − 1)DSSV (mb̃R1
, mb̃R2

, mG) +
Nc − 1

Nc
DSSV (mb̃R1

, mb̃R1
, mG)

+
1

Nc
DSSV (mb̃R2

, mb̃R2
, mG) + Nc(Nc − 2)DSSV (mb̃R2

, mb̃R2
, 0)], (53)

(V V S) = −g2
s

m2
G

8
[(Nc − 1)DV V S(mG, mG, mu) + 2

(Nc − 1)2

N2
DV V S(mG, mG, mu)

+ Nc(Nc − 2)DV V S(0, mG, mω) +
(Nc − 2)2

Nc
DV V S(mG, mG, mω)], (54)

(SV ) = −
g2

s

8
[2Nc(Nc − 2)DSV (mω, 0) + (Nc − 1)[3DSV (mω, mG) + DSV (mu, mG)]

+
1

Nc
[(Nc + 1)DSV (mω, mG) + (Nc − 1)DSV (mu, mG)]

+ 2Nc(Nc − 2)DSV (mt̃L2
, 0) + (Nc − 1)[2DSV (mt̃L2

, mG) + 2DSV (mt̃L1
, mG)]

+
1

Nc
[2DSV (mt̃L2

, mG) + 2DSV (mt̃L1
, mG)]

+ 2Nc(Nc − 2)DSV (mb̃L2
, 0) + (Nc − 1)[2DSV (mb̃L2

, mG) + 2DSV (mb̃L1
, mG)]

+
1

Nc
[2DSV (mb̃L2

, mG) + 2DSV (mb̃L1
, mG)]

+ 2Nc(Nc − 2)DSV (mb̃R2
, 0) + (Nc − 1)[2DSV (mb̃R2

, mG) + 2DSV (mb̃R1
, mG)]

+
1

Nc
[2DSV (mb̃R2

, mG) + 2DSV (mb̃R1
, mG)]

−
3

8
g2

w[DSV (mt̃L1
, 0) + DSV (mt̃L2

, 0) + DSV (mt̃L3
, 0)

+ DSV (mb̃L1
, 0) + DSV (mb̃L2

, 0) + DSV (mb̃L3
, 0)], (55)

(SSS) = −λ2
Uχ2[3DSSS(mu, mu, mu) + (2Nc − 1)DSSS(mu, mω, mω)]

− χ2[
1

4
h2

t sin2 β[DSSS(mu, mh, mh) + 3DSSS(mu, mπ, mπ)]

−
χ2

2
[(h2

t −
1

3
g2

s)
2DSSS(mu, mt̃L1

, mt̃L1
)
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+ 2(h2
t −

1

2
g2

s)
2DSSS(mω, mt̃L1

, mt̃L2
) + 2(

g2
s

6
)2DSSS(mu, mt̃L2

, mt̃L2
)

+ (h2
t −

1

3
g2

s)
2DSSS(mu, mb̃L1

, mb̃L1
)

+ 2(h2
t −

1

2
g2

s)
2DSSS(mω, mb̃L1

, mb̃L2
) + 2(

g2
s

6
)2DSSS(mu, mb̃L2

, mb̃L2
)

+ (
1

3
g2

s)
2DSSS(mu, mb̃R1

, mb̃R1
) + 2(

1

2
g2

s)
2DSSS(mω, mb̃R1

, mb̃R2
)

+ 2(
g2

s

6
)2DSSS(mu, mb̃R2

, mb̃R2
)], (56)

(SS) =
1

4

(

g2
w

8
+

g2
s

6

)

[8DSS(mt̃L1
, mt̃L1

) + 24DSS(mt̃L2
, mt̃L2

) + 16DSS(mt̃L1
, mt̃L2

)

+ 8DSS(mb̃L1
, mb̃L1

) + 24DSS(mb̃L2
, mb̃L2

) + 16DSS(mb̃L1
, mb̃L2

)]

+
1

4
(
g2

s

6
)[8DSS(mt̃R1

, mt̃R1
) + 24DSS(mt̃R2

, mt̃R2
) + 16DSS(mt̃R1

, mt̃R2
)

+ 8DSS(mb̃R1
, mb̃R1

) + 24DSS(mb̃R2
, mb̃R2

) + 16DSS(mb̃R1
, mb̃R2

)]

+ h2
t [DSS(mt̃L1

, mt̃R1
) + DSS(mt̃L2

, mt̃R2
) + DSS(mt̃L3

, mt̃R3
)]

+ h2
t [DSS(mb̃L1

, mt̃R1
) + DSS(mb̃L2

, mt̃R2
) + DSS(mb̃L3

, mt̃R3
)]

+
(

1

2
h2

t +
1

8
g2

w cos 2β
)

[DSS(mt̃L1
, mh) + DSS(mt̃L2

, mh) + DSS(mt̃L3
, mh)

+ 2(DSS(mb̃L1
, mπ) + DSS(mb̃L2

, mπ) + DSS(mb̃L3
, mπ))

+ DSS(mt̃L1
, mπ) + DSS(mt̃L2

, mπ) + DSS(mt̃L3
, mπ)]

−
(

1

8
g2

w cos 2β
)

[DSS(mb̃L1
, mh) + DSS(mb̃L2

, mh) + DSS(mb̃L3
, mh)

+ 2(DSS(mt̃L1
, mπ) + DSS(mt̃L2

, mπ) + DSS(mt̃L3
, mπ))

+ DSS(mb̃L1
, mπ) + DSS(mb̃L2

, mπ) + DSS(mb̃L3
, mπ)]

+
1

2
h2

t sin2 β[DSS(mt̃R1
, mh) + DSS(mt̃R2

, mh) + DSS(mt̃R3
, mh)

+ 3(DSS(mt̃R1
, mπ) + DSS(mt̃R2

, mπ) + DSS(mt̃R3
, mπ))] +

g2
w

4
(2 − Nc)[DSS(mt̃L1

, mb̃L1
)

+ DSS(mt̃L2
, mb̃L2

) + DSS(mt̃L3
, mb̃L3

)]. (57)
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The counterterm contribution to the mass term comes from an analogous contribution to that of

eq. (49) and is9

δV =
T 2

16π2

χ2

2

146

27
g4

s . (58)

2.4 Integration over the heavy scale

The second part of the calculation arises, as noticed in the paper by Kajantie et al. [21]: when the

“heavy” particles have been integrated out their contributions to the 3D mass parameters should

also be included, as they can substantially vary the value of the parameters ΛH3
, ΛU3

. In order to do

this we must calculate the 2-loop contributions to the effective potential in the φ- and χ-directions

from the heavy fields: Q, D, Co, Ao

For the φ-direction the expression of the effective potential to 2-loops from the heavy particles

can be deduced from the expressions in the paper by Espinosa [12]. For the χ-direction this is new.

The masses in the shifted theory are now given by

m2
t̃L1

= m2
Q3

+ (hL
t + Λ3 + Λs

4)
φ2

2
+ (hQU

t + gQU
s1

+ gQU
s2

)
χ2

2
, (59)

m2
t̃L2,3

= m2
Q3

+ (hL
t + Λ3 + Λs

4)
φ2

2
+ (gQU

s2
)
χ2

2
, (60)

m2
b̃L1

= m2
Q3

+ (Λ3 + Λc
4)

φ2

2
+ (hQU

t + gQU
s1

+ gQU
s2

)
χ2

2
, (61)

m2
b̃L2,3

= m2
Q3

+ (Λ3 + Λc
4)

φ2

2
+ (gQU

s2
)
χ2

2
, (62)

m2
b̃R1

= m2
D3

+ (gUD
s1

+ gUD
s2

)
χ2

2
, (63)

m2
b̃R2,3

= m2
D3

+ (gQU
s2

)
χ2

2
. (64)

9 There is an additional counterterm contribution in the χ-direction for the case of a light higgsino.
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The expressions for the rest of the fields are given in [14]. The 2-loop contributions from the heavy

scale are given below. We stress that the D-integrals in eqs. (65) and (66) are just 3D integrals,

our notation follows that of refs. [14, 20, 21]10.

2.4.1 φ-direction

V
heavy
2 =

3

8
g2

w3
[DLS(mh, mA0

) + 3DLS(mπ, mA0
)] + 3g2

w3
DLV (mW , mA0

)

−
3

16
g2

w3
φ2DLLS(mh, mA0

, mA0
) −

3

2
g2

w3
DLLV (mW , mA0

, mA0
)

−
g2

w3

8
Nc[DSSV (mt̃L , mt̃L , mW ) + DSSV (mb̃L

, mb̃L
, mW ) + 4DSSV (mt̃L , mb̃L

, mW )]

−
g2

s3

4
(N2

c − 1)[DSSV (mt̃L , mt̃L , 0) + DSSV (mb̃L
, mb̃L

, 0) + DSSV (mb̃R
, mb̃R

, 0)]

− [(hL
t + Λ3 + Λs

4)
2DSSS(mt̃L , mt̃L , mh) + (Λ3 + Λc

4)
2DSSS(mb̃L

, mb̃L
, mh)

+ (hL
t − Λc

4 + Λs
4)

2DSSS(mt̃L , mb̃L
, mπ)]

φ2

2
Nc

−
1

4
g2

s3
(N2

c − 1)[DSV (mt̃L , 0) + DSV (mb̃L
, 0) + DSV (mb̃R

, 0)]

−
3

8
g2

w3
Nc[DSV (mt̃L , mW ) + DSV (mb̃L

, mW )]

+ (2Λ1 + gQQ
s1

+ gQQ
s2

)Nc(2 − Nc)DSS(mt̃L , mb̃L
)

+ (hQU
t + gQU

s1
+ 3gQU

s2
)Nc[DSS(mt̃L , mt̃R) + DSS(mb̃L

, mt̃R)]

+ (Λ1 + λQ3
)Nc(Nc + 1)[DSS(mt̃L , mt̃L) + DSS(mb̃L

, mb̃L
)]

+ λD3
Nc(Nc + 1)[DSS(mb̃R

, mb̃R
)]

+ Nc
1

2
(hL

t + Λ3 + Λs
4)[DSS(mt̃L , mh) + 2DSS(mb̃L

, mπ) + DSS(mt̃L , mπ)]

+
1

2
Nc(Λ3 + Λc

4)[DSS(mb̃L
, mh) + 2DSS(mt̃L , mπ) + DSS(mb̃L

, mπ)]

+ (gQD
s1

+ 3gQD
s2

)Nc[DSS(mt̃L , mb̃R
) + DSS(mb̃L

, mb̃R
)]

+ (gUD
s1

+ 3gUD
s2

)Nc[DSS(mt̃R , mb̃R
)]. (65)

10Our convention for the functions DV V V , DV V S is that of [14].
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2.4.2 χ-direction

V
heavy
2 =

g2
s3

4

(

(Nc − 1)[DLS(mu, mC0
) + DLS(mω, mC0

)]

+
1

Nc

[4DLS(mω, mC0
) + 2DLS(mu, mC0

)]
)

− g2
s3

Nc

2

[

(Nc − 1)DLLS(mC0
, mC0

, mu) + 2
(Nc − 1)2

N2
c

DLLS(mC0
, mC0

, mu)

+ Nc(Nc − 2)DLLS(0, mC0
, mω) +

(Nc − 2)2

Nc
DLLS(mC0

, mC0
, mω)

]

− g2
s3

Nc

2
[−DLV (mC0

, mG) − DLV (mC0
, mG) − (Nc − 1)DLV (mC0

, mG)]

− g2
s3

Nc

4
[DLLV (mC0

, mC0
, mG) + 2DLLV (mC0

, mC0
, mG)

+ DLLV (mC0
, mC0

, 0) + 2DLLV (mC0
, 0, mG)]

−
g2

w3

8
[DSSV (mt̃L1

, mt̃L1
, 0) + DSSV (mt̃L2

, mt̃L2
, 0) + DSSV (mt̃L3

, mt̃L3
, 0)

+ DSSV (mb̃L1
, mb̃L1

, 0) + DSSV (mb̃L2
, mb̃L2

, 0) + DSSV (mb̃L3
, mb̃L3

, 0)

+ 4(DSSV (mt̃L1
, mb̃L1

, 0) + DSSV (mt̃L2
, mb̃L2

, 0) + DSSV (mt̃L3
, mb̃L3

, 0))]

− g2
s3

1

4

[

+2(Nc − 1)DSSV (mt̃L1
, mt̃L2

, mG) +
Nc − 1

Nc
DSSV (mt̃L1

, mt̃L1
, mG)

+
1

Nc
DSSV (mt̃L2

, mt̃L2
, mG) + Nc(Nc − 2)DSSV (mt̃L2

, mt̃L2
, 0)

+ 2(Nc − 1)DSSV (mb̃L1
, mb̃L2

, mG) +
Nc − 1

Nc
DSSV (mb̃L1

, mb̃L1
, mG)

+
1

Nc
DSSV (mb̃L2

, mb̃L2
, mG)

+ Nc(Nc − 2)DSSV (mb̃L2
, mb̃L2

, 0) + 2(Nc − 1)DSSV (mb̃R1
, mb̃R2

, mG)

+
Nc − 1

Nc
DSSV (mb̃R1

, mb̃R1
, mG)

+
1

Nc
DSSV (mb̃R2

, mb̃R2
, mG) + Nc(Nc − 2)DSSV (mb̃R2

, mb̃R2
, 0)

]

−
χ2

2
[(hQU

t + gQU
s1

+ gQU
s2

)2DSSS(mu, mt̃L1
, mt̃L1

) + 2(hQU
t + gQU

s1
)2DSSS(mω, mt̃L1

, mt̃L2
)
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+ 2(gQU
s2

)2DSSS(mu, mt̃L2
, mt̃L2

) + (hQU
t + gQU

s1
+ gQU

s2
)2DSSS(mu, mb̃L1

, mb̃L1
)

+ 2(hQU
t + gQU

s1
)2DSSS(mω, mb̃L1

, mb̃L2
) + 2(gQU

s2
)2DSSS(mu, mb̃L2

, mb̃L2
)

+ (gUD
s1

+ gUD
s2

)2DSSS(mu, mb̃R1
, mb̃R1

) + 2(gUD
s1

)2DSSS(mω, mb̃R1
, mb̃R2

)

+ 2(gUD
s2

)2DSSS(mu, mb̃R2
, mb̃R2

)]

−
g2

s3

8

[

2Nc(Nc − 2)DSV (mt̃L2
, 0) + (Nc − 1)[2DSV (mt̃L2

, mG) + 2DSV (mt̃L1
, mG)]

+
1

Nc
[2DSV (mt̃L2

, mG) + 2DSV (mt̃L1
, mG)]

+ 2Nc(Nc − 2)DSV (mb̃L2
, 0) + (Nc − 1)[2DSV (mb̃L2

, mG) + 2DSV (mb̃L1
, mG)]

+
1

Nc
[2DSV (mb̃L2

, mG) + 2DSV (mb̃L1
, mG)]

+ 2Nc(Nc − 2)DSV (mb̃R2
, 0) + (Nc − 1)[2DSV (mb̃R2

, mG) + 2DSV (mb̃R1
, mG)]

+
1

Nc
[2DSV (mb̃R2

, mG) + 2DSV (mb̃R1
, mG)]

]

−
3

8
g2

w3
[DSV (mt̃L1

, 0) + DSV (mt̃L2
, 0) + DSV (mt̃L3

, 0)

+ DSV (mb̃L1
, 0) + DSV (mb̃L2

, 0) + DSV (mb̃L3
, 0)]

+
1

4
(Λ1 + λQ3

)[8DSS(mt̃L1
, mt̃L1

) + 24DSS(mt̃L2
, mt̃L2

) + 16DSS(mt̃L1
, mt̃L2

)

+ 8DSS(mb̃L1
, mb̃L1

) + 24DSS(mb̃L2
, mb̃L2

) + 16DSS(mb̃L1
, mb̃L2

)]

+
1

4
(λD3

)[8DSS(mb̃R1
, mb̃R1

) + 24DSS(mb̃R2
, mb̃R2

) + 16DSS(mb̃R1
, mb̃R2

)]

+ (hQU
t + gQU

s1
)[DSS(mt̃L1

, mt̃R1
) + DSS(mt̃L2

, mt̃R2
) + DSS(mt̃L3

, mt̃R3
)]

+ (hQU
t + gQU

s1
)[DSS(mb̃L1

, mt̃R1
) + DSS(mb̃L2

, mt̃R2
) + DSS(mb̃L3

, mt̃R3
)]

+ gQU
s2

[DSS(mt̃L1
, mt̃R1

) + DSS(mt̃L1
, mt̃R2

) + DSS(mt̃L1
, mt̃R3

)

+ DSS(mt̃L2
, mt̃R1

) + DSS(mt̃L2
, mt̃R2

) + DSS(mt̃L2
, mt̃R3

)

+ DSS(mt̃L3
, mt̃R1

) + DSS(mt̃L3
, mt̃R2

) + DSS(mt̃L3
, mt̃R3

)

+ DSS(mb̃L1
, mt̃R1

) + DSS(mb̃L1
, mt̃R2

) + DSS(mb̃L1
, mt̃R3

)

+ DSS(mb̃L2
, mt̃R1

) + DSS(mb̃L2
, mt̃R2

) + DSS(mb̃L2
, mt̃R3

) + DSS(mb̃L3
, mt̃R1

)

+ DSS(mb̃L3
, mt̃R2

) + DSS(mb̃L3
, mt̃R3

)]
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+
1

2
(hL

t + Λ3 + Λs
4)[DSS(mt̃L1

, mh) + DSS(mt̃L2
, mh) + DSS(mt̃L3

, mh)

+ 2(DSS(mb̃L1
, mπ) + DSS(mb̃L2

, mπ) + DSS(mb̃L3
, mπ))

+ DSS(mt̃L1
, mπ) + DSS(mt̃L2

, mπ) + DSS(mt̃L3
, mπ)]

+ (Λ3 + Λc
4)[DSS(mb̃L1

, mh) + DSS(mb̃L2
, mh) + DSS(mb̃L3

, mh)

+ 2(DSS(mt̃L1
, mπ) + DSS(mt̃L2

, mπ) + DSS(mt̃L3
, mπ))

+ DSS(mb̃L1
, mπ) + DSS(mb̃L2

, mπ) + DSS(mb̃L3
, mπ)]

+ 2Λ1(2 − Nc)[DSS(mt̃L1
, mb̃L1

) + DSS(mt̃L2
, mb̃L2

) + DSS(mt̃L3
, mb̃L3

)]

+ gQD
s1

[DSS(mt̃L1
, mb̃R1

) + DSS(mt̃L2
, mb̃R2

) + DSS(mt̃L3
, mb̃R3

)]

+ gQD
s1

[DSS(mb̃L1
, mb̃R1

) + DSS(mb̃L2
, mb̃R2

) + DSS(mb̃L3
, mb̃R3

)]

+ gQD
s2

[DSS(mt̃L1
, mb̃R1

) + DSS(mt̃L1
, mb̃R2

) + DSS(mt̃L1
, mb̃R3

)

+ DSS(mt̃L2
, mb̃R1

) + DSS(mt̃L2
, mb̃R2

) + DSS(mt̃L2
, mb̃R3

)

+ DSS(mt̃L3
, mb̃R1

) + DSS(mt̃L3
, mb̃R2

)

+ DSS(mt̃L3
, mb̃R3

) + DSS(mb̃L1
, mb̃R1

) + DSS(mb̃L1
, mb̃R2

) + DSS(mb̃L1
, mb̃R3

)

+ DSS(mb̃L2
, mb̃R1

) + DSS(mb̃L2
, mb̃R2

) + DSS(mb̃L2
, mb̃R3

) + DSS(mb̃L3
, mb̃R1

)

+ DSS(mb̃L3
, mb̃R2

) + DSS(mb̃L3
, mb̃R3

)]

+ gUD
s1

[DSS(mt̃R1
, mb̃R1

) + DSS(mt̃R2
, mb̃R2

) + DSS(mt̃R3
, mb̃R3

)]

+ gUD
s2

[DSS(mt̃R1
, mb̃R1

) + DSS(mt̃R1
, mb̃R2

) + DSS(mt̃R1
, mb̃R3

)

+ DSS(mt̃R2
, mb̃R1

) + DSS(mt̃R2
, mb̃R2

) + DSS(mt̃R2
, mb̃R3

)

+ DSS(mt̃R3
, mb̃R1

) + DSS(mt̃R3
, mb̃R2

)

+ DSS(mt̃R3
, mb̃R3

)]. (66)

2.4.3 Mass terms

Using the results presented in the previous sections, we can finally write the full expressions for the

mass terms of eqs. (35) and (36)
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m2
U3

(µ) = m2
U

(

1 + 4g2
s

Lb

16π2

)

+ T

(

1

3
g2

s3
+

2

3
λU3

+
1

6
γ3 +

1

6
(hQU

t + gQU
s1

+ 3gQU
s2

+ gUD
s1

+ 3gUD
s2

)
)

−
Lb

16π2

(

4

3
g2

sm
2
U + 2h2

t sin2 β(m2
H + m2

Q)
)

+
1

(16π2)

(

8g4
s3

+
64

3
λU3

g2
s3
− 16λ

2

U3
− 2γ2

3 + 3g2
w3

γ3

)(

log
(

3T

µ

)

+ c

)

+
T 2

(16π2)

(

g4
s

(

146

27
+

2

3
+

11

54

))

+
1

(16π2)

(

−
1

4
g4

s3

(

29

9

(

log
(

3T

(2mCo
)

)

+ c +
1

2

)

+ 3
(

log
(

3T

mCo

)

+ c +
1

2

))

+
21

4
g4

s3

(

log
(

3T

(2mCo
)

)

+ c +
1

2

))

+
1

(16π2)

(

(2(hQU
t + gQU

s1
+ gQU

s2
)2 + 8(hQU

t + gQU
s1

)2 + 4(gQU
s2

)2)
(

log
(

3T

(2mQ3
)

)

+ c +
1

2

)

+ ((gUD
s1

+ gUD
s2

)2 + (gUD
s2

)2 + 4(gUD
s1

)2)
(

log
(

3T

(2mD3
)

)

+ c +
1

2

)

+
1

4
g2

s3

(

(8(g2
s3
− 2(hQU

t + gQU
s1

+ gQU
s2

) − 2gQU
s2

) +
4

3
(
2

3
g2

s3
− 4(hQU

t + gQU
s1

+ gQU
s2

))

+
2

3
(
2

3
g2

s3
− 4gQU

s2
) − 24gQU

s2

)

, (67)

m2
H3

(µ) = m2
H

(

1 +
9

4
g2

w

Lb

16π2
− 3h2

t

Lf

16π2

)

+ T

(

1

2
λH3

+
3

16
g2

w3
+

1

16
g′2T

+
1

4
h

f
t +

1

4
(hL

t + 2ΛQ
3 + Λc

4 + Λs
4 + γ3

)

−
Lb

16π2

(

6λm2
H + 3(m2

Q + m2
U )h2

t sin2 β

)

+
1

(16π2)

(

51

16
g4

w3
+ 9λH3

g2
w3

− 12λ
2

H3
− 3γ2

3 + 8g2
s3

γ3

)(

log
(

3T

µ

)

+ c

)

+
T 2

(16π2)

(

g4
w(

137

96
+

9

2
log 2 +

1

4
) +

3

4
λg2

w

)

+
1

(16π2)

(

15

8
g4

w3

(

log
(

3T

(2mAo
)

)

+ c

)

+
9

16
g4

w3

)

+
T 2

(16π2)

(

2

3
g2

sh
2
t sin2 β

)
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+
1

(16π2)

(

−
3

8
g2

w3
(3g2

w3
− 12(hL

t + ΛQ
3 + Λs

4) − 12(ΛQ
3 + Λc

4))
(

log
(

3T

(2mQ3
)

)

+ c +
1

2

)

− 2g2
s3

(−4(hL
t + Λc

3 + Λs
4) − 4(ΛQ

3 + Λc
4))

(

log
(

3T

(2mQ3
)

)

+ c +
1

2

)

− 3((hL
t + ΛQ

3 + Λs
4)

2 + (ΛQ
3 + Λc

4)
2 + (hL

t − Λc
4 + Λs

4)
2)

(

log
(

3T

mQ3

)

+ c +
1

2

))

+
T 2

(16π2)

(

2

3
g2

sh
2
t sin2 β +

3

8
g2

wh2
t sin2 β +

3

8
g4

w −
1

16
g4

w

)

, (68)

where

h
f
t = h2

t sin2 βT

(

1 −
3

8

1

(16π2)

[(

12h2
t sin2 β − 6g2

w −
64

3
g2

s

)

Lf

+ g2
w(2 + 28 log 2) − 96λ log 2 + 16h2

t sin2 β log 2 −
64

9
g2

s(4 log 2 − 3)
])

, (69)

c =
1

2

[

ln
8π

9
+

ζ ′(2)

ζ(2)
− 2γ

]

≈ −0.348725. (70)

The exact values of the parameters ΛH3
and ΛU3

in eqs. (35) and (36), depend on the particle

content of the theory and on the input parameters. In fact, the dependence on tanβ and mtR ,

for the range of values we are interested in, is weak. The dependence on mQ and mD is stronger.

For mQ = mD = 300 GeV, the corresponding values of the parameters are in the range ΛH3
=

(1.6 − 1.8)T , and ΛU3
= (6.6 − 6.9)T .

2.5 Zero-Temperature Renormalization

In order to complete the matching of the 3D parameters to the 4D physical parameters, we must

renormalize the zero-temperature theory. We will not go into the details of the renormalization,

but refer the reader to the literature in which the pole masses for the relevant particles of our

calculation have been obtained considering the full particle spectrum of the MSSM [31, 32]. We

use the expressions given in ref. [31], keeping only the top Yukawa coupling, in the appropriate

(large-mA) limit. We have kept all µ-dependent contributions to order g4
i (h

4
t ) but have neglected

the constant contributions, which are not multiplied by ht or gs. In this way all explicit dependence

on µ is cancelled at one-loop when we relate the 3D parameters to pole masses.
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Another zero-temperature constraint that we impose is the stability of the physical vacuum.

In principle, a metastable region exists in which the colour-breaking minimum is lower than the

physical one at zero temperature. If the time for the transition to this lower minimum is greater

than the age of the Universe then this region of parameter space is also acceptable. However, we

will not consider these issues in the present paper. The constraint for absolute stability can be

obtained by studying the effective potential at zero temperature [10, 15]. This gives the constraint

−m2
U ≤ (mc

U)2, where

mc
U =

(

m2
hv

2g2
s

12

)1/4

. (71)

3 Results

With the previous results we can now analyse the phase transition. In fig. 1 we show the critical

temperatures for the transitions in the φ- and χ-directions as a function of the right handed stop

pole mass mt̃R , for tanβ = 3, 5, 12. We find that, for mQ ∼ 300 GeV, there still is a region in

which a two-stage phase transition can occur. This region is to the left of the crossing points of

the curves. With respect to the work of ref. [14] the structure of the phase diagram is preserved,

although it is slightly shifted towards higher values of the right stop mass. Note that there is a

considerable difference between our values of the critical temperatures and those in ref. [14]. Our

analysis concludes that the structure of the phase diagram is robust to small additional corrections.

This structure is maintained also for mQ = mD = 1 TeV11. The total effect does not substantially

increase or decrease the range of values of the right handed stop mass for which a two-stage phase

transition can occur. However, the exact location of this small range in the value of mt̃R depends

on the value of the third-generation left handed squark doublet mass. In fig. 2 we give the values

of v
T

for three different values of tan β. As expected, the strength of the phase transition has a

weak dependence on the values of the scales that have been fixed in our calculation, and only slight

11In this case the third-generation left handed squark doublet and right handed sbottom are decoupled from the
thermal bath. The relations obtained from the dimensional-reduction procedure can be deduced from all of the
formulae presented in the previous sections. All contributions from these fields are suppressed at finite temperature;
however, a residual dependence on mQ as a consequence of a zero-temperature effect persists for the scalar Higgs
self coupling λ [14, 30].

28



differences are observed with respect to previous analyses.

Figure 3 shows lines of v
T

= 1 for three different cases in the mh–mt̃R plane. The phase transition

is sufficiently strong for electroweak baryogenesis to the left of the solid (dotted) line for mQ = 300

GeV (mQ = 1 TeV), using the results obtained in this paper. The dashed line is the result using

the approximations of ref. [14], for mQ = 300 GeV. We can see that the full effect of the corrections

we have included on the strength of the phase transition is small. The end-points of the lines

correspond to the maximum value of the Higgs mass that is reached by the effect of the zero-

temperature radiative corrections for a given value of mQ, and the y-axis starts at the value of the

experimental limit on the Higgs mass12 [33].

The allowed region in parameter space is shown in figs. 4 and 5, given the current experimental

limits on the Higgs mass, for two different values of mQ. The region on the left of the solid line

indicates when a sufficiently strong first-order phase transition occurs. The dotted line gives the

condition for absolute stability of the physical vacuum. As explained above, to the left of this line

the colour-breaking minimum is lower than the physical one at zero-temperature. The dashed line

is obtained when the critical temperatures of the transitions in the φ- and χ-directions are the same.

A two-stage phase transition occurs to the left of the dashed line. Note that, unlike the results of

ref. [15] for mQ = 1 TeV and zero squark mixing, the dashed and solid lines do not intersect.

As mentioned in the introduction, for a sufficiently heavy right handed stop field, an effective

theory with a single light scalar Higgs doublet field can be constructed. In the appendix we give

the formulae that modify the equations presented in the previous sections. There are two ways of

constructing this effective theory. We can either integrate out the right handed stop field simultane-

ously with the other heavy fields, or perform a third stage of reduction and integrate out the right

stop field separately. The basic change in the equations of the appendix will be to replace the 3D

coupling and masses by the 3D barred couplings and masses of section 2.2. It is clear, as mentioned

above, that the results obtained with these effective potentials are unreliable for low values of the

right handed stop mass, as perturbation theory is no longer under control. In terms of the 3D

parameters we note in particular that the difference between λH3
and λH3

is considerable, owing to

the difference in m2
U3

and m2
U3

. However, comparing the results obtained with these three separate

12As we are working in the large-mA limit, the Standard Model bound on the Higgs mass is used.
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approximations, we can obtain a more precise value of the right handed stop mass, for which the

effective theory with a single light scalar field is a valid description. Recall that the one-loop esti-

mate gave as a lower limit the value mt̃R
>
∼ 177 GeV [24, 26]. In fig. 6 we present the plot of the

ratio of the vacuum expectation value of the Higgs doublet to the temperature as a function of the

right handed stop mass obtained for the three approximations for the effective potential mentioned

above. In this plot we have taken tan β = 5. The solid line is the result obtained when using the

2-loop effective potential derived in the main part of the paper. The dotted line corresponds to the

results obtained after integrating out the right stop field simultaneously with the other heavy fields.

The dashed line is the result obtained when a separate third stage of reduction is performed. We see

that only for very large values of the right handed stop mass are the results basically the same. As

we move towards lower values of mtR , the lines very quickly start to diverge. In particular, we see

that for mt̃R = 177 GeV (mU ∼ 50 GeV) the results using the effective potentials for a single light

scalar are completely unreliable. To understand why the results of the dashed and dotted lines are

so different for smaller values of mt̃R , we recall that the strength of the transition is dominated by

the value of λH3
in the final 3D effective theory for a single light scalar field at the phase transition.

The value of λH3
is much smaller when a third stage of reduction is performed, as the value of m2

U3

is much smaller too. That is, the net effect artificially strengthens the first-order phase transition.

4 Conclusions

We have performed a full two-loop dimensional reduction of 4D MSSM parameters to the 3D

couplings and masses of the effective theory. In this way, we have fixed the scales appearing in the

3D mass terms that are due to the thermal polarizations and the super-renormalizability of the 3D

theory. The values of the parameters ΛH3
and ΛU3

can vary significantly for different values of the

input parameters and the particle content of the theory, thus modifying the critical temperatures

of the transitions. We have compared our results with previous analyses. We conclude that the

corrections relevant to the preservation of the baryon asymmetry are small and that the allowed

range of masses is mh
<
∼ 110 GeV and mt̃R

<
∼mt, in complete agreement with previous results. We

find that the phase structure diagram still allows a possible two-stage phase transition for a small

range of values of mt̃R . This range of values is shifted compared to previous results. However,
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whether or not the transition actually occurs must be explicitly checked. Initial lattice analysis

suggests that the second stage of the transition is extremely strong and thus this transition might

not have taken place on cosmological time scales. Consequently, this region of parameter space for

electroweak baryogenesis would be excluded. From the comparison of the results obtained using

the different approximations to the effective potential we can conclude that for m̃tR
<
∼ 210 GeV,

the results obtained for the strength of the phase transition with a single light Higgs field at the

transition point are unreliable.
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Appendix

Integrating out the right handed stop

The additional corrections that must be included in the case of integrating out the right handed

stop are given below. The Higgs self-coupling is modified by

λ3 = λ3 −
3

16π
γ2

3

1

mU3

. (72)

The one-loop correction to the mass term is

m2
3 = m2

3 −
3

4π
γ3mU3

. (73)

The relevant contributions from the 2-loop graphs have been given in ref. [12] with the following

modifications, which include the effects of the dimensional-reduction procedure. For the (SSV) and

(SV) terms substitute gs → gs3
, for the (SSS) term substitute h2

t sin2 β → γ2
3 for the (SS) term

substitute g2
s

6
→ λU3

and h2
t sin2 β → γ2

3 .
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Figure 1: Critical temperatures in the φ- (solid) and χ- (dotted) directions as functions of mt̃R for
tan β = 3, 5, 12 and mQ = 300 GeV.
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Figure 2: Plot of v
T

as a function of mt̃R in the φ- (solid line) and χ- (dotted line) directions for
tan β = 3, 5, 12 and mQ = 300 GeV. For a given value of tanβ the lines end at the same value of
the right handed stop mass.
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Figure 3: Contours of v
T

= 1 in the mh-mt̃R plane. The solid (dotted) line corresponds to the results
obtained within our approximations for mQ = 300 GeV (1TeV). The dashed line is the result using
the approximations of ref. [14] for mQ = 300 GeV. The region to the left of the lines gives a
sufficiently strong first-order phase transition, for a given value of mQ.
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Figure 4: Allowed region in mh-mt̃R plane for mQ = 300 GeV. To the left of the solid line there is a
sufficiently strong first-order phase transition, to the right of the dotted line the physical vacuum is
absolutely stable. The dashed line separates the region for which a two-stage phase transition can
occur.
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Figure 5: Same as fig. 4, for mQ = 1TeV.
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Figure 6: Plot of v
T

as a function of mt̃R in the φ-direction for three cases. The solid line corresponds
to the result obtained with the effective potential given in the main part of the paper. The dotted
line corresponds to the results obtained after integrating out the right stop field simultaneously
with the other heavy fields. The dashed line is the result obtained when a separate third stage of
reduction is performed.
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