1,053,088 research outputs found
Deformation of an elastic cell in a uniform stream and in a circulatory flow
The deformation of a circular, inextensible elastic cell is examined when the cell is placed into two different background potential flows: a uniform stream and a circulatory flow induced by a point vortex located inside the cell. In a circulatory flow a cell may deform into a mode m shape with m-fold rotational symmetry. In a uniform stream, shapes with two-fold rotational symmetry tend to be selected. In a weak stream a cell deforms linearly into an ellipse with either its major or its minor axis aligned with the oncoming flow. This marks an interesting difference with a bubble with constant surface tension in a uniform stream, which can only deform into a mode 2 shape with its major axis perpendicular to the stream (Vanden-Broeck & Keller, 1980b). In general, as the strength of the uniform stream is increased from zero, solutions emerge continuously from the cell configurations in quiescent fluid found by Flaherty et al. (1972). A richly populated solution space is described with multiple solution branches which either terminate when a cell reaches a state with a point of self-contact or loop round to continuously connect cell states which exist under identical conditions in the absence of flow
Boundary-layer receptivity for a parabolic leading edge. Part 2. The small-Strouhal-number limit
In Hammerton & Kerschen (1996), the effect of the nose radius of a body on boundary-layer receptivity was analysed for the case of a symmetric mean flow past a two-dimensional body with a parabolic leading edge. A low-Mach-number two-dimensional flow was considered. The radius of curvature of the leading edge, rn, enters the theory through a Strouhal number, S=?rn/U, where ? is the frequency of the unsteady free-stream disturbance and U is the mean flow speed. Numerical results revealed that the variation of receptivity for small S was very different for free-stream acoustic waves propagating parallel to the mean flow and those free-stream waves propagating at an angle to the mean flow. In this paper the small-S asymptotic theory is presented. For free-stream acoustic waves propagating parallel to the symmetric mean flow, the receptivity is found to vary linearly with S, giving a small increase in the amplitude of the receptivity coefficient for small S compared to the flat-plate value. In contrast, for oblique free-stream acoustic waves, the receptivity varies with S1/2, leading to a sharp decrease in the amplitude of the receptivity coefficient relative to the flat-plate value. Comparison of the asymptotic theory with numerical results obtained in the earlier paper confirms the asymptotic results but reveals that the numerical results diverge from the asymptotic result for unexpectedly small values of S
Magnetic fields and flows between 1 AU and 0.3 AU during the primary mission of HELIOS 1
The recurrent flow and field patterns observed by HELIOS 1, and the relation between these patterns and coronal holes are discussed. Four types of recurrent patterns were observed: a large recurrent stream, a recurrent slow (quiet) flow, a rapidly evolving flow, and a recurrent compound stream. There recurrent streams were not stationary, for although the sources recurred at approximately the same longitudes on successive rotations, the shapes and latitudinal patterns changed from one rotation to the next. A type of magnetic field and plasma structure characterized by a low ion temperature and a high magnetic field intensity is described as well as the structures of stream boundaries between the sun at approximately 0.3 AU
Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia
In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysis. Results of the supervised land cover classification analysis indicated that 50.9 % and 16.7 % of the catchment area was covered by forest in 1973 and 2001, respectively. This significant decrease in forest cover is mainly due to expansion of agricultural land. \ud
\ud
By use of a change detection procedure, three periods were identified for which changes in rainfall and stream flow were analyzed. Rainfall was analyzed at monthly base by use of the Mann-Kendall test statistic and results indicated a statistically significant, decreasing trend for most months of the year. However, for the wet season months of June, July and August rainfall has increased. In the period 1973–2005, the annual flow of the catchment decreased by 12.1 %. Low flow and high flow at daily base were analyzed by a low flow and a high flow index that is based on a 95 % and 5 % exceedance probability. Results of the low flow index indicated decreases of 18.1 % and 66.6 % for the periods 1982–2000 and 2001–2005 respectively. Results of high flows indicated an increase of 7.6 % and 46.6 % for the same periods. In this study it is concluded that over the period 1973–2005 stream flow has changed in the Gilgel Abbay catchment by changes in land cover and changes in rainfall
Method and device for determining heats of combustion of gaseous hydrocarbons
A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n
Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number
Computation of three-dimensional flows using two stream functions
An approach to compute 3-D flows using two stream functions is presented. The method generates a boundary fitted grid as part of its solution. Commonly used two steps for computing the flow fields are combined into a single step in the present approach: (1) boundary fitted grid generation; and (2) solution of Navier-Stokes equations on the generated grid. The presented method can be used to directly compute 3-D viscous flows, or the potential flow approximation of this method can be used to generate grids for other algorithms to compute 3-D viscous flows. The independent variables used are chi, a spatial coordinate, and xi and eta, values of stream functions along two sets of suitably chosen intersecting stream surfaces. The dependent variables used are the streamwise velocity, and two functions that describe the stream surfaces. Since for a 3-D flow there is no unique way to define two sets of intersecting stream surfaces to cover the given flow, different types of two sets of intersecting stream surfaces are considered. First, the metric of the (chi, xi, eta) curvilinear coordinate system associated with each type is presented. Next, equations for the steady state transport of mass, momentum, and energy are presented in terms of the metric of the (chi, xi, eta) coordinate system. Also included are the inviscid and the parabolized approximations to the general transport equations
Revised FORTRAN program for calculating velocities and streamlines on the hub-shroud midchannel stream surface of an axial-, radial-, or mixed-flow turbomachine or annular duct. 2: Programmer's manual
A FORTRAN IV computer program has been developed that obtains a detailed subsonic or shock free transonic flow solution on the hub-shroud midchannel stream surface of a turbomachine. The blade row may be fixed or rotating, and the blades may be twisted and leaned. Flow may be axial, mixed, or radial. Upstream and downstream flow variables may vary from hub to shroud, and provisions are made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the stream surface and approximate blade surface velocities
Lower-Hybrid Drift Instability and Macroscopic Flow of Colliding Magnetized Plasmas
Microscopic instability and macroscopic flow pattern resulting from colliding
plasmas are studied analytically in support of laboratory experiments. The
plasma flows are assumed to stream radially from two separate centers. In a
quasi-planar (2D) geometry, they may arise from an Ohmic explosion of two
parallel wires, but similar configurations emerge from other outflows, e.g.,
colliding winds in binary star systems. One objective of this paper is to
characterize the flow instabilities developing near the flow stagnation line.
An exact solution for the Buneman-type dispersion equation is obtained without
conventional simplifications. The unstable wave characteristics are key to
anomalous resistivity that determines the reconnection rate of opposite
magnetic fields transported with each flow toward the stagnation zone. The
second objective of the paper is to calculate the stream function of the plasma
shocked upon collision. We addressed this task by mapping the flow region to a
hodograph plane and solving a Dirichlet problem for the stream function. By
providing the instability growth rate, responsible for anomalous transport
coefficients, and the overall flow configuration, these studies lay the ground
for the next step. From there, we will examine the field reconnection scenarios
and emerging mesoscopic structures, such as radial striata observed in the
experiments.Comment: 23 pages, 8 figures, revtex4.
- …
