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Boundary-layer receptivity for a parabolic
leading edge. Part 2. The small Strouhal

number limit.
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In Hammerton & Kerschen (1996), the effect of the nose radius of a body on boundary-
layer receptivity was analysed for the case of a symmetric mean flow past a two-dimen-
sional body with a parabolic leading edge. A low Mach number two-dimensional flow was
considered. The radius of curvature of the leading edge, rn, enters the theory through
a Strouhal number, S = ωrn/U , where ω is the frequency of the unsteady free-stream
disturbance and U is the mean flow speed. Numerical results revealed that the variation
of receptivity for small S was very different for free-stream acoustic waves propagating
parallel to the mean flow and those free-stream waves propagating at an angle to the mean
flow. In this paper the small-S asymptotic theory is presented. For free-stream acoustic
waves propagating parallel to the symmetric mean flow, the receptivity is found to vary
linearly with S, giving a small increase in the amplitude of the receptivity coefficient for
small S, compared to the flat plate value. In contrast, for oblique free-stream acoustic
waves, the receptivity varies with S

1
2 , leading to a sharp decrease in the amplitude of

the receptivity coefficient, relative to the flat plate value. Comparison of the asymptotic
theory with numerical results obtained in the earlier paper confirms the asymptotic
results but reveals that the numerical results diverge from the asymptotic result for
unexpectedly small values of S.

1. Introduction
The receptivity process through which free-stream disturbances generate instability

waves in boundary layers generally comes about through non-parallel mean flow effects,
which may arise either in the leading-edge region, or in a localized region farther down-
stream in the boundary layer (Goldstein & Hultgren 1989; Kerschen 1990).

In Goldstein (1983), an asymptotic analysis was developed for leading-edge receptivity
on a semi-infinite zero-thickness plate. Leading-edge receptivity coefficients for various
free-stream disturbances were calculated by Goldstein, Sockol & Sanz (1983) and Hein-
rich & Kerschen (1989). However, aerodynamic bodies designed for subsonic flow gener-
ally have finite thickness distributions with a parabolic leading edge. In Hammerton &
Kerschen (1996) (hereafter referred to as HK1), the influence of the thickness of a body
was examined. The situation considered was a thin, symmetric airfoil of chord 2b at
zero angle-of-attack in a uniform flow of speed U . A plane acoustic wave of frequency ω,
propagating at an angle θ with respect to the airfoil chord, was assumed to be incident

† Present address: School of Mathematics, University of East Anglia, Norwich, NR4 7TJ,
UK

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of East Anglia digital repository

https://core.ac.uk/display/2773217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 P.W. Hammerton and E.J. Kerschen

U1

2b

�

U
1
�e
�i!t

rn

Figure 1. An illustration of the physical situation of interest: a thin, symmetric airfoil of chord
2b is at zero angle-of-attack in a uniform flow of speed U , with a plane acoustic wave incident
at an angle θ with respect to the airfoil chord.

on the airfoil as illustrated in figure 1. A high Reynolds number asymptotic analysis
(ε6 = νω/U2; ε � 1) was formulated for an incompressible, two-dimensional flow. The
nose radius of the leading edge, rn, enters through a Strouhal number,

S =
ωrn
U

(1.1)

which is the ratio of the nose radius and the hydrodynamic length scale, U/ω.
When S = O(1), two streamwise regions enter the analysis, one region where the dis-

tance downstream is O(U/ω) and the disturbance is governed by the linearised unsteady
boundary layer equation (LUBLE), and a second region at distances O(ε−2U/ω) where
the disturbance is governed by the triple-deck structure, corresponding to the asymptotic
form of the Orr–Sommerfeld equation (OSE) in the vicinity of the lower branch. In the
LUBLE region, the inviscid pressure field and slip velocity induced by the free-stream
disturbance drives the unsteady motion in the boundary layer. Far downstream in the
LUBLE region, the solution consists of a generalised Stokes wave, and a set of asymp-
totic eigensolutions. The wavelengths of these eigenfunctions shorten progressively with
distance downstream. Eventually, the self-induced pressure field associated with the
displacement thickness of each asymptotic eigenfunction becomes significant, and the
triple-deck structure replaces the LUBLE as the correct asymptotic approximation to
the Navier–Stokes equation. It can be shown that the first asymptotic eigenfunction
of the LUBLE matches on to the Tollmien–Schlichting wave solution of this triple-deck
region. Thus, the form of the free-stream disturbance and the geometry close to the nose
influence the amplitude of the Tollmien–Schlichting wave only through the coefficient C1

of the first asymptotic eigenfunction. Therefore, we call C1 the ‘receptivity coefficient’.
The asymptotic analysis far downstream in the LUBLE region determined the form of
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the eigenfunctions, but not their coefficients Ci. These coefficients can be found only
through a full solution of the LUBLE, which must be determined by numerical methods.

Theory for S = O(1) was developed in HK1, where associated numerical results were
also presented. These results showed that the receptivity associated with a symmetric
free-stream disturbance increases slightly with S, for small S (HK1, figure 4a), but
the receptivity associated with a free-stream disturbance that is anti-symmetric about
the leading edge decreases sharply with S (HK1, figure 5a). In the present paper, a
small-S asymptotic theory is developed. In this limit, the streamwise development of
the boundary layer can be divided into three regimes. In the nose region, where the
distance downstream is O(rn), the unsteady motion in the boundary layer is quasi-steady
at leading order. In the LUBLE region, where the downstream distance is O(U/ω), the
unsteady terms enter at leading order in the disturbance equations, but the mean pressure
gradient is small so that the mean boundary layer flow approaches the flat-plate solution.
In the OSE region further still downstream, a triple-deck structure arises as before. In the
small-S asymptotic analysis presented in this paper, we focus on the nose and LUBLE
regions. The subsequent asymptotic matching to the OSE region follows that discussed
in HK1. Our analysis involves two small parameters, S and ε. Formally, we take ε → 0
and then consider the small-S limit, obtaining correction terms of O(S1/2, S). We require
the boundary-layer approximation to be valid in the nose region xd = O(rn), which is
true if the Reynolds number based on nose radius is large,

Urn
ν

=
S

ε6
� 1. (1.2)

This condition is also equivalent to the requirement that the perturbation in the recep-
tivity coefficient due to finite Reynolds number is smaller than that due to geometric
effects. Thus the asymptotic theory is more relevant to the limit ω → 0 rather than
rn → 0.

In §2, the equations governing the mean flow and the time dependent perturbation in
the boundary layer are obtained. The small-S asymptotic structure of the unsteady flow
in the boundary layer, produced by the symmetric and anti-symmetric components of the
free-stream disturbance, is analysed in §§3 and 4 respectively. In §5, numerical solutions
of the asymptotic equations are presented, and the resulting asymptotic expressions for
the receptivity coefficient are compared with the numerical results of HK1. Finally in
§6, the results are summarised and brief comparisons with experiments are made.

2. Formulation
Full details of the derivation of the equations governing the boundary layer flow are

given in HK1, together with interpretation of the evolution of the unsteady disturbances
that eventually lead to instability. Here we provide only the key equations necessary to
illustrate the small Strouhal number limit which is the subject of the present paper.

The streamfunction Ψ in the boundary layer, non-dimensionalised by the quantity
Uν

1
2 /ω

1
2 , is expressed in the form

Ψ = ξφ+ ψe−it (2.1)

where the unsteady component ψ is assumed small compared to the mean flow component
ξφ. We use parabolic coordinates (ξ, η) defined by

xd + iyd =
1
2
U

ω

([
ξ + i(S1/2 + ε3η)

]2

+ S

)
, (2.2)
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where xd, yd are (dimensional) cartesian coordinates centred on the airfoil leading edge.
The parabolic coordinate ξ along the airfoil surface has been nondimensionalised by the
square root of the disturbance length U/ω. For the parabolic coordinate η in the normal
direction, the origin has been shifted to the airfoil surface, and the additional factor ε3 in
(2.2) corresponds to nondimensionalisation by the quantity (ν/U)

1
2 . Thus η corresponds

to the conventional normal coordinate for the mean boundary layer.

2.1. Steady flow
The steady boundary-layer flow is most naturally expressed in terms of a streamwise
variable scaled on the nose radius,

ξ̄ = ξ/S1/2. (2.3)

The function φ(ξ̄, η) describing the steady boundary-layer flow then satisfies the differ-
ential equation

φηηη + φηηφ+ ξ̄(φηηφξ̄ − φηφηξ̄)−
1

1 + ξ̄2
(φη

2 − 1) = 0, (2.4)

with boundary conditions

φ = φη = 0 at η = 0 and φη → 1 exponentially as η →∞. (2.5)

For large ξ̄, φ takes the form (Van Dyke, 1964)

φ(ξ̄, η) ∼ F (η) +G1(η)
ln ξ̄2

ξ̄2
+G2(η)

1
ξ̄2

+O

(
1
ξ̄γ2

)
, γ2 ≈ 3.774, (2.6)

where the order of the next higher order term is discussed below. In this expansion, F (η)
is the Blasius function, and the functions Gi(η) satisfy homogeneous boundary conditions

Gi(0) = G′i(0) = 0, G′i → 0 exponentially as η →∞, (2.7)

with governing equations

G2(G1) = 0, G2(G2) = F ′2 − 1 + 2(F ′′G1 − F ′G′1), (2.8)

where we define the set of operators Gγ by

Gγ(f) ≡ f ′′′ + Ff ′′ + γF ′f ′ + (1− γ)F ′′f. (2.9)

In the first perturbation term of the large-ξ̄ expansion we have G1 = A1G1, where

G1 = ηF ′(η)− F (η), (2.10)

which arises as an eigenfunction of Gγ for γ = 2. The coefficient A1 remains undetermined
at this order. However, the equation for G2(η) then takes the form

G2(G2) = F ′2 − 1 + 2A1FF
′′. (2.11)

Since the Blasius function F is the solution to the adjoint of G2, the value of A1 is fixed
by the solvability condition for G2(η) which leads to∫ ∞

0

F (F ′2 − 1 + 2A1FF
′′)dη = 0, (2.12)

and gives A1 = 0.60115.
The equation for G2(η) involves the same operator G2 and hence contains the same

eigenfunction. Thus, G2 = B1G1 + G2, where G2(η) satisfies (2.11), with boundary
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conditions (2.7) and G′′2(0) = 0. Since ξ̄−2G1 is an eigensolution of the boundary-layer
perturbation equation, the value of the coefficient B1 appearing in the O(ξ̄−2) term can
not be determined by the large-ξ analysis and therefore depends on conditions close to
the nose of the body. Numerical integration of (2.4) from ξ̄ = 0 gives B1 ≈ 2.08 (HK1).
For all γ > 0, Gγ has solutions which decay algebraically as η →∞, but only for certain
γ do solutions exist which decay exponentially at infinity. Libby & Fox (1963) give the
first 10 eigenvalues. The first such eigenvalue, γ1 = 2 has already been discussed. The
next eigenvalue, γ2 ≈ 3.774, leads to the next higher order term in the large-ξ̄ expansion
(2.6).

2.2. Unsteady flow
The time-dependent contribution to the boundary-layer flow satisfies the linearised un-
steady boundary layer equation (LUBLE),

F(ψ) = (S + ξ2)1/2

[(
i(S + ξ2)− S

S + ξ2

)
us − ξ ∂us

∂ξ

]
,

F(ψ) ≡ ψηηη + [φ+ ξφξ]ψηη +
[
i(S + ξ2)− ξφηξ − S − ξ2

S + ξ2
φη

]
ψη

+ ξ(φηηψξ − φηψηξ),




(2.13)

with boundary conditions

ψ = ψη = 0 at η = 0 and ψη → (S + ξ2)1/2 us as η →∞. (2.14)

Here, us(ξ) is the slip velocity induced on the outer edge of the boundary layer by the
free-stream disturbance. Note that this equation is written in terms of ξ, the streamwise
coordinate scaled on the disturbance length scale U/ω, and hence φ must be expressed
in terms of ξ.

The development of the solution ψ is described in detail in HK1. Far downstream
(ξ � 1), ψ consists of a particular solution, ψp, driven by the local value of the unsteady
pressure gradient, together with an infinite set of asymptotic eigensolutions,

ψ(η, ξ;S) = ψp(η, ξ;S) +
∑

i

Ci(S)ψi(η, ξ;S). (2.15)

The eigensolutions, ψi, depend on the geometry of the body far downstream, but are
independent of the local free-stream disturbance. In this paper, where we are concerned
with the generation of instability waves in the boundary layer, we consider eigensolutions
which are generalised forms of the Lam & Rott (1960) eigenfunctions. Another set of
eigensolutions could also be calculated, corresponding to generalisations of the functions
derived by Brown & Stewartson (1973) for a flat plate. The role of these two sets
of eigensolutions is discussed in HK1. The coefficients Ci multiplying the asymptotic
eigenfunctions are determined entirely by conditions close to the leading edge (ξ = O(1)).
One of these eigensolutions, which we label ψ1, matches on to the Tollmien–Schlichting
wave in the Orr–Sommerfeld region farther downstream, where ξ = O(ε−1). Thus, it
is only through the coefficient C1 that the unsteady disturbances in the free stream
influence the amplitude of the Tollmien–Schlichting wave. Our primary interest is in the
relationship between the free-stream disturbances and the amplitude of the Tollmien–
Schlichting wave, as a function of Strouhal number S. Thus, we focus on the asymptotic
eigensolutions of the LUBLE, which develop a two-layer structure for ξ � 1. From
HK1 (equations 3.17, 3.34, 3.35), at the outer edge of the boundary layer (η →∞), the
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first asymptotic eigenfunction takes the form

ψ1 ∼ ξ
(

ξ2

2

)τ
(0)
1 +Sτ

(1)
1

exp
(
T

(0)
1

) (
1 +O(ξ−0.774)

)
,

τ
(0)
1 = −0.69213, τ

(1)
1 = −1.9878 i,

T
(0)
1 (ξ) = −λξ3

{
1
3 −A1S

ln(ξ2/S)
ξ2

+ (2A1 + 3
2 −B1)

S

ξ2

}




(2.16)

where λ = e−
1
4 iπ/(ρ3/2

1 U ′0). Here ρ1 ≈ 1.0187, the first root of Ai′(−ρ) = 0, and U ′0 ≡
F ′′(0) ≈ 0.4696. The numerical constants A1 and B1 arise from the asymptotic form of
the mean boundary-layer flow far downstream, (2.6).

For a low Mach number flow, outside the boundary layer the unsteady flow in the
vicinity of the leading edge is incompressible and irrotational. Potential flow theory then
shows that this local flow consists of symmetric and antisymmetric components of the
form

us(ξ) = κs
ξ

(S + ξ2)1/2
+ κa

1
(S + ξ2)1/2

. (2.17)

Here ξ/(S+ξ2)1/2 and 1/(S+ξ2)1/2 correspond to purely symmetric and anti-symmetric
flow about the leading edge, respectively. The coefficients κs(θ) and κa(θ) multiplying
the symmetric and antisymmetric components are independent of the nose geometry,
but depend on the free-stream disturbance, being determined by global features of the
unsteady flow. When the unsteady disturbance velocity is parallel to the mean flow, (i.e.
θ = 0), the forcing is entirely symmetric and κs = 0. For oblique (θ 6= 0) disturbances, the
unsteady flow will have both symmetric and anti-symmetric components. Calculation of
the coefficients κs and κa for different free-stream disturbances is discussed in §4 of HK1.
Writing ψ = κsψs + κaψa, and substituting into (2.13), it follows that the receptivity
coefficient can be decomposed into contributions from the symmetric and anti-symmetric
components of the unsteady outer flow,

C1(S) = κs Cs(S) + κa Ca(S), (2.18)

where Cs and Ca are obtained from the solutions of

F(ψs) = ξ

(
i(S + ξ2)− 2S

S + ξ2

)
, (2.19a)

F(ψa) = i(S + ξ2)− S − ξ2
S + ξ2

, (2.19b)

respectively. The numerical methods used to obtain values of Ca(S) and Cs(S) for fixed
S are described in HK1. The remainder of this paper is concerned with the asymptotic
expansions of Ca(S) and Cs(S) as S → 0.

In the nose region, ξ̄ = O(1), the mean pressure gradient decreases with distance
downstream, and the mean flow approaches the flat-plate limit as ξ̄ →∞. In the small-
S limit, the nose-region is quasi-steady at leading order; the linearised boundary layer
equations only become fully unsteady when ξ = O(1), i.e. ξ̄ = O(S−

1
2 ). Thus in

the receptivity region ξ = O(1), the mean flow is close to the Blasius solution, and
the receptivity coefficient is calculated as a perturbation away from the flat-plate value.
Receptivity to the symmetric and anti-symmetric components of the unsteady free-stream
disturbance is analysed in §§3 and 4, respectively. In each case the solutions in the nose
and receptivity regions are asymptotically matched, and then the large-ξ behaviour in
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the receptivity region is compared to (2.16) in order to extract the receptivity coefficient,
Cs or Ca.

3. Receptivity to symmetric forcing
For symmetric forcing, (2.19a) suggests that for small S the unsteady perturbation in

the nose region, ξ̄ = O(1), is quasi-steady at leading order and takes the form

ψs = S
1
2 ξ̄

(
θ0(ξ̄, η) + S θ1(ξ̄, η) +O(S2)

)
, (3.1)

where the functions θ0 and θ1 satisfy

Ms(θ0)=− 2
1 + ξ̄2

,

Ms(θ1)=i(1 + ξ̄2)
(
1− (θ0)η

)
,


 (3.2)

and

Ms(p) ≡ pηηη +(φ+ ξ̄φξ̄)pηη +
(
−ξ̄φηξ̄ −

2
1 + ξ̄2

φη

)
pη +φηηp+ ξ̄(φηηpξ̄−φηpηξ̄). (3.3)

The factor S
1
2 ξ̄ is extracted from ψs in (3.1) to simplify the boundary conditions, which

become

θ0 =
∂θ0
∂η

=0 θ1 =
∂θ1
∂η

=0 on η =0

∂θ0
∂η

→1
∂θ1
∂η

→0 exponentially as η →∞.


 (3.4)

Here we are interested in the solution in the large-ξ̄ limit, in order to provide upstream
boundary conditions for the receptivity region ξ = O(1). In this limit, the mean flow is
given by (2.6) and the unsteady perturbation takes the form,

θ0∼H0(η) +
ln(ξ̄2)
ξ̄2

H3(η) +
1
ξ̄2
H4(η) +O(ξ̄−γ2),

θ1∼ξ̄2Ĥ0(η) + ln(ξ̄2)Ĥ3(η) + Ĥ4(η) +O(ξ̄(2−γ2)),


 (3.5)

where we have adopted this rather unusual labelling notation in order to retain consis-
tency with the notation used in §4. The set of functions Hi(η) and Ĥi(η) satisfy

G0(H0)=0, G−2(Ĥ0)=i(1 −H ′
0),

G2(H3)=R(3)
2,1(H0), G0(Ĥ3)=−iH ′

3 +R(3)
0,3(Ĥ0),

G2(H4)=−2−R(4)
2,1(H0) G0(Ĥ4)=i(1 −H ′

0 −H ′
4)−R(4)

0,3(Ĥ0)

+2F ′H ′
3 − 2F ′′H3, +2F ′Ĥ ′

3 − 2F ′′Ĥ3,




(3.6)

subject to boundary conditions

Hi = H ′
i =0, Ĥi = Ĥ ′

i =0, on η =0,

H ′
0 → 1, H ′

i≥1 →0, Ĥ ′
i →0, as η →∞,


 (3.7)
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where the decay is exponential as η →∞. Here the operator Gγ is defined in (2.9) and the
operators R(i)

β,γ are defined in the Appendix. As was noted in §2, G2 has an eigensolution
(i.e. a solution of G2(H) = 0 with homogeneous boundary conditions). Thus H3 and H4

can not be determined entirely by the large-ξ̄ asymptotic analysis, but require knowledge
of the full solution in the nose region. However, for the symmetric case considered in
this section, the leading-order term in the small-S expansion can be determined exactly
in terms of the steady flow (Lighthill 1954). In the notation of the present paper this
gives the quasi-steady solution as θ0 = 1

2 (ηφη + φ) and hence,

H0 = 1
2 (ηF ′ + F ), H3 = 1

2 (ηG′1 +G1), H4 = 1
2 (ηG′2 +G2), (3.8)

where G1(η), G2(η) are defined in (2.10, 2.11). Solutions for Ĥi are obtained using a
fourth-order Runge-Kutta method, shooting from η = 0 and using the requirement of
exponential decay as η →∞.

It is clear from (3.5) that the small-S expansion (3.1) breaks down when Sξ̄2 = O(1),
which is to be expected since when ξ = O(1) we have reached the receptivity regime where
unsteadiness enters at leading order. Within the receptivity region, we are interested only
in the coefficient of the first eigensolution. We therefore anticipate the large-ξ form (2.16)
by setting ψ = ξw(ξ, η)e−λξ3/3, where λ = e−

1
4 iπ/(ρ3/2

1 U ′0) as before. From (2.19a), w is
given by

Ns(w) =
[
i(S + ξ2)− 2S

S + ξ2

]
eλξ3/3,

Ns(w) ≡ wηηη + [φ+ ξφξ]wηη +
[
i(S + ξ2)− ξφηξ +

(
λξ3 − 2S

S + ξ2

)
φη

]
wη

+(1− λξ3)φηηw + ξ(φηηwξ − φηwηξ).




(3.9)

Using the large-ξ̄ form of φ (2.6), we see that the coefficients which appear in Ns(w)
involve terms in (ξ2/S)−1 ln(ξ2/S) and (ξ2/S)−1, and hence we can expand Ns as an
asymptotic series in S,

Ns(w) ∼ N (0)
0,1 (w) + S lnSN (3)

2,1 (w) + SN (4)
2,1 (w) +O(Sγ2/2), (3.10)

where the partial differential operatorsN (i)
β,γ(w) are defined in the Appendix. Now writing

w(ξ, η;S) ∼ w0 + S lnSw3 + Sw4 +O(Sγ2/2), (3.11)

and expanding the right side of (3.9), we obtain a set of equations governing the evolution
of wi(ξ, η),

N (0)
0,1 (w0)=iξ2eλξ3/3,

N (0)
0,1 (w3)=−N (3)

2,1 (w0),

N (0)
0,1 (w4)=(i− 2/ξ2)eλξ3/3 −N (4)

2,1 (w0).




(3.12)
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Matching back to (3.5) we see that as ξ → 0,

w0∼H0 + ξ2Ĥ0,

w3∼− 1
ξ2
H3 − Ĥ3,

w4∼ ln(ξ2)
ξ2

H3 +
1
ξ2
H4 + ln(ξ2)Ĥ3 + Ĥ4.




(3.13)

Thus we write

w0=eλξ3/3H0 + ξ2q0,

w3=− 1
ξ2

eλξ3/3H3 + q3,

w4=− ln(ξ2)w3 +
1
ξ2

eλξ3/3H4 + q4,




(3.14)

and it can be shown after some algebraic manipulation that

N (0)
−2,3(q0)=ieλξ3/3(1−H ′

0),

N (0)
0,1 (q3)=ieλξ3/3H ′

3 −N
(3)

0,3(q0),

N (0)
0,1 (q4)=ieλξ3/3(1−H ′

0 −H ′
4)− iξ2q′0 −N

(4)

0,3(q0) + 2F ′′q3 − 2F ′q′3,




(3.15)

where q′i denotes the partial derivative of qi(ξ, η) with respect to η. From (3.13), the
functions qi satisfy initial conditions

q0(0, η) = Ĥ0, q3(0, η) = −Ĥ3(η), q4(0, η) = Ĥ4(η), (3.16)

and homogeneous boundary conditions, qi(ξ, 0) = q′i(ξ, 0) = 0, q′i → 0 exponentially as
η → ∞. The differential operators N (i)

β,γ , related to the operators N (i)
β,γ , are defined in

the Appendix. Thus the evolution of the O(S0), O(S lnS) and O(S) components of
the unsteady flow has been cast in a form suitable for accurate numerical computation.
Numerical solutions of (3.15) are discussed in §5.

4. Receptivity to antisymmetric forcing
At first sight, the analysis of the receptivity in the anti-symmetric case appears to

follow very similarly to the symmetric case. However, a subtle difference is seen in the
structure of the solution. Motivated by the anti-symmetric forcing (2.19b), we write the
small-S expansion of the unsteady perturbation in the nose region, ξ̄ = O(1), as

ψa = ψ0(ξ̄, η) + S ψ1(ξ̄, η) +O(S2). (4.1)

The perturbation is again quasi-steady at leading order in the nose region, with

Ma(ψ0)=
ξ̄2 − 1
ξ̄2 + 1

,

Ma(ψ1)=i(1 + ξ̄2)
(
1− (ψ0)η

)
,


 (4.2)

where
Ma(p) ≡Ms(p) + φηpη − φηηp. (4.3)
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However, in contrast to the symmetric case, the large-ξ̄ limit for the unsteady flow
now takes the form

ψ0∼J0(η) +
ln(ξ̄2)
ξ̄

J1(η) +
1
ξ̄
J2(η) +

ln(ξ̄2)
ξ̄2

J3(η) +
1
ξ̄2
J4(η) +O(ξ̄(1−γ2))

ψ1∼ξ̄2Ĵ0(η) + ξ̄ ln(ξ̄2)Ĵ1(η) + ξ̄Ĵ2(η) + ln(ξ̄2)Ĵ3(η) + Ĵ4(η) +O(ξ̄(3−γ2))




(4.4)

where the functions Ji(η) and Ĵi(η) satisfy

G1(J0)=1, G−1(Ĵ0)=i(1 − J ′0),

G2(J1)=0, G0(Ĵ1)=−iJ ′1,

G2(J2)=2F ′J ′1 − 2F ′′J1, G0(Ĵ2)=−iJ ′2 + 2F ′Ĵ ′1 − 2F ′′Ĵ1,

G3(J3)=R(3)
3,0(J0), G1(Ĵ3)=−iJ ′3 +R(3)

1,2(Ĵ0),

G3(J4)=−2−R(4)
3,0(J0) G1(Ĵ4)=i(1 − J ′0 − J ′4)−R(4)

1,2(Ĵ0)

+2F ′J ′3 − 2F ′′J3, +2F ′Ĵ ′3 − 2F ′′Ĵ3,




(4.5)

with boundary conditions

Ji = J ′i =0 Ĵi = Ĵ ′i =0 on η =0

J ′0 → 1, J ′i≥1 →0 Ĵ ′i →0 as η →∞.


 (4.6)

Compared to the expansion for the symmetric case (3.5), the additional terms in ln(ξ̄2)/ξ̄
and 1/ξ̄ are included in the large-ξ̄ expansion of ψ0 because the operator G2 possesses
an eigensolution. Thus J1(η) = P1(ηF ′ − F ), where the numerical constant P1 can be
determined from the solvability condition for J2. As noted in §2, the Blasius function F
is the solution to the adjoint of G2 and we see that

0 =
∫ ∞

0

F (F ′J ′1 − F ′′J1) dη = 2P1

∫ ∞

0

F 2F ′′ dη

= P1. (4.7)

Hence J1 ≡ 0 and it follows that Ĵ1 ≡ 0, and J2(η) = P2(ηF ′ − F ), where P2 is a
numerical constant. Solutions to the set of equations (4.5) are obtained by shooting, as
described in §3, but the value of the constant P2 in the expression for J2 can only be
determined by comparison with numerical solutions of ψ0 obtained by integrating (4.2)
forward from ξ̄ = 0. Comparing the computed wall shear ψ′′0 (ξ̄, 0), with the asymptotic
form (4.4) gives

P2 ≈ 6.07, (4.8)

but accurate extrapolation is difficult due to the presence of higher-order terms in the
expansion (4.4). The numerical results suggest that the coefficients of these terms are in
fact relatively large. This is discussed further in §5.

In the receptivity region ξ = O(1) where unsteadiness enters at leading order, we again
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anticipate the large-ξ form of the eigensolution by setting ψa = ve−λξ3/3. The function
v(ξ, η;S) then satisfies

Na(v) =
[
i(S + ξ2)− S − ξ2

S + ξ2

]
eλξ3/3,

Na(v) ≡ Ns(v) + φηvη − φηηv,


 (4.9)

where Ns(v) was defined in §3. As for the symmetric case, we expand the operator as
an asymptotic series in S,

Na(v) ∼ N (0)
1,0 (v) + S lnSN (3)

3,0 (v) + SN (4)
3,0 (v) +O(Sγ2/2), (4.10)

but in this case, guided by the asymptotic form (4.4) in the nose region, we expand
v(ξ, η;S) as

v ∼ v0 + S1/2v2 + S lnSv3 + Sv4 +O(S(γ2−1)/2). (4.11)

Matching back to the nose region then suggests that we set

v0=eλξ3/3J0 + ξ2p0,

v2=
1
ξ
eλξ3/3J2 + ξp2,

v3=− 1
ξ2

eλξ3/3J3 + p3,

v4=− ln(ξ2)v3 +
1
ξ2

eλξ3/3J4 + p4.




(4.12)

This finally leads to the set of equations

N (0)
−1,2(p0)=ieλξ3/3(1− J ′0),

N (0)
0,1 (p2)=−ieλξ3/3J ′2,

N (0)
1,0 (p3)=ieλξ3/3J ′3 −N

(3)

1,2(p0),

N (0)
1,0 (p4)=ieλξ3/3(1− J ′0 − J ′4)− iξ2p′0 −N

(4)

1,2(p0) + 2F ′′p3 − 2F ′p′3,




(4.13)

with initial conditions

p0(0, η) = Ĵ0, p2(0, η) = Ĵ2, p3(0, η) = −Ĵ3(η), p4(0, η) = Ĵ4(η), (4.14)

and the homogeneous boundary conditions, pi(ξ, 0) = p′i(ξ, 0) = 0, p′i → 0 exponentially
as η →∞. As in §3, we use p′i to denote the partial derivative of pi(ξ, η) with respect to
η. Numerical solutions to this set of equations are discussed in the next section.

5. Numerical Results
Having obtained expressions for the evolution of the unsteady flow in the form of an

asymptotic expansion for small S, we now carry out the numerical integration required to
obtain the corresponding asymptotic expansion for the receptivity coefficient C1(S). As
explained in HK1, in order to reliably extract the coefficient C1(S) of the first asymptotic
eigensolution from the numerical results, it is necessary to carry out the integration in the
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complex-ξ plane, in the region −5π/12 < arg(ξ) < −π/12 where the first eigensolution of
the LUBLE exhibits exponential growth and is the dominant component of the solution
at large ξ. The sets of equations (3.15) and (4.13) were integrated forward in ξ, from
ξ = 0 to |ξ| = 10 using a Keller Box scheme (Keller & Cebeci 1970), with arg(ξ) chosen
as either −π/3 or −π/4 to ensure the dominance of the first eigensolution.

For large ξ, the first asymptotic eigensolution is given by (2.16). Expanding the expres-
sion for the first eigensolution (2.16) for small S, and writing the receptivity coefficient,
Ca(S) or Cs(S), as an expansion for small S,

C(S) ∼ C(0)
(
1 + c2S

1/2 + c3S lnS + c4S + . . .
)
, (5.1)

we see that as ξ →∞ in the region of the complex plane of interest,

ψ ∼ ψ0

(
1 + c2S

1/2 + [c3 − λA1ξ]S lnS +

[c4 + τ1 ln(ξ2/2)− λξ(2A1 + 3
2 −B1 −A1 ln(ξ2))]S

)
, (5.2)

where ψ0 is the first eigensolution for the flat-plate case (Goldstein 1983). The coefficients
C(0), c2, c3 and c4 can then be obtained by comparison with the numerical solution either
at the outer edge of the boundary layer or at the wall.

For the symmetric case clearly c(s)2 = 0, while Cs(0), c(s)3 , c(s)4 are extracted from the
limiting forms

w0∼Cs(0)
(
ξ2/2

)τ
(0)
1 [1 +O(ξ−1)],

w3

w0
∼c(s)3 − λA1ξ,

w4

w0
∼c(s)4 + τ

(1)
1 ln(ξ2/2)− λξ(2A1 + 3

2 −B1 −A1 ln(ξ2)),




(5.3)

as η, ξ →∞. The evolution of w0 is the flat-plate case described by Goldstein and gives

Cs(0) = −0.441 + 0.841 i (5.4)

as the receptivity coefficient for a flat plate, in agreement with earlier results (Goldstein
et al. 1983; Heinrich & Kerschen 1989). Using arg(ξ) = −π/4, the corrections taking
account of small nose radius effects are calculated to be

c
(s)
3 ≈ 0, c

(s)
4 ≈ 3.12− 2.37 i. (5.5)

Integration using arg(ξ) = −π/3 gives a difference of less than 2% in the estimate for
c
(s)
4 . Hence

Re(Cs(S))∼−0.441 + 0.62 S +O(Sα1)

Im(Cs(S))∼ 0.841 + 3.67 S +O(Sα1), α1 = 1
2γ2 ≈ 1.887.


 (5.6)

In figure 2 asymptotic results (5.5) are compared with the results of the full integration
for small-S presented in HK1. To make the comparisons as clear as possible, we plot
the perturbation from the flat plate result f(S) =

(
C(S) − C(0)

)
/C(0) as a function

of S and compare this with the asymptotic form (5.1). In figure 2a and b, comparisons
are made for the symmetric case, making it clear that the leading-order behaviour for
the symmetric receptivity coefficient is indeed described by (5.6). The small discrepancy
between numerical results and asymptotic theory is likely to be due either to numerical
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Fig 2a−−Real, symmetric
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Fig 2b−−Imag, symmetric
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Fig 2c−−Real, anti−symmetric
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Fig 2d−−Imag, anti−symmetric

Figure 2. Comparison of numerical and asymptotic results for the receptivity due
to symmetric and anti-symmetric disturbances. Numerical results for the perturbation
f(S) =

(
C(S) − C(0)

)
/C(0) (see text) are denoted by ◦, asymptotic theory is marked by

the solid line. Results for Re(fs) and Im(fs) are illustrated in (a) and (b), respectively, and
Re(fa) and Im(fa) are illustrated in (c) and (d).

uncertainty in extrapolating C(S) from large-ξ calculations (as explained in HK1), or to
the higher-order terms in (5.6).
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For the anti-symmetric case,

v0∼Ca(0)ξ
(
ξ2/2

)τ
(0)
1 [1 +O(ξ−1)],

v2
v0
∼c(a)

2 ,

v3
v0
∼c(a)

3 − λA1ξ,

v4
v0
∼c(a)

4 + τ
(1)
1 ln(ξ2/2)− λξ(2A1 + 3

2 −B1 −A1 ln(ξ2)),




(5.7)

as η, ξ →∞. Comparing these large-ξ asymptotic forms with numerical results gives

Ca(0) ≈ −5.33 + 1.66 i, (5.8)

as the flat-plate solution, with small-S corrections

c
(a)
2 ≈ −1.728− 1.728 i, c

(a)
3 ≈ 0, c

(a)
4 ≈ 3.12− 3.57 i. (5.9)

Again there is no significant difference in these results if arg(ξ) is varied. Hence

Re(Ca(S))∼−5.33+12.08 S1/2−10.7 S+O(Sα2)

Im(Ca(S))∼ 1.66+ 6.34 S1/2+24.2 S+O(Sα2), α2 =
1
2
(γ2 − 1) ≈ 1.387


 (5.10)

In figure 2c and d the asymptotic results (5.9) are compared with the results of the full
integration for small-S presented in HK1. It is clear that the coefficient of the S

1
2 term

in (5.10) is correct. While it is not possible to be certain from these results that the
O(S) terms are also correct, the divergence of the asymptotic results from numerical
results arises at similar values of S to the symmetric case, when the O(S) terms were
seen to be correct. In addition, it should be noted that the next higher order term in
(5.10) is O(Sα2), α2 ≈ 1.387 which is very close in magnitude to the O(S) term retained.
Comparison of numerical results and asymptotic solutions in the nose region suggests that
the coefficient of the next term in the expansion (4.4) is fairly large, further suggesting
that the O(Sα2) in (5.10) is indeed significant, even for small S. Hence figure 2c and d
shows that the asymptotic form (5.10) is at least consistent with numerical results.

The absence of any S lnS term in the expansions of the symmetric and anti-symmetric
receptivity coefficients is somewhat surprising. However, further insight can be gained
by considering the case arg(ξ) = −π/4 in more detail. In this special case, the operators
N (0), N (3)

and N (4)
defined in the Appendix are real. Noting that the set of functions

Ĥ(η) are purely imaginary, equations (3.15) show that the functions qi(ξ, η) are also
wholly imaginary. Hence in the limit |ξ| → ∞, w3/w0 is imaginary and Re(c(s)3 ) = 0.
That is, if there is a S lnS term in the small-S expansion of Cs(S), then it is wholly
imaginary. Furthermore, we can show from the large-ξ limit of w4/w0, that

Re(c(s)4 ) = −π
2

Im(τ (1)
1 + c

(s)
3 ). (5.11)

These results are in agreement with the numerical results. The same results also apply
to the anti-symmetric case. Further consideration of the large-ξ limit of w0 and v0 for
arg(ξ) = −π/4 proves that

arg
(
Cs(0)) = −π

2
(1 + τ

(0)
1 ), arg

(
Ca(0)) = −π

2
(1
2 + τ

(0)
1 ) (5.12)
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which confirms the numerics, and also explains the π/4 difference in phase between flat-
plate receptivity coefficients for symmetric and anti-symmetric forcing noted in HK1.

6. Summary
In §5, the small-S expansions of the real and imaginary parts of the receptivity coeffi-

cients for symmetric and anti-symmetric forcing were compared with numerical results.
From a practical standpoint, the most important quantity is the modulus of the receptiv-
ity coefficient, since it is the variation of this that is likely to influence the position of the
transition point. In figure 3, the asymptotic prediction for the modulus of the receptivity
coefficient is compared to numerical results, for symmetric and anti-symmetric forcing.
For oblique acoustic waves (θ 6= 0), the coefficient κa in (2.18) is often large compared to
κs (see HK1). Moreover, as S → 0 the anti-symmetric receptivity coefficient Ca is ap-
proximately five times larger than Cs, the symmetric receptivity coefficient. Hence Ca(S)
is much more important than Cs(S) in determining the behaviour of the total receptiv-
ity coefficient C1(S). In this paper, we have shown that Ca(S) has a singular structure
for small S, varying as S

1
2 , so that small changes in this parameter have a significant

influence on the receptivity. Moreover, the exact form of this leading-order behaviour
has been accurately calculated. The rather small range of validity of the asymptotic
expansions at first appears somewhat disappointing. However, numerical results show
that the maximum receptivity occurs for small S and hence the behaviour in this limit
is of most interest for practical applications. For S < 0.005, excellent agreement is
seen between asymptotic theory and numerical results, so in this parameter range the
asymptotic expansions developed in this paper are of quantitative as well as qualitative
value.

The small-S limit is also of interest when considering the experimental results of Saric
et al. (1995). In these wind-tunnel tests, a leading edge consisting of a machined super-
ellipse of either 1:20 or 1:40 aspect ratio is attached to a flat plate. By considering a super-
ellipse profile rather than an ellipse for the leading-edge section, localised receptivity
due to a discontinuity in surface curvature at the join with the flat plate (Goldstein
1985) is eliminated. The region of dominant receptivity should then be the leading edge.
Measurements were made for free-stream speeds 8ms−1 < U < 21ms−1, corresponding to
nose radius Reynolds numbers Ren = Urn/ν in the range 130 < Ren < 670 , consistent
with the assumption Ren � 1 used in our analysis. Acoustic forcing at non-dimensional
frequencies in the range 30 × 10−6 < ε6 < 90 × 10−6 was considered, leading to a
Strouhal number range 0.004 < S < 0.060. Our small-S theory is clearly relevant to the
lower end of this Strouhal number range. The results of the present analysis show that,
despite the small values of the nose radius in these experiments, there can be significant
departures from the flat-plate results. Many of the detailed measurements of Saric et al.
are for a Strouhal number of 0.01. For this value of S, symmetric disturbances lead to
receptivity 2% greater than the flat plate value, but for anti-symmetric forcing there is
a 15% reduction compared to the flat-plate result. As noted earlier, despite the small
numerical values of S, by S = 0.01 the computed value of the receptivity coefficient has
already begun to diverge from the asymptotic results.

For leading-edge receptivity, various measures of receptivity can be considered. We
have chosen to define C1, the coefficient of the first Lam–Rott asymptotic eigenfunction,
as the ‘receptivity coefficient’. Alternative definitions of receptivity level that have been
considered in computations and experiments are values based on the Tollmien–Schlichting
wave amplitude at the lower neutral-stability point (branch I), or on an extrapolation
of the Tollmien–Schlichting wave amplitude back to the leading edge. Extrapolation of
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Figure 3. Comparison of numerical and asymptotic results for the modulus of the receptivity
coefficient for (a) symmetric forcing and (b) anti-symmetric forcing. Numeric results are denoted
by ◦, asymptotic theory is marked by the solid line.

the Tollmien–Schlichting wave amplitude back to the leading edge is not advisable, since
the Tollmien–Schlichting wave is not a valid solution of the disturbance equations near
the leading edge. In fact, in extrapolating back to the leading edge the slowly varying
amplitude A(ξ) multiplying the mode-shape function of the Tollmien–Schlichting wave
should be considered, and A(ξ) becomes infinite at the leading edge, the streamwise
velocity fluctuation behaving as ξ2τ1 where τ1 = τ

(0)
1 + Sτ

(1)
1 is given by (2.16).

A receptivity level defined in terms of the Tollmien–Schlichting wave amplitude at
the lower branch neutral-stability point does allow easy comparison with experiments or
computations, but has the disadvantage that the results depend on the frequency and
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Reynolds number, making presentation of the results much less compact. However, there
is a need to relate receptivity levels defined in terms of C1 to levels expressed in terms
of branch I amplitudes. In the asymptotic theory, this is achieved by developing the
asymptotic expression for the Tollmien–Schlichting wave in the OSE region and match-
ing this expression to the first generalised Lam–Rott asymptotic eigensolution (2.16).
This procedure is discussed by Goldstein (1983) for the flat-plate case, and the extension
to non-zero S is discussed briefly in HK1. However, the asymptotic analysis is quite labo-
rious, especially for the determination of A(ξ). An alternative approach is the numerical
solution of the disturbance equations, using the Lam–Rott asymptotic eigensolution as
a starting condition and continuing downstream to branch I.

From a theoretical standpoint, the most attractive measure of receptivity is the coeffi-
cient C1 of the first Lam–Rott asymptotic eigenfunction. This Lam–Rott eigenfunction
evolves into the unstable Tollmien–Schlichting wave farther downstream so that, when
appropriate scaling factors related to the asymptotic matching of the LUBLE and OSE
regions are introduced, C1 is also the coefficient of the Tollmien–Schlichting wave. An
extremely attractive feature of this receptivity measure is that C1 is independent of the
physical frequency and the (asymptotically large) Reynolds number, thus providing the
receptivity results in the simplest dimensionless form. The quantity C1 is determined by
the unsteady flow behaviour upstream of the region of instability and therefore focuses
on the receptivity aspect of the unsteady flow development, with less influence from the
global stability properties of the flow. Also, for fixed values of the frequency and Reynolds
number, variations in the receptivity coefficient C1 with changes in the free-stream distur-
bance characteristics translate directly into variations in the Tollmien–Schlichting wave
amplitude.

This work was supported by NASA Langley Research Center under grant NAG-1-1135
and Air Force Office of Scientific Research under grant F49620-94-1-0206.

Appendix A. Definition of the operators N (i)
β,γ(w) and R(i)

β,γ(w).

In §§3 and 4 a set of partial differential operators N (i)
β,γ(w) are used. These are defined

as

N (0)
β,γ(w)=wηηη + Fwηη +

[
iξ2 + (β + λξ3)F ′

]
wη + (γ − λξ3)F ′′w

+ξ(F ′′wξ − F ′wηξ),

N (3)
β,γ(w)=

1
ξ2
N (3)

β,γ(w),

N (4)
β,γ(w)=− ln(ξ2)

ξ2
N (3)

β,γ(w) +
1
ξ2
N (4)

β,γ(w) + iwη.




(A 1)

where

N (3)

β,γ(w)=G1wηη − (β + λξ3)G′1wη − (γ − λξ3)G′′1w − ξ(G′′1wξ −G′1wηξ),

N (4)

β,γ(w)=(2G1 −G2)wηη +
(
(β + λξ3)G′2 − 2(F ′ +G′1)

)
wη

+(γ − λξ3)G′′2w + ξ(G′′2wξ −G′2wηξ)




(A 2)
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In addition, the set of differential operators R(i)
β,γ(f) are used, defined by

R(3)
β,γ(f)=G1fηη − βG′1fη − γG′′1f

R(4)
β,γ(f)=(2G1 −G2)fηη +

(
βG′2 − 2(F ′ +G′1)

)
fη + γG′′2f


 (A 3)

so that
N (i)

β,γ(eλξ3/3f(η)) = eλξ3/3R(i)
β,γ(f(η)) (A 4)

for i = 3, 4.
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