CASEFILE COPY

REVISED FORTRAN PROGRAM FOR

CALCULATING VELOCITIES AND STREAMLINES ON THE HUB-SHROUD MIDCHANNEL STREAM SURFACE OF AN AXIAL-, RADIAL-, OR MIXED-FLOW TURBOMACHINE OR ANNULAR DUCT

II - Programmer's Manual

Theodore Katsanis and William D. McNally
Lewis Research Center
Cleveland, Obio 44135
national aeronautics and space administration - washington d. c. - JULY 1977

1. Report No. NASA TN D-8431	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle REVISED FORTRAN PROGRAM FOR CALCULATING VELOCITIES AND STREAMLINES ON THE HUB-SHROUD MIDCHANNEL STREAM SURFACE OF AN AXIAL-, RADIAL-, OR MIXED-FLOW TURBOMACHINE OR ANNULAR DUCT. II - PROGRAMMER'S MANUAL			5. Report DateJuly 1977	
7. Author(s) Theodore Katsanis and William D. McNally			8. Performing Organization Report NoE-8969	
9. Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135			$\begin{aligned} & \text { 10. Work Unit No. } \\ & 505-04 \end{aligned}$	
			11. Contract or Grant No.	
12. Sponsoring Agency Name and Address National Aercnautics and Space Administration Washington, D. C. 20546			13. Type of Report and Period Covered Technical Note	
			14. Sponsoring Agency Code	
15. Supplementary Notes Supersedes NASA TN D-7344 (FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Midchannel Flow Surface of an Axial- or Mixed-Flow Turbomachine. II - Programmer's Manual, 1974.)				
16. Abstract A FORTRAN-IV computer program has been developed that obtains a detailed subsonic or shock-free transonic flow solution on the hub-shroud midchannel stream surface of a turbomachine. The blade row may be fixed or rotating, and the blades may be twisted and leaned. Flow may be axial, mixed, or radial. This program is a revision of a previous program and this report supersedes NASA TN D-7344. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the stream surface and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference streamfunction solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.				
17. Key Words (Suggested by Author(s)) Meridional plane; Turbomachine flow; Midchannel stream surface; Axial-flow turbomachine; Mixed-flow turbomachine; Transonic flow; Radial-inflow turbine; Centrifugal compressor		18. Distribution Statement Unclassified - unlimited STAR Category 02		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		$\begin{aligned} & \text { 21. No. of Pages } \\ & 231 \end{aligned}$	$\begin{aligned} & \text { 22. Price }{ }^{*} \\ & \text { A11 } \end{aligned}$

' For sale by the National Technical Information Service, Springfield. Virginia 22161

CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
OVERALL PROGRAM PROCEDURE 5
DETAILED PROGRAM PROCEDURE 8
STORAGE REQUIREMENTS 13
CONVENTIONS USED IN PROGRAM 13
LABELED COMMON BLOCKS 15
ROTATED COORDINATES 16
INCOMPRESSIBLE FLOW 19
MAIN PROGRAM 19
SUBROUTINES 19
Subroutine INPUT 19
Subroutine MESHO 20
Subroutine PRECAL 24
Subroutine THETOM 26
Subroutine THIKOM 27
Subroutine INIT 27
Subroutine COEF 27
Subroutine SOR 28
Subroutine LOSSOM 29
Subroutine NEWRHO 31
Subroutine OUTPUT 34
Subroutine BLDVEL 38
Subroutine ILETE 39
Subroutine INDEV 40
Subroutine TSONIN 41
Subroutine TVELCY 42
Subroutine LINDV 47
Functions LAMDAF, RVTHTA, TIPF, and RHOIPF 47
Subroutine CONTIN 48
Subroutine PABC 52
Subroutine INRSCT 52
Subroutine LININT 54
Subroutine ROTATE 58
Page
Subroutine SPLINE 59
Subroutine SPLINT 60
Subroutine SLOPES 60
Subroutines SPLISL and SPINSL 61
Plotting Subroutines 61
MAIN DICTIONARY 61
PROGRAM LISTING 103
APPENDIXES
A - FINITE-DIFFERENCE FORM OF STREAM-FUNCTION EQUATION 201
B - MATCHING UPSTREAM AND DOWNSTREAM FLOW CONDITIONS TO STREAM-FUNCTION SOLUTION 206
C - CALCULATION OF PARTIAL DERIVATIVES OF THETA ON ORTHOGONAL MESH 207
D - INCOMPRESSIBLE STREAM-FUNCTION EQUATION 211
E - GENERATION OF LEADING- AND TRAILING-EDGE RADII ON TSONIC BLADE SECTIONS 212
F - CALCULATION OF CHANGE OF DENSITY DUE TO BLOCKAGE AT BLADE LEADING OR TRAILING EDGE 215
G - LINEAR INTERPOLATION IN A QUADRILATERAL 219
H - SYMBOLS 225
REFERENCES 228

REVISED FORTRAN PROGRAM FOR CALCULATING VELOCITIES AND STREAMLINES ON THE HUB-SHROUD MIDCHANNEL STREAM SURFACE OF AN AXIAL-, RADIAL-, OR MIXED-FLOW TURBOMACHINE OR ANNULAR DUCT II - PROGRAMMER'S MANUAL* by Theodore Katsanis and William D. McNally Lewis Research Center

SUMMARY

A FORTRAN-IV computer program has been developed that obtains a detailed subsonic or transonic flow solution on the hub-shroud midchannel stream surface of a single blade row of a turbomachine. A solution can also be obtained for an annular duct without blades. The flow must be essentially subsonic, but there may be locally supersonic flow. The solution is for two-dimensional, adiabatic shock-free flow. The blade row may be fixed or rotating, and the blades may be twisted and leaned. The flow may be axial, mixed, or radial. Upstream and downstream flow conditions can vary from hub to shroud, and provision is made for an approximate correction for loss of stagnation pressure. Viscous forces are neglected along solution mesh lines running from hub to shroud.

The present program is a revision of a previous program and this report supersedes NASA TN D-7344. The primary revisions are to extend the program to handle nonaxial flows without restriction, to handle annular ducts without blades, to allow for any specified streamwise loss distribution, and to make numerous detailed improvements for more accurate and efficient calculations.

The basic analysis is based on the stream function and consists of the solution of the simultaneous, nonlinear, finite-difference equations of the stream function. This basic solution, however, is limited to strictly subsonic flow. When there is locally supersonic flow, a transonic solution must be obtained. The transonic solution is obtained by a combination of a finite-difference stream-function solution and a velocitygradient solution. The finite-difference solution at a reduced mass flow provides information that is used to obtain a velocity-gradient solution at the full mass flow.

The program is reported in two volumes, with part I as the user's manual and part II as the programmer's manual. This report, part II, contains all the information necessary to understand the operation of the program. It explains the overall program procedure and gives a detailed description of all the subroutines. There is also a dictionary of variable names and a complete program listing.

[^0]
INTRODUCTION

The design of blades for compressors and turbines ideally requires analytical methods for unsteady, three-dimensional, turbulent, viscous flow through a turbomachine. Clearly, such solutions are impossible at the present time, even on the largest and fastest computers. The usual approach at present is to analyze only steady flows and to separate inviscid solutions from viscous solutions. Three-dimensional inviscid solutions are just beginning to be used with the present generation of computers. However, they use excessive computer time. So at present, inviscid analyses usually involve a combination of several two-dimensional solutions on intersecting families of stream surfaces to obtain what is called a quasi-three-dimensional solution.

Since there are several choices of two-dimensional surfaces to analyze, and many ways of combining them, there are many approaches to obtaining a quasi-threedimensional solution. Most two-dimensional solutions are either on a blade-to-blade surface of revolution (Wu's S_{1} surface, ref. 1) or on the meridional or midchannel stream surface between two blades (Wu's S_{2} surface). However, when threedimensional effects are most important, significant information can often be obtained from a solution on a passage cross-sectional surface (normal to the flow). This is called a channel solution (fig. 1).

Figure 1. - Two-dimensional analysis surfaces in a turbomachine.

In this report a solution to the equations of flow on the meridional S_{2} surface is carried out. This solution surface is chosen when the turbomachine under consideration has significant variation in flow properties in the hub-shroud direction, especially when input is needed to use in blade-to-blade calculations. The solution can be obtained either by the quasi-orthogonal method, which solves the velocity-gradient equation from hub to shroud on the meridional stream surface (ref. 2), or by a finite-difference method, which solves a finite-difference equation for stream function on the same stream surface. The quasi-orthogonal method is efficient in many cases and can obtain solutions into the transonic regime. However, there is difficulty in obtaining a solution when blade aspect ratios are above 1. Difficulties are also encountered with curved passages and blades with low hub-tip ratios. For such cases, the most promising method is the finite-difference solution, but this solution is limited to completely subsonic flows.

Finite-difference programs for flow on the midchannel surface of a turbomachine have been reported in the literature. However, many of these programs are proprietary or are of limited generality. The program reported herein is very general and has been thoroughly tested and refined as the result of extensive usage at the Lewis Research Center.

The program described in this report uses both the finite-difference and the quasiorthogonal (velocity gradient) methods, combined in a way that takes maximum advantage of both. The finite-difference method is used to obtain a subsonic-flow solution. The velocity-gradient method is then used, if necessary, to extend the range of solutions into the transonic regime.

A computer program called MERIDL has been written to perform these calculations. This program is written for an axial-, mixed-, or radial-flow turbomachine blade row, either a compressor or turbine, or for an annular duct. Upstream and downstream flow conditions can vary from hub to shroud. The solution is for compressible, shock-free flow or incompressible flow. Provision is made for an approximate correction for loss of stagnation pressure through the blade row. The blade row may be either fixed or rotating, and the blades may be twisted and leaned. The blades can have a high aspect ratio and arbitrary thickness distribution. The solution obtained by this program also provides the information necessary for a more-detailed blade shape analysis on blade-toblade surfaces (fig. 1). A useful program for this purpose is TSONIC (ref. 3). Information needed to prepare all the input for TSONIC is calculated and printed by MERIDL

The MERIDL program reported herein is a revision of the program described in references 4 and 5. Two types of changes were made: first, extensions to the capability of the program to handle cases beyond those originally offered; and second, revisions to improve the accuracy and reduce the run time of the program. Although the input form has been extended to handle additional input where required, any input that was satisfac-
tory for the original MERIDL program is still satisfactory for the revised MERIDL program. The following list itemizes the major extensions and revisions to the program (additional internal changes are also documented in this report):
(1) The program has been extended to handle nonaxial flows without restriction as to the direction of flow.
(2) The program has been extended to handle an annular duct without blades.
(3) The program has been extended to permit the user to specify an arbitrary streamwise distribution of loss within the blade row. This is in addition to the original provision for hub-to-shroud loss distribution.
(4) The program has been modified so that the blade thickness can be specified precisely by a set of tangential thickness coordinates. The original program required specification of thickness normal to the mean camber line on an input blade section. This normal thickness was influenced by blade lean, camber, and nonparallel blade surfaces and was difficult to specify accurately for some blade shapes.
(5) If desired, the leading- and trailing-edge mean camber line tangent angles can be specified as input. This simplifies the specification of some blade shapes.
(6) Output quantities have been added to station-line output to give absolute velocity components and to give static as well as absolute and relative total temperature, density, and pressure.
(7) Several informational messages have been added to the output.
(8) Additional error messages have been provided.
(9) Upstream and downstream boundary conditions have been changed to give improved convergence and a better quality solution near these boundaries.
(10) Interpolational and calculational procedures near the leading and trailing edges have been improved to give better convergence and smoother solutions in these regions.
(11) Numerous small changes have been made to improve the accuracy and reduce the run time of the program.

The MERIDL program has been implemented on the NASA Lewis time-sharing IBM-TSS/360-67 computer. For the numerical example of this report, storage of variables required 60000 words for a 21×41 grid of 861 points. Variable storage could be easily reduced by equivalencing of variables or by using a coarser mesh. Storage requirements for the program code depend on the computer system and compiler being used. Run times for the program range from 3 to 15 minutes on IBM 360-67 equipment.

The MERIDL program is reported in two volumes, with the user's manual presented as part I in reference 6 and the programmer's manual presented as part II in this report. Part I contains all the information necessary to use the program as is. It explains the method of solution and gives a numerical example to illustrate the use of the program. Part I describes the method of analysis and the input and output, gives a numerical example, and derives the mathematical equations used (in the appendixes). This report,
part II, contains all information necessary to understand the operation of the program. It explains the overall program procedure and gives a detailed description of all the subroutines. There is also a dictionary of variable names and a complete program listing. The appendixes explain the numerical techniques used and derive certain numerical algorithms.

OVERALL PROGRAM PROCEDURE

This section gives an overall view of the program calculational procedure. The next section should be consulted for the detailed program procedure. Reference will be made to the proper section or appendix for the equations and their derivation or for the numerical techniques used.

The main program guides the overall flow of the program. All the principal subroutines are called by it. Figure 2 is a flow chart of the main program. The first step is to read and print out all the input data. This is done by the subroutine INPUT. Upstream and downstream flow conditions can be given either as a function of the streamline or as a function of radius. For program calculations, both the stream function and the radius are needed. Subroutine INPUT estimates values of either stream function or radius, whichever was not given as input, based on the area distribution. These values are later adjusted with ench iteration. INPUT also calculates tangential blade thicknes:, if it is not given directly as input. The next step is to call subroutine INPLOT, which plots all the upstream and downstream input flow variables as well as the input blade sections from hub to shroud.

The next subroutine is MESHO, which calculates the coordinates of the orthogonal mesh in the solution region. After this, subroutine PRECAL is called to calculate those quantities that remain fixed throughout the calculations. These quantities include the s and t mesh coordinates, hub and shroud wall curvatures, and leading- and trailingedge \mathbf{z} - and \mathbf{r}-coordinates at horizontal mesh lines. Subroutine PRECAL also calls THETOM and THIKOM. Subroutine THETOM calculates $\partial \theta / \partial s$ and $\partial \theta / \partial t$ at the orthogonal mesh points. (All symbols are defined in appendix H.) These partials are used later to calculate the biade flow angle β and the tangential velocity W_{θ} after the meridional velocity W_{m} has been calculated. Subroutine THIKOM calculates the tangential blade thickness t_{θ} at the orthogonal mesh points. Finally, PRECAL makes corrections in mass flow, wheel speed, and whirl for the reduced-mass-flow solution if the full-mass-flow solution cannot be obtained directly (i. e., when REDFAC <1.0).

Next subroutine MEPLOT is called to plot the meridional plane view of the blade and passage and to plot the orthogonal mesh. Then subroutine INIT is called to initialize array variables as required for the first iteration. Most variables are set either to zero or to some value that will avoid division by zero later on.

At this point, everything is ready to solve the stream-function, finite-difference equations. These equations are nonlinear. They are solved by an iterative procedure, with two levels of iteration. The inner iteration solves a linearized equation, and the outer iteration makes corrections to the linearized equation so that the solution converges to the solution of the original nonlinear equation. There are four subroutines called to obtain the solution to the linearized equation: COEF, SOR, LOSSOM, and NEWRHO. Then there are four subroutines to print and plot this information and pre-
pare for the next outer iteration: OUTPUT, INDEV, SLPLOT, and SVPLOT. Calls to these eight subroutines are repeated until convergence is obtained.

Subroutine COEF calculates the coefficients of the finite-difference equations. These coefficients are derived in appendix A. Because of the sensitivity of the calculations to the value of $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$, this value is damped from iteration to iteration. Thus, only a portion of the predicted change in value is actually used. This portion is specified by the input value of DNEW.

Subroutine SOR solves the finite-difference equations for the stream function u by successive overrelaxation using an optimum overrelaxation factor (ORF). This is the inner iteration. The optimum overrelaxation factor is calculated by subroutine SOR on the first iteration.

Subroutine LOSSOM calculates the ratio of actual to ideal relative stagnation pressure downstream of the blade and then distributes the loss linearly, or as specified by the input, through the blade row from the leading to the trailing edge, or through the annular passage if no blades are present. The method of making loss corrections is discussed in appendix D of part I (ref. 6).

Subroutine NEWRHO calculates velocity components at each mesh point by differentiating the stream function numerically along the orthogonal mesh lines. These values are used to calculate new densities at each mesh point. When whirl is not given as input, NEWRHO also makes reinitialization calls to readjust the estimated values of stream function to go with the input temperature, density, and tangential velocity (appendix B). Subroutine NEWRHO also calculates values of ξ and ζ (eqs. (A1) to (A3)), at the mesh points, to be used in COEF on the next iteration. And NEWRHO checks the relative change in velocity from the previous iteration at each mesh point. The maximum relative change in velocity is checked to see if the solution is converged.

Now that a solution (converged or not) has been obtained, OUTPUT is called. Subroutine OUTPUT first calculates other velocity components and flow angles at all mesh points. Then OUTPUT calculates streamline curvature and critical velocity ratio at each mesh point. If there are blades, subroutine BLDVEL is called to calculate the blade surface velocities, as explained in appendix G of part I (ref. 6). Also BLDVEL calculates the average blade-to-blade density to be used in NEWRHO in the next iteration. And BLDVEL calculates F_{t} at each point by using equation (A4). The vector component F_{t} is used by COEF in calculating the coefficients of the finite-difference equations. After returning from BLDVEL, OUTPUT will print out data at the orthogonal mesh points, if desired. Then, if output is desired along streamlines, the necessary interpolation will be done and data will be printed for all streamlines. Similarly, interpolation will be done and data printed for hub-shroud station lines.

After OUTPUT, subroutines INDEV and TSONIN are called if there are blades. Subroutine INDEV calculates a correction to $\partial \theta / \partial s$ for a short distance into the blade
row to match the mean surface within the blade row to the free-stream flow angles, both upstream and downstream. The method for doing this is described in appendix F of part I (ref. 6). INDEV also calculates and prints out incidence and deviation angles if this is requested. Then TSONIN will calculate and print TSONIC input if desired. Also if desired, SLPLOT will plot the streamlines and SVPLOT will plot the mean and blade surface velocities.

At this point, the main program will start a new iteration by going back to COEF if the solution has not converged. If the solution has converged, there are two possibilities. If REDFAC is 1 , the final solution has been obtained and the program is through. If REDFAC is less than 1 , the final approximate full-mass-flow solution will be calculated by TVELCY. First, the mass flow, rotational speed, and inlet and outlet whirl are restored to their full values. This requires reinitialization calls of LAMDAF and RVTHTA for inlet and outlet whirl. Then TVELCY calculates $\partial \mathrm{W}_{\mathrm{m}} / \partial \mathrm{m}$ and $\partial \mathrm{W}_{\theta} / \partial \mathrm{m}$ for use in the velocity-gradient equation. These quantities are first calculated from the reduced-mass-flow solution and then are adjusted by dividing by REDFAC. Now the velocity-gradient equation (derived in appendix C of part I (ref. 6)) is solved along each vertical mesh line. Iteration is required to establish the correct temperature, density, and whirl to use in the velocity-gradient equation. When TVELCY is through, TOUTPT is called. Subroutine TOUTPT is an alternate entry point for OUTPUT. The only difference is that the flow angles are considered to be known, and the velocity components are calculated from the velocity magnitude and the known flow angles. After TOUTPT, if there are blades, PINDV is called to print incidence and deviation angles. Then the same sequence of TSONIN, SLPLOT, and SVPLOT is called as for the finitedifference solution. Normally, only the smaller ('subsonic') of two possib:~ solutions is obtained by TVELCY (part I (ref. 6), appendix C); but if desired, both the larger ("supersonic") and smaller solutions can be obtained. If both solutions are desired, TVELCY, TOUTPT, PINDV, TSONIN, SLPLOT, and SVPLOT are called again. This completes the program.

DETAILED PROGRAM PROCEDURE

This section gives the detailed program procedure for all the subroutines. The previous section should be consulted for an overall view of the program calculational procedure.

Most of the subroutines in MERIDL use the same set of variables. These variables are all defined in the section MAIN DICTIONARY. All subroutines are described prior to the main dictionary. First, the main subroutines and other subroutines that use the main dictionary are described, and then the remaining subroutines with special diction-

table i. - subroutine calls and common blocks

Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling sub- routines	Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling subroutines
MERIDL	/--/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/ /SLCOM/ /nDCOM/ /PLTCOM/	INPUT MESHO PRECAL DNTT COEF SOR LOSSOM NEWRHO OUTPUT INDEV TSONIN TVELCY TOUTPT (OUTPUT) PINDV (LINDV) Plotting subroutines	$\begin{array}{\|l\|} \text { None - main } \\ \text { program } \end{array}$	LOSSOM (6ee entry LOSSTV)	/--/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/	LAMDAF RVTHTA TIPF RHOIPF LAMNIT (LAMDAF) RVTNIT (RVTHTA) TIPNIT (TIPF) RHINTT (RHOIPE) INRSCT SPLINT SPLENT (SPLINT)	MERIDL
				LOSSTV (entry point for LOSSOM)	/…/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/	LAMDAF RVTHTA TIPF RHOIPF INRSCT SPLINT SPLENT (SPLINT)	tVELCY
mplet	1.-1 /INPUTT/ /CALCON/	SPLINE SPLINT SPLENT (SPLINT) SPLISL	MERIDL				
MESHO	/INPUTT/ /CALCON/ /ROTATN/	INRSCT fotate SPLINT SPLENT (SPLINT)	MERDL	NEWRHO	/---/ /INPUTT/ /CALCON/ /VARCOM/	IAMDAF RVTHTA TIPF RHOIPF SPLINE SLOPES	MEridl
Precal	/---/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/	THETOMTHIKOMLAMNIT (LAMDAF)RVTNIT (RVTHTA)TIPNIT (TIPF)RHINIT (RHOIPF)INRSCTROTATESPLINESPLINTSPLISL	MEREL				
				OUTPUT (entry point TOUTPT)	/---/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/ /SLCOM/	BLDVEL hete lamdaf RVTHTA TIPF RHOIPF LININT ROTATE	MERTDL
THETOM	$1--1$	LININT ROTATE	Precal			SPLINT SLOPES	
	/CALCON/ /ROTATN/ /INDCOM/	SPLINT SPINSL		bldvel	/ - 1 /INPUTT/ /CALCON/ /VARCOM/	LAMDAF TIPF RHOIPF SLOPES	OUTPUT TOUTPT
THIKOM	/NPUTT/ /CALCON/ /ROTATN/ /InDCOM/	LININT SPLINT	precal	ILETE	/INPUT/ /CALCON/ /SLCOM/	SPLINT SPLENT (SPI.INT)	OUTPUT TOUTPT
InIT	/INPUTT/ /CALCON/ /VARCOM/	LAMDAF TIPF RHOIPF	MERIDL	INDEV	/---/ /INPUTT/ /CALCON/	LAMDAF RVTHTA LININT	MERIDL
COEF	/---/ /INPUTT/ /CALCON/ /VARCOM/	None	MERIDL		/VARCOM/ /ROTATN/ /DNDCOM/		
80R	/---/ /anputt/ /CALCON/ /VARCOM/	None	MERIDL				

TABLE I. - Continued

Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling subroutines	Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling subroutines
TSONIN	/---/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/ /SLCOM/ /INDCOM/	LAMDAF RVTHTA TIPF RHOIPF INRSCT LINLNT ROTATE SPLINE SPLINT SPLISL	MERIDL	RVTHTA (see entry RVTNIT)	/---/ /INPUTT/ /CALCON/ /varcom/ /ROTATN/	None	LOSSOM LOSSTV (LOSSOM) NEWRHO OUTPUT TOUTPT (OUTPUT) INDEV TSONIN TVELCY LINDV TINDV (LINDV)
TVELCY	/---/ /INPUTT/ /CALCON/ /VARCOM/	LOSSTV (LOSSOM) LINDV TINDV (LINDV) LAMDAF RVTHTA TIPF RHOIPF LAMNTT (LAMDAF) RVTNIT (RVTHTA) CONTIN SLOPES	merdil	RVTNIT (entry point for RVTHTA)	1---1 /INPUTT/ /CALCON/ /varcom/ /ROTATN/	LININT SPLINE SPLINT	PRECAL LOSSOM TVELCY
				TIPF (see entry TIPNIT)	/INPUTT/ /CALCON/	None	nNT LOSSOM LOSSTV (LOSSOM) NEWRHO OUTPUT TOUTPT (OUTPUT)
LINDV (entry point - TINDV; see also entry PINDV)	/ - - /INPUTT/ /CALCON/ /varcom/ /ROTATN/ /INDCOM/	LAMDAF RVTHTA TIPF RHOIPF LININT	TVELCY				bldvel TSONIN TVELCY LINDV TINDV (LINDV)
	1--1 /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/ /nDDCOM/	LAMDAF RVTHTA	MERDL	TTPNIT (entry point for TIPF)	/TNPUTT/ /CALCON/	SPLINE	PRECAL LOSSOM
PINDV (entry point for LINDV)				RHOIPF (see entry RHENTT)	/INPUTT/ /CALCON/	None	INTT LOSSOM LOSSTV (LOSSOM) NEWRHO OUTPUT
LAMDAF (see entry LAMNIT)	/---/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/	None	INIT LOSSOM LOSSTV NEWRHO OUTPUT TOUTPT BLDVEL mDEV TSONLN TVELCY LINDV TINDV PINDV				TOUTPT (OUTPUT) bldvel TSONIN TVELCY LNDV TINDV (LINDV)
				RHINIT (entry point for RHOIPF)	/INPUTT/ /CALCON/	SPLINE	precal LOSSOM
				CONTTN	/---/	PABC	TVELCY
				PABC	None	None	CONTIN
				INRSCT	/--/	SPLINT	MESHO
LAMNIT (entry point for LAMDAF)	/---/ /INPUTT/ /CALCON/ /VARCOM/ /ROTATN/	LININT Spline SPLINT	precal LOSSOM TVELCY				precal LOSSOM TSONIN

[^1]TABLE I. - Concluded.

Subroutine name or entry point	COMMON blocks (a)	Called subroutines	Calling subroutines	Subroutine name or entry point	COMMON block (a)	Called subroutines	Calling subroutines
LINDNT	/---/	None	THETOM THIKOM OUTPUT TOUTPT INDEV TSONIN LINDV TINDV LAMNTT RVTNTT	SPLENT (entry point for SPLINT)	/ \cdots /	None	nNPUT MESHO LOSSOM LOSSTV (LOSSOM) ILETE
				Slopes	None	None	NEWRHO OUTPUT TOUTPT (OUTPUT) BLDVEL TVELCY
ROTATE	None	None	MESHO precal THETOM OUTPUT TOUTPT (OUTPUT) TSONIN	SPLISL	/ $\cdot \cdots /$	None	INPUT PRECAL TSONIN
				SPINSL	/--1	None	THETOM
SPLINE	/---/	None	INPUT precal NEWRHO TSONIN	Plotting subroutines	/INPUT/ /CALCON/ /ROTATN/ /SLCOM/ /PLTCOM/	Not applicable	MERIDL
SPLINT (see entry SPLENT)	/--1	None	INPUT MESHO PRECAL THETOM THIKOM LOSSOM LOSSTV (LOSSOM) OUTPUT TOUTPT (OUTPUT) TSONDN Lete LAMNIT (LAMDAF) RVTNIT (RVTHTA) INRSCT				

[^2]aries are described.
The calling relation of all subroutines is shown in figure 3. Note that figure 3 is not a flow chart. All subroutines called and all COMMON blocks for each subroutine are listed in table I.

The first subsections presented herein describe the general aspects of the program, including storage requirements, conventions used, and labeled COMMON blocks. They are followed by a detailed description of the subroutines.

STORAGE REQUIREMENTS

The MERIDL program has been implemented on the NASA Lewis time-sharing IBM-TSS/360-67 computer. The program consists of approximately 5000 lines of code. For the numerical example of part I (ref. 6), storage of variables required approximately 60000 words for a 21×41 grid of 861 points. As dimensioned for a 100×101 grid, storage of variables would require about 700000 words. The user can reduce the storage requirements for variables, as desired, by changing the dimensions. The main dictionary indicates how each variable should be dimensioned to reduce the storage required. This is indicated by reference to certain input variables, such as MM, MHT, NHUB, NTIP, NBLPL, NPPP, and so forth. The variables with the most significant effect on storage requirements are MM and MHT.

As an example, consider the two-dimensional array ALPHA. This variable is in the /VARCOM/ COMMON block and is dimensioned ALPHA $(100,101)$ in the program listing. In the main dictionary, it is listed as ALPHA (MM, MHTP1). Suppose that the maximum desired value for MM is 60 and that for MHT it is 40 . Since MHTP1 is MHT +1 , the maximum value for MHTP1 would be 41 . Then ALPHA should be dimensioned ALPHA $(60,41)$.

Similarly, all other dimensioned variables should have their dimension changed as required. Most dimensioned variables are in COMMON blocks, but there are a few that are dimensioned locally only. In addition, the calls to LININT must be changed to reflect any changes in the dimensions of the first two LININT arguments, and calls to ROTATE must be changed to reflect the dimensions of the second, third, and last two arguments.

CONVENTIONS USED IN PROGRAM

For convenience, a number of conventions are used in naming variables and assigning subscripts.

In addition to the basic orthogonal mesh, there are five special mesh schemes used, as illustrated in figure 4. For each mesh, different conventions are used to indicate

(a) Orthogonal mesh.

(c) Station-line mesh.

(e) Semi-alternate mesh.

(b) Streamline mesh.

(d) Input blade-section points.

Figure 4. - Six meshes used in MERIDL.
mesh position. The subscripts I and J are used to denote orthogonal mesh position. The I is used to denote the vertical mesh line number, and the J is used to denote the horizontal mesh line number. The subscripts IS and JS are used in a similar manner to denote streamline mesh points, and IL and JL the station-line mesh points. Likewise, $\mathbb{I N}$ and $\mathfrak{J N}$ denote points on the input blade sections, and KN and LN denote points on the alternate blade mesh located at 5 -percent-chord and 5-percent-span intervals in the THETOM subroutine. Note that I and IS take on the same values, as do JS and JL.

In variable names, I or IN indicates the inlet (upstream of blade) and O or OUT indicates the outlet. Variables ending with OM are generally variables defined on the orthogonal mesh, and variables ending with ROT or R are usually coordinates with respect to the rotated axes.

Velocity components on the orthogonal mesh usually have SUB in the name, such as WSUBZ for W_{z}. Velocity components along streamlines end in SL (WZSL), while velocity components on station lines end in ST (WZST). The letters H or HUB in a variable name indicate the hub, and T or TIP the tip; LE is used for leading edge and TE for trailing edge. The letters TH indicate a variable in the θ-direction, SURF a variable on a blade surface, and BL a variable in the blade region. In a variable name, TEM indicates a temporary variable; P is used to indicate a prime superscript, and PP to indicate double prime; D is used for derivative. Usually, several conventions are combined in each variable. For example, TIP is used for T_{1}^{\prime}, TPPTIP for $T^{\prime \prime} / T_{i}^{\prime}$, and DPDR for $\partial \mathrm{p} / \partial \mathrm{r}$.

All subroutines used for plotting have PLOT in the name.

LABELED COMMON BLOCKS

Most variables that are used in more than one subroutine are placed in labeled COMMON blocks. A brief description of each labeled block is given. The same variable names are used in different subroutines for every variable in a COMMON block. The labeled COMMON blocks are as follows:
/INPUTT/ is used for all input quantities.
/CALCON/ is used for constants that are initially calculated and are usually not changed later.
/VARCOM/ is used for all orthogonal mesh-point arrays that are changed in each iteration.
/ROTATN/ is used for coordinates with respect to rotated axes.
/SLCOM/ is used for output data along streamlines.
/INDCOM/ is used for quantities calculated by THETOM to be used by INDEV, LINDV, and TSONIN.
/PLTCOM/ is used to plot data for hub, shroud, and blade leading and trailing edges.
Table I shows which COMMON blocks are needed in each subroutine.

ROTATED COORDINATES

Spline curves are used for most geometrical curve fitting in the MERIDL program. Since spline curves are limited to angles somewhat less than 90°, an option to use rotated coordinates may be exercised by the user when flow angles are much over 45° from axial. Rotated z - and r -coordinates are illustrated in figure 5.

Subroutine ROTATE is used by MERDL to transfer from unrotated to rotated coordinates (and vice versa). The option to work in rotated coordinates is specified through the input variables LROT and ANGROT. If ANGROT is not given as input ($L R O T=0$), there will be no difference between unrotated and rotated coordinates in the program, although the ROTATE calls are still made in the subroutines.

All coordinates read into MERIDL as input are unrotated coordinates. Most of these are never rotated by the program. Likewise, some geometrical arrays calculated by

Figure 5. - Rotated z - and r-coordinates.
the program are never rotated. On the other hand, many geometrical variables are calculated in the rotated system. Some of these are later unrotated, while others are not. The variables associated with each of these options are summarized in table II, which shows whether a variable was calculated or used in either rotated or unrotated z - and r-coordinates. Table III shows which subroutines are involved in calculating, rotating, and unrotating these variables.

In the description of individual subroutines, reference is made to both rotated and unrotated points. Unrotated points always refer to the z and r input coordinate directions. Rotated points refer to coordinates that have been rotated as shown in figure 5.

TABLE II. - FORTRAN z - AND r-VARIABLES AFFECTED BY ROTATION
(a) Unrotated variables

Read in unrotated and never rotated	
ZBL(NPPP, NBLPL)	RBL(NPPP, NBLPL)
ZHUB(NHUB)	RHUB(NHUB)
ZTIP(NTIP)	RTIP(NTIP)
ZOMIN	ROMIN
ZOMBI	ROMBI
ZOMBO	ROMBO
ZOMOUT	ROMOUT
ZHIN	RHIN
ZTIN	RTIN
ZHOUT	RHOUT
ZTOUT	RTOUT
	RADIN(NIN)
	RADOUT(NOUT)
CaIculated unrotated	
ZOMd never rotated	
ZOM(MM, MHTP1)	ROM(MM, MHTP1)
ZLEOM(MHTP1)	RLEOM(MHTP1)
ZTEOM(MHTP1)	RTEOM(MHTP1)

(b) Rotated variables

Read in unrotated and then rotated for internal use		
ZHST(NOSTAT)	RHST(NOSTAT)	
ZTST(NOSTAT)	RTST(NOSTAT)	
Calculated rotated and never unrotated		
ZOMROT(MM, MHTP1)	ROMROT(MM, MHTP1)	
ZBLROT(NPPP, NBLPL)	RBLROT(NPPP, NBLPL)	
ZPCT1(NBLPL)	RPCT1(NBLPL)	
ZPCT2(NBLPC)	RPCT2(NBLPC)	
ZHROT(NHUB)	RHROT(NHUB)	
ZTROT(NTIP)	RTROT(NTIP)	
ZLE(NBLPL)	RLE(NBLPL)	
ZTE(NBLPL)	RTE(NBLPL)	
ZLEOMR(MHTP1)	RLEOMR(MHTP1)	
ZTEOMR(MHTP1)	RTEOMR(MHTP1)	
ZLEH	RLEH	
ZLET	RLET	
ZTEH	RTEH	
ZTET	RTET	
ZLESL	RLESL	
ZTESL	RTESL	
ZRAD(NHUB or NTIP,	RRAD(NHUB or NTIP,	
MHTP1)	MHTP1)	
CaIculated rotated		

TABLE III. - SUBROUTINES INVOLVED WITH ROTATION

Subroutine	Variables read in or calculated	Rotated or unrotated	Comments
INPUT	ZBL, RBL ZHUB, RHUB ZTIP, RTIP ZOMIN, ROMIN ZOMBI, ROMBI ZOMBO, ROMBO ZOMOUT, ROMOUT ZHIN, RHIN ZTIN, RTIN ZHOUT, RHOUT ZTOUT, RTOUT ZHST, RHST ZTST, RTST RADIN RADOUT	Unrotated	Read in unrotated
MESHO	ZHROT, RHROT ZTROT, RTROT ZOMROT, ROMROT ZOM, ROM	Rotated Rotated Rotated Unrotated	Rotated from ZHUB, RHUB Rotated from ZTIP, RTIP Calculated Unrotated from ZOMROT, ROMROT
PRECAL	ZHST, RHST ZTST, RTST ZBLROT, RBLROT ZLE, RLE ZTE, RTE ZLEH, RLEH ZLET, RLET ZTEH, RTEH ZTET, RTET ZLEOMR, RLEOMR ZTEOMR, RTEOMR ZLEOM, RLEOM ZTEOM, RTEOM	Rotated Unrotated Unrotated	Rotated from input values with same name Rotated from input values with same name Rotated from ZBL, RBL Calculated Unrotated from ZLEOMR, RLEOMR Unrotated from ZTEOMR, RTEOMR
THETOM	ZPC, RPC ZPCT1, RPCT1 ZPCT2, RPCT2 ZRAD, RRAD	Rotated	Calculated Calculated on semi-alternate mesh (fig. 26) Calculated on alternate mesh (fig. 27) Calculated
OUTPUT	ZSL, RSL ZST, RST	Rotated Rotated	Calculated rotated, unrotated for printing, then rotated for later use Calculated rotated, unrotated for printing, and left unrotated
TSONIN	ZLESL, RLESL ZTESL, RTESL	Rotated Rotated	Calculated Calculated

INCOMPRESSIBLE FLOW

Provision has been made for incompressible flow analysis by MERIDL. The main difference is that the density at each point is constant; so the density arrays are initialized to the input density value. A streamwise loss of total pressure that is uniform from hub to shroud has no effect on the solution and is not considered for the incompressible case. The present method of solution is very sensitive to a hub-shroud variation of total pressure for incompressible flow, so this variation is likewise not considered. Thus, the PERLOS, PRIP, PROP, and LOSOUT arrays are not used, and any calculations involving temperature or pressure are omitted from the calculation for incompressible flow. A derivation of the necessary changes to the stream-function equation (A1) is given in appendix D.

The subroutines with differences for an incompressible flow calculation are INPUT, PRECAL, INIT, COEF, LOSSOM, NEWRHO, OUTPUT, BLDVEL, and TSONIN. These differences are mainly that the variable arrays RHO and RHOAV are set to the input density, and thereafter all calculations of density, temperature, and pressure (including ξ and ζ) are omitted.

MAIN PROGRAM

The program is segmented into several principal subroutines called by the main program, as indicated at the top of figure 3. The subroutines are called in sequence, except for the outer iteration and a switch to obtain a supersonic final solution. The outer iteration is a loop consisting of calls to COEF, SOR, LOSSOM, NEWRHO, OUTPUT, INDEV, TSONIN, SLPLOT, and SVPLOT. This calling sequence and the outer iteration loop are shown more clearly in the flow chart for the main program, given in figure 2. Flow charts for some of the subroutines are also given with the subroutine descriptions.

SUBROUTINES

Subroutine INPUT

Subroutine INPUT reads and prints all input data cards and initializes some variables for use later in the program.

All input cards are first read and printed on the output listing in the same form and order in which they are given. All array bounds are then checked to see if they are within limits, and some miscellaneous constants are initialized. Estimates are made
of various required upstream and downstream flow conditions that were not given as input because other input options were used. Finally, blade surface and/or blade thickness coordinates are calculated when not given as input.

Subroutine MESHO

Subroutine MESHO calculates the coordinates of an orthogonal mesh covering the solution region from upstream to downstream of the blade row and from hub to shroud. Subroutine MESHO makes use of three other subroutines - ROTATE, SPLINT, and INRSCT. A flow chart for MESHO is given in figure 6.

Subroutine MESHO begins with input geometry describing the hub and shroud of the flow passage and the numbers of mesh points desired in the horizontal and vertical directions. MESHO initially rotates the hub and shroud geometry through the input angle, ANGROT, if ANGROT is specified, so that the mesh generation is done in the rotated coordinate system.

Then MESHO calculates the horizontal, or streamwise, orthogonals, as follows. If NHUB equals NTIP, lines are extended from each of the input points on the hub to the corresponding points on the shroud. If NHUB and NTIP are unequal, lines are extended from input points on the surface with a larger number of points to an equal number of equally spaced points on the opposite surface. In either case, each of these hub-shroud lines is then divided into MHT equal increments. The resulting coordinates are in the ZRAD and RRAD arrays. The hub-shroud lines and resulting horizontal orthogonals are shown in figure 7.

Vertical orthogonal lines are then constructed one at a time, moving from left to right between each pair of adjacent horizontal orthogonals, proceeding from hub to shroud, as shown in figure 8. Before this process begins, however, the input mesh boundary points on the hub - ZOMIN, ZOMBI, ZOMBO, and ZOMOUT - are calculated in the rotated coordinate system. Rotated orthogonal mesh points (ZOMROT) are then calculated on the hub between these boundary points. The corresponding r-coordinates (ROMROT) and slopes (SLOM) are obtained by a SPLINT call.

The procedure for calculating vertical orthogonal links between the horizontal orthogonals is then begun. This procedure, shown in figure 9 , is analogous to a technique for solving ordinary differential equations known as the improved Euler method or Heun's method (ref. 7). Beginning at known orthogonal mesh points on the lower orthogonal, normals are constructed (such as line (1) in fig. 9) to the upper orthogonal. The intersection coordinates of these lines with the upper orthogonal are obtained with INRSCT calls, and then the slopes of the upper orthogonal at the intersections are obtained by a SPLINT call. Lines such as line (2) in figure 9 are then constructed in such

Figure 6. - Flow chart for MESHO.

Figure 7. - "Horizontal" orthogonals cbtained by spline curve fitting.

Figure 8. - Process for generating "vertical" orthogonal links.

Figure 9. - Calculation procedure for a "vertical" orthogonal link.
a way that they are perpendicular to the tangents to the upper orthogonal at the intersection points and pass through the original starting points on the lower orthogonal. The rotated z-coordinates of the intersections of both sets of lines, (1) and (2), are now known on the upper orthogonal. The desired new orthogonal mesh point z-coordinates (ZOMROT) are the average of these two sets of z-coordinates. The corresponding rotated r-coordinates (ROMROT) and slopes are then calculated by a SPLINT call. Mesh angles (PHI) can now be obtained.

This process of constructing vertical orthogonal links is continued until the shroud is reached by all vertical orthogonals. This completes the generation of the orthogonal mesh. Finally, the unrotated mesh coordinates (ZOM, ROM) are calculated from ZOMROT, ROMROT by a call to ROTATE.

Notice in MESHO that the locations of the upstream and downstream boundaries of the orthogonal mesh at the hub are fixed by the inputs ZOMIN and ZOMOUT (fig. 8). The locations of these boundaries at the tip, however, cannot be given ahead of time and are totally dependent upon the orthogonal mesh generation procedure.

Streamwise distance between vertical orthogonals at the hub is determined by the number of mesh lines requested in the following three regions: MBI mesh lines upstream of the blade from ZOMIN to ZOMBI; MBO - MBI mesh lines from ZOMBI to ZOMBO; and MM - MBO mesh lines downstream of the blade from ZOMBO to ZOMOUT (fig. 8). The number of horizontal orthogonals is MHT +1 , which is the same in all three regions.

Subroutine PRECAL calculates many of the fixed constants that will be needed by the subroutines in the outer iterative loop of MERIDL. Figure 10 gives a flow chart for PRECAL.

First, PRECAL initializes the subroutines for calculating upstream and downstream flow conditions. To do this, it calls LAMDAF, RVTHTA, TIPF, and RHOIPF, entering at the special entry points of these routines used for initialization.

The array of blade-to-blade spacing B (the BTH array) is then initialized to the blade pitch (in radians) at every point on the solution mesh. This array is modified in the blade region later in PRECAL when THIKOM is called.

In the cases where output streamline values (FLFR array) were not read in ($\mathrm{NSL}=0$), PRECAL assigns 11 values to FLFR from 0 to 1.0 , in increments of 0.1. Also, if the given endpoints of FLFR do not equal 0 and 1.0, PRECAL adds these values as endpoints.

Then, PRECAL uses the z - and r-coordinates of the orthogonal mesh (ZOM and ROM), calculated in MESHO to calculate the s - and t-arrays (SOM and TOM) on the orthogonal mesh. Straight-line distances between adjacent points are used in this calculation of s and t, because the correction between arc length and chord length is not significant for adjacent points.

If input hub and shroud station-line arrays were given (NOSTAT >0), these arrays are then put into the rotated reference frame with ROTATE calls. Rotated blade geometry arrays (ZBLROT, RBLROT) are likewise calculated from the input arrays (ZBL, RBL).

If there is no blade row in the solution region ($\mathrm{MBI}=0$), PRECAL then stores dummy values into the ILE and ITE arrays. A large section of code that pertains only to solutions with blades present is then skipped.

In the case where blades are present, the rotated z - and r-coordinate arrays that define the leading and trailing edges of the blades (ZLE, RLE and ZTE, RTE) are then obtained. These are the first and last values for each blade plane from the ZBLROT and RBLROT blade-coordinate arrays. The intersections of these leading and trailing edges with the hub and shroud are also calculated with INRSCT calls.

Various quantities are then calculated on the orthogonal mesh at or near the leading, and then the trailing, edge of the blade. With INRSCT calls, the rotated $z-$ and r-coordinates of intersections of horizontal mesh lines with the blade edges are calculated. Vertical mesh-line numbers (ILE and ITE) of mesh points that lie just within the blade leading and trailing edges are then calculated by comparing the rotated z coordinates of mesh points along the orthogonals with the rotated z-coordinates of intersections of the horizontal mesh lines with the blade edges. The s-coordinates are then calculated for the points where the horizontal mesh lines cross the blade edges.

Figure 10. - Flow chart for PRECAL.

Theta coordinates are then calculated at these same points by means of SPLINT calls. Finally, ROTATE is used to calculate unrotated z - and r-coordinates of intersections of horizontal mesh lines with the blade edges.

Next, arc lengths along the input blade-section mean camber lines and blade blockage are calculated. SPLINE or SPLISL calls are then used to calculate the slope and the second derivative of the mean camber line θ-coordinate as a function of arc length, on the same input sections. The input blade geometry, blockage, arc length, and first and second derivatives are printed in the output.

At this point, PRECAL calls two other subroutines, THETOM and THKOM. The THETOM routine calculates $\partial \theta / \partial s$ and $\partial \theta / \partial \mathrm{t}$ at the orthogonal mesh points. The THIKOM routine calculates the stream-channel thickness arrays at the blade edges (BTHLE and BTHTE) and makes corrections to the BTH array to account for blade thickness.

Then PRECAL reduces certain parameters for the case where a reduced-mass-flow solution will have to be obtained (REDFAC <1.0). Wheel speed (OMEGA) and mass flow (MSFL) are reduced by REDFAC, as well as whirl (LAMIN, LAMOUT) and tangential velocity (VTHIN, VTHOUT). Subroutines LAMDAF and RVTHTA are then reinitialized by LAMNIT and RVTNIT calls.

Finally, PRECAL prints several arrays of debug information, if they are called for. Also, if the flow is incompressible ($\mathrm{GAM}=0$.), the density array is set to the input density given in the variable AR.

Subroutine THETOM

Subroutine THETOM calculates the gradients $\partial \theta / \partial s$ and $\partial \theta / \partial t$ at the orthogonal mesh points that lie within the leading and trailing edges of the blade. This process is thoroughly described in appendix C.

Theta coordinates of the mean blade surface (THBL) are given at the input bladesection points (ZBL, RBL). Gradients of the θ-coordinate are required in the s - and t-directions at the orthogonal mesh points within the blade for use by the NEWRHO subroutine.

Subroutine THETOM makes use of the technique of defining an alternate mesh on which $\partial \theta / \partial \mathrm{z}$ and $\partial \theta / \partial \mathrm{r}$ are obtained. By interpolation, $\partial \theta / \partial \mathrm{z}$ and $\partial \theta / \partial \mathrm{r}$ are then obtained at the required orthogonal mesh points. Finally, $\partial \theta / \partial s$ and $\partial \theta / \partial t$ are calculated from $\partial \theta / \partial \mathbf{z}$ and $\partial \theta / \partial \mathbf{r}$ at these points.

Subroutine THIKOM first calculates the stream-channel thickness arrays BTHLE and BTHTE at the points where the orthogonal mesh lines cross the leading and trailing edges of the blades. The tangential blade thickness TTBL is known at the blade edges where they are crossed by the input blade sections. SPLINT calls are used to interpolate and obtain this thickness where the blade edges are intersected by the horizontal orthogonal mesh lines. These thicknesses are subtracted from the pitch to obtain BTHLE and BTHTE.

Then THIKOM interpolates with LININT on the alternate mesh array TTPC of tangential blade thickness to obtain blade thickness at the points of the rotated orthogonal mesh, ZOMROT and ROMROT. A correction is then made to the BTH array at each mesh point by subtracting this blade thickness.

Subroutine INIT

Subroutine INIT initializes certain arrays in /VARCOM/. This is necessary to start the outer iteration running from COEF to SVPLOT. For the initial iteration, it is assumed that $\rho=\rho^{\prime \prime}$ throughout the passage. All other values are set to zero, except for W_{S}, W_{z}, and $\cos (\alpha-\varphi)$, which are set to values that will avoid division by zero.

Subroutine COEF

Subroutine COEF calculates the coefficients a_{1}, a_{2}, a_{3}, and a_{4} and the constants k_{0} for the finite-difference equations. The finite-difference equation is (A5) or (A7). The coefficients are calculated by the procedure of equation (A8), and the constants are calculated by equation (A9). Within the blade row, the value of the constant k_{0} depends on $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$. This gradient tends to be unstable with iteration, so that damping is usually required between iterations. The damping rate is controlled by the input variable DNEW. Suggestions for choosing proper values for DNEW are given in the INPUT section of part I (ref. 6). For every outer iteration, the maximum and minimum values of $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ and the maximum predicted change in $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ are calculated and printed. When it is indicated by the value of IDEBUG, the coefficients a_{i} and the constants k_{0} will be printed.

Subroutine SOR solves the finite-difference equations (A5) by the method of overrelaxation (ref. 8). Equation (A5) holds at every interior point of the orthogonal mesh where the value of u is initially unknown. Thus, if there are n interior points, we have n equations with n unknowns. Equation (A5) is nonlinear but can be linearized by using values from the previous outer iteration for the nonlinear terms or factors. SOR solves only the linearized equations.

The overrelaxation iteration is the inner iteration; it is optimized by using an optimum overrelaxation factor (ORF). The calculation of ORF is done only the first time that SOR is called. The optimum value for the overrelaxation factor Ω is estimated by using equations (B3) and (B1) of reference 9. At each interior point, $\mathrm{u}_{0}^{\mathrm{m}+1}$ is calculated from the values of u at the neighboring points by

$$
u_{0}^{m+1}=\sum_{i=1}^{4} a_{i} u_{i}
$$

where each u_{i} is the most recently calculated value for the point. To start, $u_{0}^{0}=1$ at the interior points and $u_{0}^{0}=0$ along the hub and shroud. The maximum (LMAX) and minimum (LMIN) values over all the interior mesh points of the ratio u_{0}^{m+1} / u_{0}^{m} are calculated for $\mathrm{m}=1,2,3, \ldots$ until the LMAX and LMIN ratios are close to each other. Then the optimum overrelaxation factor (ORF) is calculated by ORF = $2 /(1+\sqrt{1-\text { LMAX }})$. The theory for calculating ORF is derived in reference 8.

With an optimum value for the overrelaxation factor Ω, the solution to equation (A5) is calculated by overrelaxation by

$$
u_{0}^{m+1}=u_{0}^{m}+\Omega\left(\sum_{i=1}^{4} a_{i} u_{i}+k_{0}-u_{0}^{m}\right)
$$

where each u_{i} culated. When this maximum change is reduced below 10^{-5}, the iteration is stopped, and the current estimate of the stream function is accepted as the solution.

Subroutine LOSSOM interpolates the total pressure loss at the downstream input station and then distributes this loss on the orthogonal mesh as specified by the input. The loss is stored in the PLOSS array at each orthogonal mesh point. The loss is assumed to be zero for incompressible flow. A flow chart for LOSSOM is given in figure 11 .

LOSSOM begins by making reinitialization calls for LAMDAF, RVTHTA, TIPF, and RHOIPF on each iteration if whirl is not given as a function of the stream function. The reinitialization is not needed for the LOSSTV entry point, which is used only for the final transonic velocity-gradient solution. Also, only one vertical mesh line ($\mathrm{IM}=\mathrm{II}$) is calculated at a time from the LOSSTV entry point.

The loss is then calculated as 1.0 minus the ratio of actual to ideal relative total pressure,

$$
\text { Loss }=1-\frac{\mathrm{p}_{0}^{\prime \prime}}{\left(\mathrm{p}_{\mathrm{o}}^{\prime \prime}\right)_{\text {ideal }}}
$$

In one input option, loss is given directly; in the other option, $p_{i}^{\prime}, T T_{i}^{\prime}, \lambda,\left(r V_{\theta}\right)_{0}$, and p_{o}^{\prime} are given and the loss is calculated from Euler's equation by using the relations

$$
\begin{equation*}
\mathrm{T}_{\mathrm{o}}^{\prime}=\mathrm{T}_{i}^{\prime}-\frac{\omega\left[\lambda-\left(\mathrm{r} \mathrm{~V}_{\theta}\right)_{o}\right]}{\mathrm{c}_{\mathrm{p}}} \tag{1}
\end{equation*}
$$

and

$$
\frac{p_{o}^{\prime \prime}}{\left(p_{o}^{\prime \prime}\right)_{\text {ideal }}}=\frac{p_{o}^{\prime}}{\left(p_{o}^{\prime}\right)_{\text {ideal }}}=\frac{p_{o}^{\prime}}{p_{i}^{\prime}} \frac{p_{i}^{\prime}}{\left(p_{o}^{\prime}\right)_{\text {ideal }}}=\frac{p_{o}^{\prime}}{p_{i}^{\prime}}\left(\frac{T_{i}^{\prime}}{T_{0}^{\prime}}\right)^{\gamma /(\gamma-1)}
$$

If the loss is calculated, it is then printed; and if a negative loss is calculated, a warning message is printed.

At this point, SPLINT is called to calculate the spline-fit curve for full downstream loss as a function of stream function from hub to shroud. Then SPLINT is called through the SPLENT entry point to get the full downstream loss corresponding to the stream function for each orthogonal mesh point.

The actual loss to be applied at each mesh point (a percentage of the full down-

Figure 11. - Flow chart for LOSSOM.
stream value) is calculated in one of several ways. The most common situation occur when blades are present and there is a linear streamwise loss distribution (NLOSS $=0$). In this case, loss is distributed linearly within the blades from zero loss at the leading edge to full loss at the trailing edge. Full loss is also used from the trailing edge to the downstream boundary.

In other situations where there are no blades or a streamwise loss distribution is given as input, or both, some additional arrays are calculated on the first iteration. In these cases, the s-distances (SOMOUT array) from the upstream boundary to the downstream input station along each horizontal mesh line are calculated. If there are no blades, the s-distances (SOMIN array) from the upstream boundary to the upstream input station are also calculated.

For the case where blades are present and a streamwise distribution of loss within the blade row is given as input, the loss is distributed within the blades according to the values in the input PERLOS array. A linear distribution of loss is applied downstream of the blade from the final value of PERLOS at the trailing edge to full loss at the downstream input station. Full loss is used from there to the downstream solution boundary.

In the case where no blades are present, loss is distributed between the upstream and downstream input stations, either linearly or according to specified input distribution in the PERLOS array. Full loss is then used from the downstream input station to the downstream solution boundary.

Subroutine NEWRHO

Subroutine NEWRHO calculates the velocity magnitude and components, as well as the density at each point of the orthogonal mesh. Figure 12 is a flow chart for NEWRHO.

The main function of NEWRHO is to calculate the partial derivatives of t.e stream function in the s - and t-directions. These partials are used to calculate the velocity components. These components, together with either the blade shape or the specified whirl, determine the relative velocity magnitude. With the relative velocity known, the density can be calculated. Subroutine NEWRHO calculates ξ and ζ for the next iteration.

The first major loop calculates W_{t}. First, SPLINE is called to calculate $\partial u / \partial s$ along horizontal mesh lines. Then W_{t} is calculated by equation (G11) of part I.

The final major loop calculates $\mathrm{W}_{\mathrm{s}}, \mathrm{W}_{\theta}, \mathrm{V}_{\theta}, \mathrm{W}, \rho, \xi$, and ζ at every mesh point. The first inner loop stores values of t-distances and the stream function u in temporary arrays. Then SPLINE is called to calculate $\partial u / \partial t$. The second inner loop performs

Figure 12. - Flow chart for NEWRHO.
further calculations. Equation (G10) of part I is used to calculate W_{S}. Within the blade row, W_{θ} is calculated from $W_{s}, W_{t}, \partial \theta / \partial \mathrm{s}$, and $\partial \theta / \partial \mathrm{t}$. Since

$$
\begin{gathered}
W_{\theta}=W_{m} \tan \beta \\
\tan \beta=r \frac{d \theta}{d m}=r\left(\frac{\partial \theta}{\partial s} \frac{d s}{d m}+\frac{\partial \theta}{\partial t} \frac{d t}{d m}\right) \\
\frac{d s}{d m}=\frac{W_{s}}{W_{m}}
\end{gathered}
$$

$$
\frac{\mathrm{dt}}{\mathrm{dm}}=\frac{\mathrm{w}_{\mathrm{t}}}{\mathrm{w}_{\mathrm{m}}}
$$

we have

$$
\mathrm{W}_{\theta}=\mathrm{r}\left(\mathrm{w}_{\mathrm{s}} \frac{\partial \theta}{\partial \mathrm{~s}}+\mathrm{W}_{\mathrm{t}} \frac{\partial \theta}{\partial \mathrm{t}}\right)
$$

within the blade row. Outside the blade row,

$$
W_{\theta}=\left\{\begin{array}{l}
\frac{\lambda}{r}-\omega r \quad \text { upstream of blade } \\
\frac{\left(r V_{\theta}\right)_{0}}{r}-\omega r \quad \text { downstream of blade }
\end{array}\right.
$$

Then V_{θ} and W are calculated by

$$
\begin{gathered}
\mathrm{V}_{\theta}=\mathrm{W}_{\theta}+\omega \mathrm{r} \\
\mathrm{~W}=\sqrt{\mathrm{w}_{\theta}^{2}+\mathrm{W}_{\mathrm{s}}^{2}+\mathrm{W}_{\mathrm{t}}^{2}}
\end{gathered}
$$

The relative stagnation pressure $\mathrm{p}^{\prime \prime}$ is calculated by

$$
\begin{equation*}
\mathrm{p}^{\prime \prime}=\rho_{\mathrm{i}}^{\prime} \mathrm{RT}_{\mathrm{i}}^{\prime}\left(\frac{\mathrm{T}^{\prime \prime}}{\mathrm{T}_{\mathrm{i}}^{\prime}}\right)^{\gamma /(\gamma-1)}\left(1-\frac{\mathrm{p}_{\mathrm{ideal}}^{\prime \prime}-\mathrm{p}^{\prime \prime}}{\mathrm{p}_{\mathrm{i}}^{\prime \prime}}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{T^{\prime \prime}}{T_{i}^{\prime}}=1-\frac{2 \omega \lambda-(\omega r)^{2}}{2 c_{p} T_{i}^{\prime}} \tag{3}
\end{equation*}
$$

Equation (3) is the same as equation (D5) of part I with $W=0$. The density ρ is calculated by

$$
\rho=\rho_{\mathrm{i}}^{\prime}\left(\frac{\mathrm{T}}{\mathrm{~T}}\right)^{1 /(\gamma-1)}\left(1-\frac{\left.\mathrm{p}_{\mathrm{i}}^{\prime \prime}\right)^{\prime}{ }^{\prime}-\mathrm{p}^{\prime \prime}}{\mathrm{p}_{\text {ideal }}^{\prime}}\right)
$$

where T / T_{i}^{\prime} is calculated by equation (D5) of part I. This completes the second inner loop to statement 30. Then SLOPES is called to calculate $\partial T^{\prime \prime} / \partial t$ and $\partial p^{\prime \prime} / \partial t$. This gives all the quantities necessary for the final inner loop to calculate ξ and ζ from equations (A2) and (A3) of part I.

After all calculations are done, the maximum and average relative change in velocity are printed. Also, if the solution is converged on velocity, the print control variables are set to 1 whenever a positive value is specified as input. This results in output being printed for each item asked for after convergence.

There are also two error messages for NEWRHO in case the velocity at some point becomes too large or if the upstream whirl is too large. Suggestions for correcting input are given in the section Error Messages in part I.

Subroutine OUTPUT

The OUTPUT subroutine calculates and prints all the major output data from MERIDL. A flow chart for OUTPUT is shown in figure 13. Depending upon the wishes of the user, OUTPUT has the potential for printing output on three separate sets of points. These points are illustrated in figure 14. Output may be obtained (1) at the orthogonal mesh points, (2) along streamlines where they are crossed by vertical orthogonal mesh lines, and (3) along streamlines where they are crossed by userdesignated hub-shroud station lines. A detailed description of the output in each case is given in part I under Printed Output.

The printing of output is controlled by the iteration counter ITER and the input variables IMESH, ISLINE, and ISTATL. Because of the large volumes of output possible, it is only given at the locations requested by these variables and when ITER is an integer multiple of any of these variables.

No matter what the values of IMESH, ISLINE, and ISTATL, data are calculated at the orthogonal mesh points for every iteration. (Whether or not it is printed depends upon IMESH.) Output along streamlines and on station lines is then interpolated from the calculated data at the orthogonal mesh points if the values of ISLINE or ISTATL indicate that the user desires these outputs at the current iteration. Output along streamlines is also calculated if it is needed for plotting (controlled by IPLOT) or if it is needed for calculating the input to the TSONIC program (controlled by ITSON).

The first sections of the OUTPUT routine calculate data on the orthogonal mesh.

Figure 13. - Flow chart for OUTPUT.

Figure 14. - Location of three major types of output.

At the main entry to this routine, $\mathrm{W}_{\mathrm{s}}, \mathrm{W}_{\mathrm{t}}$, and W_{θ} are known from NEWRHO; and the other velocity components and flow angles are calculated as follows:

$$
\begin{gathered}
\mathrm{W}_{\mathrm{m}}=\sqrt{\mathrm{W}_{\mathrm{s}}^{2}+\mathrm{W}_{\mathrm{t}}^{2}} \\
\sin (\alpha-\varphi)=\frac{\mathrm{W}_{\mathrm{t}}}{\mathrm{~W}_{\mathrm{m}}} \\
\cos (\alpha-\varphi)=\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{~W}_{\mathrm{m}}} \\
\mathrm{~W}_{\mathrm{z}}=\mathrm{W}_{\mathrm{s}} \cos \varphi-\mathrm{W}_{\mathrm{t}} \sin \varphi \\
\mathrm{~W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{t}} \cos \varphi+\mathrm{W}_{\mathrm{s}} \sin \varphi \\
\alpha=\tan -1\left(\frac{\mathrm{~W}_{\mathrm{r}}}{\mathrm{~W}_{\mathrm{z}}}\right) \\
\beta=\tan ^{-1}\left(\frac{\mathrm{~W}_{\theta}}{\mathrm{W}_{\mathrm{m}}}\right)
\end{gathered}
$$

This coding is followed by an entry point, TOUTPT, which is used only after TVELCY has been called to obtain transonic velocities (see the block diagram, fig. 2, when REDFAC <1.0). From this entry point, the velocity components are calculated somewhat differently since W has been recalculated by TVELCY, as well as β upstream and downstream of the blade. The angle α is assumed to be the same as in the final subsonic iteration. With W, β, and α known, the velocity components are now calculated as follows:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m}}=\mathrm{W} \cos \beta \\
& \mathrm{~W}_{\theta}=\mathrm{W} \sin \beta \\
& \mathrm{~W}_{\mathrm{z}}=\mathrm{W}_{\mathrm{m}} \cos \alpha \\
& \mathrm{~W}_{\mathrm{r}}=\mathrm{W}_{\mathrm{m}} \sin \alpha
\end{aligned}
$$

$$
\mathrm{v}_{\theta}=\mathrm{w}_{\theta}+\omega \mathbf{r}
$$

Subroutine BLDVEL is then called to calculate estimated blade surface velocities. If there are any choked vertical mesh lines in the transonic solution, the "choked" message is stored where required.

At this point in the program, all velocity components and flow angles have been calculated, regardless of the entry point. With velocity components and flow angles known, streamline curvature is obtained from

$$
\frac{1}{\mathrm{r}_{\mathrm{c}}}=\frac{\mathrm{d} \alpha}{\mathrm{dm}}=\frac{\partial \alpha}{\partial \mathrm{s}} \cos (\alpha-\varphi)+\frac{\partial \alpha}{\partial \mathrm{t}} \sin (\alpha-\varphi)
$$

Then the critical velocity ratio is obtained from

$$
\begin{gathered}
\mathrm{T}^{\prime \prime}=\mathrm{T}_{\mathrm{i}}^{\prime}-\frac{2 \omega \lambda-(\omega \mathrm{r})^{2}}{2 \mathrm{c}_{\mathrm{p}}} \\
\frac{\mathrm{~W}}{\mathrm{~W}_{\mathrm{cr}}}=\frac{\mathrm{W}}{\sqrt{\frac{2 \gamma \mathrm{R}}{\gamma+1} \mathrm{~T}^{\prime \prime}}}
\end{gathered}
$$

If no output is to be printed, no further calculations are made by OUTPUT.
Now, a check is made to see if the suction- and pressure-surface velocities have to be exchanged because of the orientation of the turbine or compressor. At this point, all desired information has been calculated on the orthogonal mesh and is printed if ITER is a multiple of IMESH.

The next section of the OUTPUT routine calculates output on the streamlines where they are intersected by vertical orthogonal mesh lines. This output is calculated only if ITER is a multiple of ISLINE, IPLOT, or ITSON. First, streamline z - and r coordinates are calculated. The m-coordinates are then calculated from these, using the upstream mesh boundary along a streamline to correspond to $\mathrm{m}=0$. Interpolations are then made by using LININT and the orthogonal mesh data to obtain $\mathrm{W}_{\mathrm{z}}, \mathrm{W}_{\mathrm{r}}, \mathrm{W}_{\theta}$, $\mathrm{W} / \mathrm{W}_{\mathrm{cr}}$, and $1 / \mathrm{r}_{\mathrm{c}}$. By using variations of the preceding formulas, $\mathrm{W}_{\mathrm{m}}, \alpha, \beta$, and W are calculated from these values. Subroutine ILETE is called to establish which mesh points along streamlines are between the blade leading and trailing edges. Subroutine LININT is then used to obtain W_{l} and $W_{t r}$ at these points. Finally, this output is printed if ITER is a multiple of ISLINE.

The next section of the OUTPUT routine calculates output on user-designated hubshroud station lines where they intersect the streamlines. This output is calculated
and printed in the hub-shroud direction, in contrast to the throughflow direction of the previous two sets of output. It is only calculated if ITER is a multiple of ISTATL. The z - and r -coordinates of the station lines are calculated first. All 'regular" station lines are straight lines (not necessarily radial) from the hub to the shroud. "Blade edge" station lines are those whose hub and tip coordinates correspond to the intersections of the blade leading and trailing edges with the hub and tip. Coordinates along these station lines will follow these edges even when the edges are curved. After the $\mathrm{z}-$ and r -coordinates are established, m -coordinates are calculated from these, again using the upstream mesh boundary as the reference for $\mathrm{m}=0$.

For a station line on the leading or trailing edge, free-stream values are extrapolated along mesh lines to the leading or trailing edge and then interpolated along the leading or trailing edge at the specified output streamlines. The quantities W_{z}, W_{r}, and β are extrapolated and interpolated in this manner, and thus W_{m} and W_{θ} are calculated. On the other hand for a station line that is not on the leading or trailing edge, interpolations from the orthogonal mesh are made by LININT to obtain W_{z}, W_{r}, and W_{θ}, and then W_{m} and β are calculated. For all station lines, the meridional streamline curvature and the fractional total pressure loss are then interpolated from the orthogonal mesh by LININT. Now α and W are calculated by using the equations given previously. LININT is then called to interpolate W_{l} and $W_{t r}$ for station lines that lie within the blade. Finally, the remaining station-line output $\mathrm{V}_{\theta}, \mathrm{V}, \beta_{\mathrm{abs}}, \mathrm{T}$ '", $\mathrm{W} / \mathrm{W}_{\mathrm{cr}}, \mathrm{p}^{\prime \prime}, \mathrm{T}^{\prime}, \mathrm{p}^{\prime}, \mathrm{T}, \rho$, and p is calculated at each point. The station-line output is then printed.

The final small section of OUTPUT then restores W_{l} and $W_{t r}$ to the proper arrays if they were interchanged to correspond to suction and pressure surfaces for printout, and any "choked" messages are removed.

Subroutine BLDVEL

Subroutine BLDVEL calculates blade surface velocities and densities and F_{t}. First, $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ and $\partial\left(\mathrm{rV}_{\theta}\right) / \partial s$ are calculated by using the SLOPES subroutine. Then, $\left[\mathrm{d}\left(\mathrm{rV}_{\theta}\right) / \mathrm{dm}\right] \mathrm{B} \cos \beta$ is calculated, and W_{l} and W_{tr} are calculated by equation (G4) of part I (ref. 6). From this, ρ_{l} and $\rho_{\text {tr }}$ are calculated by equations (D4) and (D5) of part I. The average density ρ_{av} is calculated by Simpson's rule

$$
\rho_{\mathrm{av}}=\frac{\rho_{l}+4 \rho_{\mathrm{mid}}+\rho_{\mathrm{tr}}}{6}
$$

This quantity is used in NEWRHO in the next iteration. Then, the predicted value of F_{t} is calculated by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{W}}{\mathrm{~B}} \frac{\partial \theta}{\partial \mathrm{t}} \mathrm{DFDM} \tag{4}
\end{equation*}
$$

where

$$
\mathrm{DFDM}=-\mathrm{B} \cos \beta \frac{\mathrm{~d}\left(\mathrm{rV}_{\theta}\right)}{\mathrm{dm}}
$$

Equation (4) is obtained from equations (B25) and (G2) of part I. The new value for F_{t} is calculated from the old F_{t} and the predicted value of F_{t} by using the input damping factor FNEW, as explained in the section INPUT of part I.

At the end, the minimum and maximum predicted values of F_{t} and the maximum change in F_{t} are calculated and printed. If debug output is requested, the arrays that change each iteration are printed.

Subroutine ILETE

The points where streamlines are intersected by the vertical orthogonal mesh lines are the streamline mesh points. These are, in general, different from the orthogonal mesh points. Subroutine ILETE calculates two integer arrays, ILS and ITS. They contain the numbers of the vertical mesh lines at the first intersection of a streamline with a vertical mesh line inside the blade region at the leading and trailing edges of the blades. These points are illustrated in figure 15. The ILS and ITS arrays are used in OUTPUT in the calculation of blade surface velocities along streamlines.

Figure 15. - Location of ILS, ITS points by ILETE.

Subroutine INDEV recalculates $\partial \theta / \partial s$ to allow for incidence and deviation. This means that the midchannel flow surface differs from the blade mean camber line near the leading and trailing edges, so as to match the upstream and downstream flow angles. Figure 16 shows the procedure as applied to the leading edge. A similar correction is made at the trailing edge. A correction for blockage is made so as to satisfy both continuity and tangential momentum at blade leading and trailing edges.

The calculation starts at the hub and proceeds to successive horizontal mesh lines up to the tip. Both incidence and deviation corrections are calculated for each horizontal mesh line.

First, the blade mean camber angle $\beta_{b, l e}$ at the leading edge is calculated. Then the flow angle corrected for blockage at the leading edge β_{bf} is calculated from equation (F1) of part I. The corrections to $\partial \theta / \partial s$ are made so that the difference between β_{bf} and β_{b} varies linearly from the blade leading edge to the distance specified in appendix F of part I. This distance is DISTLE. The interpolation to calculate β_{bf} (BETALJ) at each orthogonal mesh point near the leading edge is done next, followed by the calculation of $(\partial \theta / \partial s)_{b f}(D T H D S(I, J))$ from equation (F2) of part I. The calculation of blocked and unblocked incidence angles completes the leading-edge calculation. The trailing-edge deviation calculation is done in the same manner as the incidence calculation. Finally, the incidence and deviation angles are printed if there was any output requested for the current iteration.

No correction is made to $\partial \theta / \partial t$ since it is nearly normal to the flow.

Figure 16. - Corrected midchannel flow surface. The corrected midchannel flow surface is used to calculate (de/dshof. Incidence $=\beta_{b f}-\beta_{b}$.

Subroutine TSONIN generates and prints the data required as input to the TSONIC blade-to-blade analysis program (ref. 3). Subroutine TSONIN is only called when ITER is a multiple of ITSON. The data generated are printed for each of the stream surfaces from hub to shroud, using 1 percent of the mass flow about a streamline to define a stream surface or flow channel.

A complete description of the TSONIC input is given in the TSONIC report (ref. 3). The output generated in TSONIN can in general be directly submitted to the TSONIC program. However, the output should be inspected before doing so, because slight changes are sometimes required, depending upon how the user wishes to run the TSONIC program. These changes are described in part I.

Along each output streamline, TSONIN obtains the upstream and downstream flow conditions $T_{i}^{\prime}, \rho_{\mathrm{i}}^{\prime}, \lambda$, and $\left(\mathrm{rV}_{\theta}\right)_{\mathrm{o}}$ with calls to TIPF, RHOIPF, LAMDAF, and RVTHTA. LININT calls are then used to obtain all the variables required to calculate blade-toblade streamsheet thickness b , as well as loss distribution along the streamsheet. The thickness b is obtained from

$$
\left(\rho \mathrm{W}_{\mathrm{m}}\right)_{\mathrm{av}}=\rho_{\mathrm{av}} \mathrm{~W}_{\mathrm{m}}+\frac{\rho_{l}-\rho_{\mathrm{tr}}}{12} \cos \beta\left(\mathrm{~W}_{l}-\mathrm{W}_{\mathrm{tr}}\right)
$$

which is derived from equation (G9) of part I, and

$$
\mathrm{b}=\frac{\mathrm{w}}{\left(\rho \mathrm{~W}_{\mathrm{m}}\right)_{\mathrm{av}} \mathrm{rB}}
$$

Then TSONIN calculates the blade surface geometry on blade-to-blade stream surfaces by a method described in reference 10 . This process is complicated by the fact that leading- and trailing-edge radii are not used by MERIDL and have to be generated by TSONIN within the blade surface envelope. The origin for θ-coordinates for TSONIC is at the center of the leading-edge radius. Since the leading-edge radius is not known at the outset, θ-coordinates are initially calculated from the intersection of the mean camber line with the leading edge (appendix E). After the leading-edge radius has been determined, $\Delta \theta$, the difference in θ from the intersection of the mean camber line with the leading edge to the center of the leading-edge radius, is calculated and subtracted from all calculated blade surface θ-coordinates. The technique used to generate the blade leading- and trailing-edge radii and calculate $\Delta \theta$ are described in appendix E .

Subroutine TSONIN calculates the blade surface coordinates for each point where the
meridional streamline is intersected by a vertical orthogonal mesh line, as explained in appendix E. If the blade envelope has no thickness at the leading or trailing edge, TSONIN gives it a leading-edge diameter equal to one-tenth of 1 percent of meridional chord. Any surface points too close to the leading- or trailing-edge points are then omitted from the set of surface coordinates.

Then TSONIN calculates leading- and trailing-edge radii within the surface envelope as described in appendix E. The points of tangency of the radii with blade surfaces, and the tangency angles, are also obtained. The tangency points are then made the first and last points on each of the surfaces, and points outside of these or too close to these are excluded. All θ-coordinates are then shifted to TSONIC section origin (see appendix E). Finally, TSONIN calculates r-coordinates for each surface point, surface slopes, second derivatives, and curvatures and prints this information for both blade surfaces. This process is repeated for each streamline.

Subroutine TVELCY

Subroutine TVELCY calculates the full-mass-flow, transonic solution when REDFAC is less than 1. The velocity-gradient equation given in appendix A of part I is used to obtain the solution. Figure 17 is a flow chart for TVELCY.

The first step in the program is to restore the full value of mass flow, rotational speed, and inlet and outlet whirl. The subroutines LAMDAF and RVTHTA must then be reinitialized.

Next, $\partial \mathrm{W}_{\mathrm{m}} / \partial \mathrm{m}$ and $\partial \mathrm{W}_{\theta} / \partial \mathrm{m}$ are calculated. These are calculated from the partials with respect to s and t by using the angle $\alpha-\varphi$. Since the calculations are based on the reduced-mass-flow values of W_{m} and W_{θ}, the result must be divided by REDFAC to obtain the full-mass-flow values.

After statement 55, variables are initialized for the main loop on vertical mesh lines. To start, $\mathrm{I}=0$ and $\mathrm{INCR}=1$.

Statement 60 is the beginning of the main loop that ends at statement 290. The main loop starts at the upstream boundary and solves the velocity-gradient equation for each vertical mesh line. If there are blades, the procedure is to move downstream to each of the vertical mesh lines in sequence until the blade leading edge is reached. At this time, LINDV is called to make incidence corrections to β for a short distance beyond the leading edge, as described in appendix F of part I. After all leading-edge corrections to β are made, there is a jump to the downstream boundary. Then the procedure is to move upstream to the blade trailing edge, at which time TINDV is called to make deviation corrections to β. The program then proceeds upstream until a solution has been obtained for every vertical mesh line.

Fiqure 17. - Flow chart for TVELCY.

Flgure 17. - Continued.

Figure 17. - Concluded.

At statement 60, INCR is added to I to determine the next vertical mesh line. INCR is 1 at the start. After all incidence corrections to β are made, INCR is changed to -1 . Then the solution will be found at the downstream boundary ($\mathrm{I}=\mathrm{MM}$) and I will decrease.

The initial estimate of W on the hub (WHUB) is set equal to the reduced-mass-flow value for W divided by REDFAC. The first inner DO loop to statement 80 calculates coefficients a, b, and d for the velocity-gradient equation (A7) of part I. These coefficients are calculated by equations (A8) to (A10) of part I. The initial arrays for whirl, temperature, and density are calculated at the same time. In this same loop a check is made to see if LINDV or TINDV should be called to make incidence or deviation corrections to β. After the DO loop to statement 80 , $\mathbb{N} C R$ will be set to -1 if all the incidence corrections have been made.

The outer iteration for a given vertical mesh line begins at statement 90 . The first inner loop here calculates coefficient c for the velocity-gradient equation from equation (A9) or (A10) of part I, as well as $2 \omega \lambda-(\omega r)^{2}, 2 c_{p} T_{i}^{\prime}$, and $\cos (\alpha-\varphi) \mathrm{rB}$ at each mesh point. The next DO loop to statement 130 calculates coefficients e and from equation (A11) of part I.

At statement 140 , IND is set to 1 to indicate the beginning of the inner iteration procedure. Each inner iteration then begins at statement 150. First, initial values are set. The numerical solution of the velocity-gradient equation and the mass-flow integration are done in the DO 200 loop. Trial values of WHUB are used in the velocity-gradient equation, until the solution obtained results in the input mass flow across the vertical mesh line. The first iteration will use the value calculated by the second statement after statement 60, Later iterations will use estimated values calculated by CONTIN. Once WHUB is specified, the numerical solution to the velocity-gradient equation is calculated by the Heun method (ref. 7). The equations used in the Heun method for this case are

where (dW) ${ }_{\mathrm{j}}$ (eq. (A7) of part I) is evaluated at the $\mathrm{j}^{\text {th }}$ mesh point from the hub with $W=W_{j}$ and where $(d W)_{j+1}^{*}$ is evaluated at the $j+1$ mesh point with $W=W_{j+1}^{*}$. At the same time that the solution of the velocity-gradient equation is being calculated, the mass-flow integration is also being calculated by trapezoidal integration of

$$
\mathrm{w}=\int_{0}^{\mathrm{t}} \mathrm{tip}_{\rho \mathrm{W} \cos \beta \cos (\alpha-\varphi) \mathrm{rB} d t}
$$

The inner iteration ends when the velocity-gradient solution gives the correct mass flow in this equation (or if the choking mass flow is less than the input mass flow). If the correct mass flow is not obtained in 100 iterations, an error message and debug information are printed, and the program goes on to the next vertical line.

After the end of the inner iteration, at statement 250, the new stream-function values are compared with the previous outer iteration; if there is a change of more than 0.01 percent, the inner iteration will be repeated (set REPEAT $=$. TRUE.). Then the

PLOSS array is updated by calling LOSSTV, and arrays of $T_{i}^{\prime}, \rho_{\mathrm{i}}^{\prime}, \lambda$, and $\left(\mathrm{rV}_{\theta}\right)_{o}$ are all adjusted to new values. At this point there will be another outer iteration if the solution has not converged and there are less than 1000 total iterations. If there are over 1000 total iterations for any vertical mesh line, the calculation for that mesh line is terminated. After the termination of the outer iteration, error messages are printed if there is choking or if a converged solution cannot be found. If $\mathrm{INCR}=1$, the program moves downstream to the next vertical line. At the appropriate point the procedure shifts to the downstream boundary and moves upstream until all vertical mesh lines have had a solution. This may involve redoing some vertical mesh lines, since the deviation region could extend to a vertical mesh line that crossed the incidence region.

After all mesh lines have been solved, a final choking message is printed if any vertical mesh line was choked. Control is then returned to the main program.

Subroutine LINDV

Subroutine LINDV recalculates β to allow for incidence and deviation in a manner similar to INDEV. LINDV is called only for the velocity-gradient solution, so that corrections are made to β instead of to $\partial \theta / \partial \mathrm{s}$. Also a density correction is made to satisfy flow continuity at the blade leading and trailing edges (appendix F). Otherwise, the calculation is similar to that in INDEV. The first part of the subroutine does the incidence calculation only. The deviation calculation is done from the TINDV entry point. The final entry point is PINDV and is used only for printing previously calculated incidence and deviation angles.

Functions LAMDAF, RVTHTA, TIPF, and RHOIPF
These four routines are similar. Their purpose is to calculate one of the freestream quantities as a function of stream function. Interpolation is by means of a splinefit curve. All these subroutines have an alternate entry point for initialization. The initializing call results in a SPLINE call to calculate the coefficients for the spline fit. If the free-stream quantities are not given as input as a function of stream function (i. e., if LSFR = 1), the stream function is first estimated and later iterated to be adjusted to the correct stream-function value. These adjustments to the stream function (SFIN and SFOUT) are done in LAMDAF and RVTHTA.

The input argument for all these subroutines is $S F$, which is the value of the stream function.

Subroutine CONTIN is a curve-fitting routine. On each call the calling programs must furnish a point on the curve, and then CONTIN will specify the next value of the abscissa. The calling program must then calculate the ordinate corresponding to this abscissa. After three calls, a parabola is fitted through the three points, and this is used to estimate the abscissa where the desired ordinate will be obtained. XEST is the value of the abscissa, and YCALC is the value of the ordinate on each call. XEST is changed by CONTIN to return the next value of the abscissa to the calling program.

Figure 18 is a flow chart for CONTIN. Flow through the program is controlled by the value of $\mathbb{I N D}$. For each new case, IND is set to 1 by the calling program. Then CONTIN changes the value of IND on later calls. The significance of IND on the various calls is given in table IV. XDEL is the maximum increment for the change in XEST. On the first two calls, usually XEST is increased by XDEL each time. The exception is when YCALC is greater than YGIV and the subsonic solution is desired ($\mathrm{JZ}=1$). Then XEST is decreased by XDEL each time.

On the third and later calls, there are always three points so that a parabola can be fitted through the three points. The parabolic coefficients are calculated by subroutine PABC. Anytime that XEST falls outside the range of previously calculated values, a shift is made until XEST is within the desired range.

When the parabolic curve is close to a straight line, equation (G13) is used instead of the quadratic formula. The reason for this is explained in appendix G.

Figure 19 illustrates the procedure for a typical case. On the first call to CONTIN, IND $=1$ and YCALC corresponding to XEST is furnished by the calling program. Suppose that YCALC is less than YGIV and that the subsonic solution is requested. Then XEST becomes XORIG, and YCALC becomes Y(1) in figure 19. XORIG will be the origin for the curve fitting so that $X(1)=0$ in this case. Next CONTIN increases XEST by XDEL. Then a return is made to the calling program to obtain the YCALC that corresponds to this value of XEST. On the second call to CONTIN, the new value of YCALC becomes Y(2) and XEST - XORIG becomes X(2), as indicated in figure 19. Subroutine CONTIN increases XEST by XDEL again, and a return is made to obtain YCALC for the third time. On the third call to CONTIN, the new value of YCALC becomes Y(3) and XEST - XORIG becomes X(3). This gives the three points shown in figure 19. The curve shown represents the true curve of YCALC against XEST.

At this time, a check is made to determine whether the solution is within the range of the three points obtained. If not, additional points are calculated, and the three points are shifted as required. For example, in figure 19 a shift to the right is required. In this case, point 2 would become point 1 , point 3 would become point 2 , and XEST would be increased by XDEL. This procedure is repeated until either the solution

Figure 18. - Flow chart for CONTIN. $R=$ Return.

TABLE IV. - SIGNIFICANCE OF IND IN VARIOUS
CALLS TO CONTIN

Value of IND	Call	Significance
1	First	First call
2	Second	$J Z=1, Y C A L C$ less than WTEL, or $\mathrm{JZ}=2$
3	Second	$\mathrm{JZ}=1$ and YCALC greater than WTFL
4	Third	IND = 2 on second call
	Fourth or later	Right shift made so that XEST will be within range of stored previous values
5	Third	IND $=3$ on second call
	Fourth or later	Left shift made so that XEST will be within range of stored previous values
6	Fourth or later	Subsonic or supersonic solution predicted by quadratic fit and within range of solutions obtained
7	Fourth or later	Choked flow predicted by quadratic fit and within range of solutions obtained
10	Never	Choked solution found
11	Never	100 calls made but no solution found

Figure 19. - Starting procedure for CONIIN.

Figure 20. - Approximating curve with a parabola.
or the maximum point is within the range of the three points obtained.
Since the curve represents mass flow as a function of the velocity at some point, the curve will be of the type shown. The maximum point on the curve is the choking mass flow. This type of curve is approximated well by a quadratic curve. After it has been determined that a solution is within the range of the three points (i.e., $Y(1) \leq Y G I V \leq Y(3)$ for a subsonic solution), a parabola is fitted through the three points. This situation is illustrated in figure 20. The next value of XEST is determined by the point where the parabolic curve intersects the YGIV line. Then the return is made to obtain YCALC. If YCALC is sufficiently close to YGIV, this will be the solution. Otherwise, CONTIN is called again, XEST - XORIG becomes X(2), YCALC becomes $Y(2)$, and the procedure is repeated (as many as 100 times) until YCALC is sufficiently close to YGIV.

The detailed operation of subroutine CONTIN is given in figure 18 and table IV. The calling statement for CONTIN is

> CALL CONTIN(XEST, YCALC, IND, JZ, YGIV, XDEL)

The input variables for CONTIN are
XEST last value of X used to calculate YCALC
YCALC value of Y corresponding to XEST; calling program calculates YCALC
IND controls sequence of calculation in CONTIN; calling program sets IND =1 to indicate a new solution

$$
J Z=1, \text { subsonic solution }
$$

$$
\mathrm{JZ}=2 \text {, supersonic solution }
$$

YGIV value of Y desired for solution
XDEL maximum permissible change in XEST between iterations
The output variables for CONTIN are
XEST value of X to be used to calculate the next value for YCALC
IND used to control next iteration in CONTIN and to indicate when a choked solution is found or when no solution can be found (table IV)

The internal variables for CONTIN are
ACB2 $\quad a(c-y) / b^{2}$
APA coefficient a of X^{2} in quadratic fit
BPB coefficient b of X in quadratic fit
CPC constant c in quadratic fit
DISCR discriminant, $\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}$
NCALL number of times CONTIN has been called for a given case
$X \quad$ array of three values of XEST - XORIG
XORIG value of XEST on initial call, modified by right or left shifts
XOSHFT amount of change of XORIG
$\mathrm{Y} \quad$ array of three values of YCALC

Subroutine PABC

Subroutine PABC calculates coefficients A, B, and C of the parabola $y=A x^{2}$ $+B x+C$ passing through three given x, y points.

Subroutine INRSCT

Subroutine INRSCT calculates the coordinates of the point of intersection of two spline curves lying on a common plane that are known to cross within the range of the end points of each. In a general $x-y$ coordinate system the first spline curve is sup-

$$
y=f(x)
$$

and the second as a function of y

$$
x=g(y)
$$

The solution technique consists of systematically constructing pairs of tangent slopes to the two curves and locating the points of intersection of the two slopes. Each intersection point provides new coordinates from which new slopes and an intersection are calculated. These intersections quickly converge to the intersection point of the original curves.

This technique is illustrated in figure 21. The original trial x-coordinate is always midway between the end points for $f(x)$. This value is x_{1}, from which y_{1} and slope s_{1} are calculated by SPLINT. The calculated y_{1} is then used as input to SPLINT for $g(y)$. From this SPLINT call, x_{2} and s_{2} are calculated, as shown in figure 21. The intersection point of the two slopes is calculated from

$$
\begin{gathered}
x_{c}=x_{2}+\frac{s_{1} s_{2}\left(x_{2}-x_{1}\right)}{1-s_{1} s_{2}} \\
y_{c}=y_{1}+\frac{s_{1}\left(x_{2}-x_{1}\right)}{1-s_{1} s_{2}}
\end{gathered}
$$

Figure 21. - Procedure for calculating intersections in INRSCT.

Then x_{c} becomes x_{1} for the following iteration of this process.
To check convergence of this process, the distance is calculated between each pair of intersection points x_{c}, y_{c} for adjacent iterations. When this distance becomes less than the tolerance, an exit is made from INRSCT. Failing to meet the tolerance in 20 iterations causes an error message to be printed.

The calling statement for subroutine INRSCT is
CALL INRSCT(XCURV1, YCURV1, N1, XCURV2, YCURV2, N2, XCROSS, YCROSS)

The input arguments for INRSCT are

XCURV1(N1) x-coordinates for $f(x)$
YCURV1(N1) $\quad y$-coordinates for $y=f(x)$
XCURV2(N2) $\quad x$-coordinates for $x=g(y)$
YCURV2(N2) y-coordinates for $g(y)$
N1 number of spline points for $f(x)$
N2 number of spline points for $g(y)$
The output arguments for INRSCT are
XCROSS x -coordinate of intersection of two input curves
YCROSS y-coordinate of intersection of two input curves

Subroutine LININT

Subroutine LININT is a general-purpose subroutine for two-dimensional interpolation. It is called many times by several subroutines.

Subroutine LININT locates the point x_{0}, y_{o} in a two-dimensional mesh with coordinates stored in the x - and y-arrays. Then the value of z_{o} at x_{0}, y_{o} is interpolated from the z-array values corresponding to the x - and y-arrays. Figure 22 is a flow chart for LININT.

A typical mesh is shown in figure 23. The mesh need not be orthogonal; but it must consist of two sets of lines, with one set running more or less horizontally (never vertically) and the other set running more or less vertically (never horizontally). The number of vertical lines is NX, and I denotes the number of the line (running from 1 at the left to NX at the right). The number of horizontal lines is NY, and J denotes the number of the line (running from 1 at the bottom to NY to the top). The lines between mesh points are assumed to be straight lines.

Figure 22 - Flow chart for LININT.

Figure 23. - Typical mesh for LININT.

At the outset, some value of I and J must be specified. Any value within the prescribed limits is legal. On repeated calls to LININT, usually the value from the preceding call is used. The values of I and J desired are the numbers shown at the bottom of figure 23. In this figure, $I=4$ and $J=3$. The procedure is to check to see on which side of each of the four boundary lines the point lies. The variables ABOVE and RIGHT are used to indicate the position. ABOVE $=-1$ indicates that the point is below the bottom line; $A B O V E=0$, that the point is between the bottom and top lines; and $\mathrm{ABOVE}=1$, that the point is above the top line. Similarly, RIGHT $=-1$ indicates that the point is to the left of the left line; RIGHT $=0$, that the point is between the left and right lines; and RIGHT = 1, that the point is to the right of the right line. Thus, when ABOVE $=$ RIGHT $=0$, we have the correct mesh region. If not, I and/or J are incremented by plus or minus 1 to move to the proper adjacent region. In this way, eventually the proper region will be found. If the point lies entirely outside the region defined, the nearest mesh region to the point x_{o}, y_{o} will be found. In this case, extrapolation is required, and the variable EXTRAP is used to indicate the direction of extrapolation. EXTRAP is dimensioned 2. EXTRAP(1) corresponds to ABOVE, and EXTRAP(2) to RIGHT.

After the proper mesh-point region is found, interpolation between the function values at the four corners is used. The method is described in appendix G. First, the quadratic coefficients are calculated by equation (G8) or (G10). Then, the quadratic equation (G7) or (G9) is solved either by the quadratic formula or by the binomial expansion, equation (G13), as explained in appendix G.

The same coding is used to calculate both f_{x} and f_{y}. After these values are obtained, equation (G14) is used to calculate the interpolated value of z_{o}.

The calling statement for LININT is

The input variables for LININT are
$X \quad$ two-dimensional array of x -coordinates of mesh points
Y two-dimensional array of y-coordinates of mesh points
Z two-dimensional array of z-function values at mesh points
NX number of mesh points in x-direction
NY number of mesh points in y-direction
NDIMX dimension of $\mathrm{X}-, \mathrm{Y}$-, and Z -arrays in x -direction
NDIMY dimension of $\mathrm{X}-, \mathrm{Y}-$, and Z -arrays in y -direction
X0 x -coordinate of interpolation point
Y0 $\quad \mathrm{y}$-coordinate of interpolation point
I

J
initial guess at number of vertical mesh line to the left of (X0, Y0)
initial guess at number of horizontal mesh line below (X0, Y0)

The output variables for LININT are

Z 0 interpolated value of Z at (X0, Y0)
I number of vertical mesh line to left of (X0, Y0)
J number of horizontal mesh line below (X0, Y0)

The internal variables for LININT are

ABOVE integer, 1 indicates that ($\mathrm{X} 0, \mathrm{Y} 0$) is above the current I, J region, 0 within, and -1 below
ACB2 $\mathrm{ac} / \mathrm{b}^{2}$ (eq. (G13))
CASE used to indicate whether F1 or F2 is the proper solution
DISCR discriminant, $\mathrm{b}^{2}-4 \mathrm{ac}$ (eq. (G7) or (G9))
EXTRAP array to indicate extrapolation either horizontally or vertically
FA -b/2a (eq. (G7) or (G9))
FB $\quad \sqrt{\left(\mathrm{b}^{2}-4 \mathrm{ac}\right)} / 2 \mathrm{a}$ (eq. (G7) or (G9))
FF $\quad f_{x}$ or f_{y}

FX	f_{x}
FY	f_{y}
F1	$\left(-b-\sqrt{b^{2}-4 a c}\right) / 2 a$
F2	$\left(-b+\sqrt{b^{2}-4 a c}\right) / 2 \mathrm{a}$
LJEX	indicator, first or second pass through coding to calculate f_{x} or f_{y}
IN	new value for 1
JN	new value for J
QA	a (eq. (G8) or (G10))
QB	b (eq. (G8) or (G10))
QC	c (eq. (G8) or (G10))
RIGHT	integer, 1 indicates that $\mathrm{X} 0, \mathrm{Y} 0$ is to the right of the current I, J region, 0 within, and -1 left
X01	x_{01} (see appendix G for notation)
X02	x_{02} or x_{03}
X13	x_{13} or x_{12}
X21	x_{21} or x_{31}
X42	x_{42} or x_{43}
Y01	y_{01}
Y02	y_{02} or y_{03}
Y13	y_{13} or y_{12}
Y21	y_{21} or y_{31}
Y42	y_{42} or y_{43}

Subroutine ROTATE

Subroutine ROTATE is a general-purpose subroutine to rotate coordinates of oneor two-dimensional arrays of x - and y -coordinates. The rotated coordinates calculated by ROTATE may be placed in the original input arrays, or they may be placed in new arrays.

The calling statement for ROTATE is

CALL ROTATE(ANGROT, X, Y, NX, NY, NDIMX, NDIMY, XROT, YROT)

The input variables for ROTATE are

ANGROT angle of rotation, rad
X
one- or two-dimensional array of x-coordinates
Y one- or two-dimensional array of y-coordinates
NX number of points to be rotated for a one-dimensional array; number of points denoted by first subscript for a two-dimensional array
NY number of points denoted by second subscript for a two-dimensional array ($\mathrm{NY}=1$ for a one-dimensional array)
NDIMX dimension for first subscript of $X, Y, X R O T$, and YROT arrays
NDIMY dimension for second subscript of $X, Y, X R O T$, and YROT arrays
The output variables for ROTATE are

XROT one- or two-dimensional array of rotated x-coordinates
YROT one- or two-dimensional array of rotated y-coordinates

Subroutine SPLINE

Subroutine SPLINE calculates the first and second derivatives of a cubic spline curve at the spline points. SPLINE solves a tridiagonal matrix given in reference 11 to obtain the coefficients for the piecewise cubic polynomial function giving the splinefit curve. The SPLINE routine is based on the end-point condition that the second derivative at either end point is one-half that of the next spline point.

The calling statement for SPLINE is

> CALL SPLINE(X, Y, N, SLOPE, EM)

The input variables for SPLINE are
X array of ordinates
Y array of function values corresponding to X
N number of X and Y values given

SLOPE array of first derivatives

EM array of second derivatives

Subroutine SPLINT

Subroutine SPLINT is used for interpolation, including interpolation of first and second derivatives. The interpolation is based on the cubic spline curve, with the same end conditions as SPLINE. The alternate entry point, SPLENT, allows for interpolation at a new set of points based on the spline curve of the previous SPLINT call.

The calling statement for SPLINT is
CALL SPLINT(X, Y, N, Z, MAX, YINT, DYDX, D2 YDX2)
The input variables for SPLINT are
$\mathbf{X} \quad$ array of spline-point ordinates
\mathbf{Y} array of function values at spline points
$\mathrm{N} \quad$ number of X and Y values given
Z array of ordinates at which interpolated values and derivatives are desired
MAX number of Z values given

The output variables for SPLINT are
YINT array of interpolated function values
DYDX array of interpolated derivatives
D2YDX2 array of interpolated second derivatives

Subroutine SLOPES

Subroutine SLOPES calculates the first derivatives (slopes) based on a parabolic fit through three adjacent points. This subroutine is used when the input points may not be sufficiently smooth for the SPLINE subroutine.

The calling statement for subroutine SLOPES is

> CALL SLOPES(X, Y, N, SLOPE)

The input arguments for SLOPES are
$\mathrm{X} \quad$ array of ordinates
$Y \quad$ array of function values corresponding to \mathbf{X}
$\mathrm{N} \quad$ number of X and Y values given

The output variable for SLOPES is

SLOPE array of first derivatives

Subroutines SPLISL and SPINSL

Subroutines SPLISL and SPINSL are the same as SPLINE and SPLINT, respectively, except that the end condition is a specified end-point slope. The input and output variables are the same, but with two added input variables, Y1P and YNP, which are the slopes at the first and last spline points.

Plotting Subroutines

There are four subroutines that do the plotting for MERDL: INPLOT, MEPLOT, SLPLOT, and SVPLOT. In addition, another subroutine, PTBDRY, is called by MEPLOT to calculate hub and shroud, and leading- and trailing-edge boundaries. The plotting routines use the NASA Lewis in-house microfilm plotting package described in reference 12. These five routines are self-contained and can easily be removed from MERIDL without disturbing the rest of the calculations. On the other hand, if the user wants to obtain plots, he can code his own plotting routines by referring to the program listing which follows and consulting reference 12 to determine the functions of the various plotting calls.

MAIN DICTIONARY

The main dictionary for MERIDL is given in this section. It contains the definitions of variables for all the principal subroutines (from INPUT to RHOIPF, see table of contents) of the program. The remaining subroutines (CONTIN or SPINSL) are of a general-purpose nature and have their own local dictionaries included in their descriptions.

All important variables are included in the main dictionary. These include all COMMON variables, any dimensioned variables in the subroutines, and all important undimensioned variables. Only locally used undimensioned variables of minor importance are not included.

The names of all dimensioned variables are followed by the variables that determine what the dimensions should be. For example, the three-dimensional array A is dimensioned A(4, 100, 101) in the /VARCOM/ COMMON but is listed as A(4, MM, MHTP1) in the dictionary. This enables the user to easily reduce the dimension of A (and reduce the program's variable storage) if he knows maximum limits to MM and MHTP1 for his application. See the section STORAGE REQUIREMENTS for further explanation.

The dictionary also indicates the COMMON blocks or the subroutines in which each variable is used. Variables in COMMON are used in many subroutines. The COMMON blocks are listed for each subroutine in table I.

MAIN DICTIONARY

Variable name	COMMON block	Subroutine	Description and comments
A (4, MM, MHTP 1)	VARCOM		Coefficients of finite-difference equation (A7) for stream function, u
A0		COEF	a_{0} (eq. (A8)
AAA(MM or		MESHO	Dummy array used in SPLINE and
MHTP1, etc.)		THIK OM	SPLINT calls
		NEWRHO	
		OUTPUT	
		TSONIN	
		LAMDAF	
		RVTHTA	
ALPHA(MM, MHTP 1)	VARCOM		α at orthogonal mesh points, rad
ALPHLE		INDEV	$\alpha_{l e}, \mathrm{rad}$
		LINDV	
ALPHSP (MM)		TSONIN	α at TSONIC input points
ALPHTE		INDEV LINDV	$\alpha_{\text {te }}$, rad
ALPSL(MM, NSL)	SLCOM		α at points along streamlines where they cross vertical mesh lines, rad

Variable name	COMMON block	Subroutine	Description and comments
ALPST(NSL)		OUTPUT	α at points along station lines where they cross streamlines, rad
ALVERT(MHTP 1)		OUTPUT	Temporary storage for values of α from ALPHA array on vertical mesh lines, rad
ANG(NPPP)		INPUT	Angles from meridional plane of blade-section mean camber lines at blade-section input points, rad
ANGR(NPPC, NBLPC)		THETOM	Angles with respect to radius of hubshroud lines of alternate mesh (fig. 28), rad
ANGROT	INPUTT		Input angle of rotation, deg
ANGT1(NBLPL)		THETOM	```Values from ANGZ array along constant-percent-chord line, rad```
ANGT2 (NBLPC)		THETOM	```Values for ANGZ array along constant-percent-chord line, rad```
ANGZ (NPPC, NBLPC)		THETOM	Angles with respect to z -axis of input blade sections (fig. 28), rad
AR	INPUTT		Input gas constant, R, J/(kg) (K)
ARTEM		TSONIN	Temporary AR, J/(kg) (K)
ATVEL(MHTP1)		TVELCY	Coefficients, a, of velocity-gradient equation ((A7), part I) at mesh points along vertical mesh lines
BBB (MM or		MESHO	Dummy array used in SPLINE and
MHTP1, etc.)		THIKOM	SPLINT calls
		OUTPUT	
		TSONIN	
		LAMDAF	
BEABST (NSL)		OUTPUT	$\beta_{\text {abs }}$ at points where station lines cross streamlines, deg

Variable name	COMMON block	Subroutine	Description and comments
BESP (MM)		TSONIN	Input for TSONIC (ref. 3), m
BETA(MM, MHTP1)	VARCOM		β at orthogonal mesh points, rad
BETABF		INDEV LINDV	β_{bf} within blade, rad
BETAFS		$\begin{aligned} & \text { INDEV } \\ & \text { LINDV } \end{aligned}$	β_{fs} outside of blade, rad
BETAIJ		OUTPUT INDEV	β at orthogonal mesh point, rad
BETALE (NBLPL)	INPUTT		Input blade angles at leading edge, deg
BETATE(NBLPL)	INPUTT		Input blade angles at trailing edge, deg
BETII		TSONIN	Input for TSONIC (ref. 3), deg
BETI2		TSONIN	Input for TSONL (ref. 3), deg
BETO1		TSONIN	Input for TSONIC (ref. 3), deg
BETO2		TSONIN	Input for TSONIC (ref. 3), deg
BETSL (MM, NSL)	SLCOM		β at points along streamlines where they cross vertical mesh lines, rad
BETST(NSL)		OUTPUT	β at points along station lines where they cross streamlines, rad
BFACTR		TSONIN	Multiplying factor for BESP and ZMSFL
BLDCRD		INDEV LINDV	True blade chord along a horizontal mesh line, m
BLDEV(MHTP1)		LINDV	Deviation angle, corrected for blockage, where a horizontal mesh line intersects trailing edge, $\left(\beta_{\mathrm{bf}}-\beta_{\mathrm{b}}\right)_{\mathrm{te}}$, deg
BLDEV		INDEV	Deviation angle, corrected for blockage, where a horizontal mesh line

Variable name	COMMON block	Subroutine	Description and comments
		.	intersects trailing edge, $\left(\beta_{\mathrm{bf}}-\beta_{\mathrm{b}}\right)_{\mathrm{te}}, \mathrm{deg}$
BLINC(MHTP1)		LINDV	Incidence angle, corrected for blockage, where a horizontal mesh line intersects leading edge, $\left(\beta_{b f}-\beta_{b}\right)_{l e}$, deg
BLINC		INDEV	Incidence angle, corrected for blockage, where a horizontal mesh line intersects leading edge, $\left(\beta_{b f}-\beta_{b}\right)_{l e}$, deg
BLNK		OUTPUT	Blank word used in some plot titles
BLOCK (NPPP)		PRECAL	Fractional blockage along input blade sections
BTBFLE(MHTP 1)	INDCOM	\because	$\beta_{b f}$ where a horizontal mesh line intersects leading edge, rad
BTBFTE(MHTP1)	INDCOM	\because	$\beta_{b f}$ where a horizontal mesh line intersects trailing edge, rad
BTBLLE(MHTP1)		LINDV	β_{b} where a horizontal mesh line intersects leading edge, rad
BTBLTE(MHTP1)		LINDV	β_{b} where a horizontal mesh line intersects trailing edge, rad
BTFSEX(MHTP1)		OUTPUT	β_{fs} extrapolated to leading or trailing edge of blade, rad
BTH (MM, MHTP 1)	CALCON		B at orthogonal mesh points, rad
BTHLE(MHTP1)	INDCOM̈	"	$\mathrm{B}_{\text {le }}$, rad
BTHSL		TSONIN	B along a streamline, rad
BTHTE(MHTP1)	INDCOM	\because	$\mathrm{B}_{\text {te }}, \mathrm{rad}$
BTVEL(MHTP1)		TVELCY	Coefficients, b, of velocity-gradient equation ((A7), part I) at mesh points along vertical mesh lines
C1		COEF	c_{1} (eq. (A8))

Variable name	COMMON block	Subroutine	Description and comments
C2		COEF	c_{2} (eq. (A8))
CAMP(MM, MHTP1)	VARCOM		$\cos (\alpha-\varphi)$ at orthogonal mesh points
CBETA		TVELCY	$\cos \beta$
CHANGE		SOR	Change in value of stream function at a mesh point during an overrelaxation iteration
CHFL		TVELCY	Choking mass flow for a vertical orthogonal mesh line, $\mathrm{kg} / \mathrm{sec}$
CHFRMS		TVELCY	Ratio of minimum choking mass flow to input mass flow
CHLIM		TVELCY	Minimum choking mass flow per passage, $\mathrm{kg} / \mathrm{sec}$
CHORD		TSONIN	Length of blade section along streamline (m-direction) (input to TSONIC, ref. 3), m
COSAB		THETOM	Cosine of ANGZ + ANGR
CP	CALCON		$c_{p}, \mathrm{~J} /(\mathrm{kg})(\mathrm{K})$
CPHI(MM, MHTP1)	CALCON		$\cos \varphi$ at orthogonal mesh points
CPTIP(MHTP1)		TVELCY	$2 c_{p} T_{i}^{\prime}$ along vertical mesh lines, (N) (m) $/ \mathrm{kg}$
CPTIP		LINDV	$2 c_{p} T,(N)(m) / k g$
CTVEL(MHTP 1)		TVELCY	Coefficients, c, of velocity-gradient equation ((A7), part I) at mesh points along vertical mesh lines
CURV(MM, MHTP1)	VARCOM		$1 / r_{c}$ at orthogonal mesh points, $1 / m$
CURV1(MM)		TSONIN	Curvature of upper blade surface at TSONIC input points, $1 / \mathrm{m}$
CURV2 (MM)		TSONIN	Curvature of lower blade surface at TSONIC input points, $1 / \mathrm{m}$

Variable name	COMMON block	Subroutine	Description and comments
CURVSL(MM, NSL)	SLCOM		$1 / r_{c}$ at points along streamlines where they cross vertical orthogonal mesh lines, $1 / m$
CURVST(NSL)		OUTPUT	$\begin{aligned} & 1 / r_{c} \text { at points along station lines } \\ & \text { where they cross streamlines, } 1 / \mathrm{m} \end{aligned}$
D1		COEF	d_{1} (eq. (A8))
D2		COEF	d_{2} (eq. (A8))
D2BDM2 (MM)		TSONIN	$\mathrm{d}^{2} \mathrm{~B} / \mathrm{dm}^{2}, 1 / \mathrm{m}$
D2TDM1(MM)		TSONIN	Second derivative of upper blade surface at TSONIC input points, $\mathrm{rad} / \mathrm{m}^{2}$
D2TDM2 (MM)		TSONIN	Second derivative of lower blade sur- face at TSONIC input points, $\mathrm{rad} / \mathrm{m}^{2}$
D2YDX2(NPPP or MHTP1)		PRECAL	Second derivative of θ along input blade sections, $\mathrm{rad} / \mathrm{m}^{2}$
D2YDX2 (NPPC or NBLPC)		THETOM	Dummy second derivative in SPLINT calls
DALDS(MM)		OUTPUT	$\partial \alpha / \partial s$ at mesh points along horizontal mesh lines, $\mathrm{rad} / \mathrm{m}$
DALDT(MM, MHTP 1)		OUTPUT	$\partial \alpha / \partial t$ at orthogonal mesh points, $\mathrm{rad} / \mathrm{m}$
DALVER(MHTP 1)		OUTPUT	$\partial \alpha / \partial t$ at mesh points along vertical mesh lines, $\mathrm{rad} / \mathrm{m}$
DAMP		TSONIN	Damping factor on iteration for leading- or trailing-edge radii (appendix E)
DBDM (MM)		TSONIN	$d B / d m$
DBL		TSONIN	One-half of tangential blade thickness (in rad) at intersection of a streamline with blade leading or trailing edge

Variable name	COMMON block	Subroutine	Description and comments
DFDS(MM)		BLDVEL	$\partial\left(\mathrm{r}_{\theta}\right) / \partial \mathrm{s}$ at mesh points along horizontal mesh lines, $\mathrm{m} / \mathrm{sec}$
DFDT(MM, MHTP1)		BLDVEL	$\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
DFVERT(MHTP1)		BLDVEL	$\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ at mesh points along vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
DIP (NBLPL)		PRECAL	Distance up leading or trailing edge of blade, m
DISEOM (MHTP 1)		THIKOM	Distance up leading or trailing edge of blade, m
DIST(NPPP)		INP UT	Distances on meridional plane along lines connecting input blade-section points (ZBL, RBL), m
DIST(NBLPL)		THIKOM	Distances on meridional plane along lines connecting input blade-section points (ZBL, RBL), m
DISTLE		INDEV LINDV	Distance along horizontal mesh line from leading edge of blade for which a blade shape correction is made for incidence, m
DISTTE		INDEV LINDV	Distance along horizontal mesh line from trailing edge of blade for which a blade shape correction is made for deviation, m
DLAM		TVELCY	Change in rV_{θ} between points on vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
DLDU (MM, MHTP 1)	VARCOM		Gradients of $r V_{\theta}$ with respect to stream function, $\mathrm{d}\left(\mathrm{rV}_{\theta}\right) / \mathrm{du}$, at orthogonal mesh points, $\mathrm{m}^{2} / \mathrm{sec}$ (This array is only defined and used in regions outside of blade row.)
DMAX		COEF	Maximum calculated value of $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ at any mesh point, $\mathrm{m} / \mathrm{sec}$

Variable name

Variable name	$\begin{gathered} \text { COMMON } \\ \text { block } \end{gathered}$	Subroutine	Description and comments
DMIN		COEF	Minimum calculated value of $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ at any mesh point, $\mathrm{m} / \mathrm{sec}$
DNEW	INPUTT		Input damping factor on calculation of $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ within blade row from outer iteration to outer iteration
DOM(MHTP1)		PRECAL	Distance up leading or trailing edge of blade, m
DPDT(MHTP 1)		NEWRHO	$\partial p^{\prime \prime} / \partial t$ at mesh points along vertical mesh lines, $\mathrm{N} / \mathrm{m}^{3}$
DPREL		TVELCY	Change in $\mathrm{p}^{\prime \prime}$ between points on vertical mesh lines, $\mathrm{N} / \mathrm{m}^{2}$
DRHOSL		TSONIN	Difference in density between suction and pressure surfaces along a streamline, $\mathrm{kg} / \mathrm{m}^{3}$
DTAN1		TSONIN	$\mathrm{d} \theta / \mathrm{dm}$ at upper blade surface leading- or trailing-edge tangency point, $\mathrm{rad} / \mathrm{m}$
DTAN2		TSONIN	$d \theta / d m$ at lower blade surface leading- or trailing-edge tangency point, rad/m
DTDM1 (MM)		TSONIN	$\mathrm{d} \theta / \mathrm{dm}$ on upper blade surface at TSONIC input points, $\mathrm{rad} / \mathrm{m}$
DTDM2 (MM)		TSONIN	$\mathrm{d} \theta / \mathrm{dm}$ on lower blade surface at TSONIC input points, $\mathrm{rad} / \mathrm{m}$
DTDRLE		INDEV LINDV	$(\partial \theta / \partial \mathrm{r}) \mathrm{le}^{\text {e }}$, $\mathrm{rad} / \mathrm{m}$
DTDROM		THETOM	$\partial \theta / \partial \mathrm{r}$ on orthogonal mesh, rad/m
DTDRTE		INDEV LINDV	$(\partial \theta / \partial \mathrm{r})_{\mathrm{te}}$, $\mathrm{rad} / \mathrm{m}$
DTDS(NPPP)		InPUT	2日/ $/ \mathrm{s}, \mathrm{rad} / \mathrm{m}$
DTDT(MHTP1)		NEWRHO	$\mathrm{dT}^{\prime \prime} / \mathrm{dt}$ along vertical mesh lines, K / m

Variable name	COMMON block	Subroutine	Description and comments
DTDZLE		INDEV LINDV	${ }^{(\partial \theta / \partial z)} \mathrm{le}^{\text {, } \mathrm{rad} / \mathrm{m}}$
DTDZOM		THETOM	$\partial \theta / \partial \mathrm{z}$ on orthogonal mesh, $\mathrm{rad} / \mathrm{m}$
DTDZTE		INDEV, LINDV	$(\partial \theta / \partial \mathrm{z})_{\text {te }}, \mathrm{rad} / \mathrm{m}$
DTHDR(NPPC, NBLPC)	INDCOM		$\partial \theta / \partial \mathrm{r}$ on alternate blade mesh (fig. 27), $\mathrm{rad} / \mathrm{m}$
DTHDS(MM, MHTP 1)	CALCON		$\partial \theta / \partial s$ at orthogonal mesh points, $\mathrm{rad} / \mathrm{m}$
DTHDSL		INPUT PRECAL THETOM	$\mathrm{d} \theta / \mathrm{ds}$ at blade leading edge, $\mathrm{rad} / \mathrm{m}$
DTHDSP (NPPC, NBLPC)		THETOM	$\partial \theta / \partial s^{\prime}$ on alternate blade mesh (fig. 27), rad/m
DTHDST		INPUT PRECAL THETOM	$\mathrm{d} \theta / \mathrm{ds}$ at blade trailing edge, $\mathrm{rad} / \mathrm{m}$
DTHDT(MM, MHTP 1)	CALCON		$\partial \theta / \partial t$ at orthogonal mesh points, $\mathrm{rad} / \mathrm{m}$
DTHDTP (NPPC, NBLPC)		THETOM	$\partial \theta / \partial t^{\prime}$ on alternate blade mesh (fig. 27), rad/m
DTHDZ (NPPC, NBLPC)	INDCOM		$\partial \theta / \partial z$ on alternate blade mesh (fig. 27), $\mathrm{rad} / \mathrm{m}$
DTHEOM (MHTP1)		THIKOM	Blade thickness along leading or trailing edge, rad
DTIP		TVELCY	Change in T_{i}^{\prime} between points on vertical mesh lines, K
DTPP		TVELCY	Change in $T^{\prime \prime}$ between points on vertical mesh lines, K
DTST1(NBLPL)		THETOM	$\mathrm{d} \theta / \mathrm{ds}$ ' at input blade planes along 5-percent-chord lines, $\mathrm{rad} / \mathrm{m}$

Variable name	COMMON block	Subroutine	Description and comments
DTST2 (NBLPC)		THETOM	$d g / d s^{\prime}$ at alternate mesh points along 5-percent-chord lines, $\mathrm{rad} / \mathrm{m}$
DTVEL(MHTP 1)		TVELCY	Coefficients, d, of velocity-gradient equation ((A7), part I) at mesh points along vertical mesh lines
DUDS(MM)		NEWRHO	$\partial u / \partial s$ along horizontal mesh lines, $1 / m$
DUDT(MHTP 1)		NEWRHO	$\partial u / \partial t$ at mesh points along vertical mesh lines, $1 / \mathrm{m}$
DVTEMP		COEF	Updated estimate of $d\left(r V_{\theta}\right) / d t$ at a mesh point, $\mathrm{m} / \mathrm{sec}$
DVTHDT(MM, MHTP1)		COEF	$\mathrm{d}\left(\mathrm{rV}_{\theta}\right) / \mathrm{dt}$ at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
DWMDM (MM, MHTP 1)		TVELCY	$\mathrm{dW}_{\mathrm{m}} / \mathrm{dm}$ at orthogonal mesh points, $1 / \mathrm{sec}$
DWMDS(MM)		TVELCY	$\partial W_{m} / \partial s$ along horizontal mesh lines, $1 / \mathrm{sec}$
DWMDT(MM, MHTP1)		TVELCY	$\partial W_{m} / \partial t$ at orthogonal mesh points, $1 / \mathrm{sec}$
DWMVER(MHTP1)		TVELCY	$\partial W_{m} / \partial t$ along vertical mesh lines, $1 / \mathrm{sec}$
DWTDM(MM, MHTP1)		TVELCY	$\mathrm{dW}{ }_{\theta} / \mathrm{dm}$ at orthogonal mesh points, 1/sec
DWTDS(MM)		TVELCY	$\partial W_{\theta} / \partial s$ along horizontal mesh lines, $1 / \mathrm{sec}$
DWTDT(MM, MHTP 1)		TVELCY	$\partial \mathrm{W}_{\theta} / \partial \mathrm{t}$ at orthogonal mesh points, $1 / \mathrm{sec}$
DWTVER(MHTP 1)		TVELCY	$\partial W_{\theta} \partial t$ at mesh points along vertical mesh lines, $1 / \mathrm{sec}$
$\begin{aligned} & \text { DYDX(MHTP1 } \\ & \text { or NPPP, etc.) } \end{aligned}$		INPUT PRECAL THETOM	Temporary storage for derivatives of SPLINE or SPLINT calls

Variable name	COMMON block	Subroutine	Description and comments
EM(NIN or NOUT)		TIPF RHOIPF LAMDAF RVTHTA	Second derivatives of spline-fit curves
ERR		NEWRHO	Relative change in W at a mesh point
ERROR		SOR	Maximum absolute value of change in u at any point for an overrelaxation iteration
ETVEL(MHTP 1)		TVELCY	Coefficients, e, of velocity-gradient equation ((A7), part I) at mesh points along vertical mesh lines
EXFRAC		OUTPUT LINDV	Extrapolation fraction at leading and trailing edges
EXPON	CALCON		$1 /(\gamma-1)$
EXTRAP		INDEV	Distance along horizontal mesh line from blade leading or trailing edge to first mesh point outside of blade, m
FCHANG		BLDVEL	Maximum value of change in F_{t} at any mesh point between any two outer iterations
FLFR(NSL)	INPUTT		Input values of stream function designating streamlines along which output is to be printed
FMAX		BLDVEL	Maximum new predicted value of $\mathbf{F}_{\mathbf{t}}$ at any mesh point during an outer iteration
FMIN		BLDVEL	Minimum new predicted value of F_{t} at any mesh point during an outer iteration
FNEW	INPUTT	-	Input damping factor on calculation of F_{t} from outer iteration to outer iteration

Variable name	COMMON block	Subroutine	Description and comments
FST(MM, MHTP 1)		BLDVEL	rV_{θ} at orthogonal mesh points, $\mathrm{m}^{2} / \mathrm{sec}$
FT(MM, MHTP 1)	VARCOM		F_{t} at orthogonal mesh points (eq. (A4)), $\mathrm{m} / \mathrm{sec}^{2}$
FTT		BLDVEL	Predicted value of F_{t} at a mesh point
FTVEL (MHTP 1)		TVELCY	Coefficients, f, of velocity-gradient equation ((A7), part I) at mesh points along vertical mesh lines
FVERT(MHTP1)		BLDVEL	Temporary storage for values of $r V_{\theta}$ from FST array on vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
GAM	INPUTT		Input, γ
H1		COEF	h_{1} (eq. (A8), fig. 24)
H2		COEF	h_{2} (eq. (A8), fig. 24)
H3		COEF	h_{3} (eq. (A8), fig. 24)
H4		COEF	h_{4} (eq. (A8), fig. 24)
IARG		LINDV	Integer indicator for mesh line where deviation correction begins
ICARDS		TSONIN	Integer control on writing of TSONIC card image input to a file
ICOUNT		SOR NEWRHO TSONIN TVELCY LINDV	Integer internal iteration counter
IDEBUG	INPUTT		Integer input indicating multiple of outer iterations at which debug output is printed
IEND	Blank		Integer indicator of stage of solution to which program has proceeded:

Variable name	COMMON block	Subroutine	Description and comments
		:	IEND $=-1$, prior to convergence of subsonic solution IEND $=0$, between convergence of subsonic solution and beginning of transonic solution IEND $=1$, during first transonic solution with all velocities smaller than choking-mass-flow solution IEND $=2$, during second transonic solution with all velocities greater than choking-mass-flow solution
ILE(MHTP1)	CALCON		Vertical mesh line numbers of first mesh point inside blade region at leading edge
ILOS		LOSSOM	Integer control on print indicating negative loss
ILS(NSL)	SLCOM	'	Vertical mesh line number of first intersection of a streamline with a vertical mesh line inside blade region at leading edge
IMAX		TVELCY	Integer indicator of final vertical mesh line where an incidence correction is made
IMESH	INPUTT		Integer input indicating the multiple of outer iterations at which major output is printed for orthogonal mesh
INCR		TVELCY	Integer increment for loop on vertical mesh lines
IND		TVELCY	Integer that indicates solution procedure in CONTIN
IPLOT	INPUTT		Integer input indicating multiple of outer iterations at which major output is plotted

Variable name	COMMON block	Subroutine	Description and comments
IP RNT		INDEV	Integer indicator controlling output
IREVRS		TVELCY	Integer indicator at end of forward iteration
ISLINE	INPUTT		Integer input indicating multiple of outer iterations at which major output is printed along streamlines
ISTATL	INPUTT		Integer input indicating multiple of outer iterations at which major output is printed along station lines
ISUPER	INPUTT		Integer input indicating whether only subsonic, or both subsonic and supersonic, solutions of velocitygradient equation are to be calculated
ITE(MHTP1)	CALCON		Vertical mesh line numbers of last mesh point inside blade region at trailing edge
ITEMIN		TVELCY	Integer indicating smallest value of IARG
ITEMP		TVELCY	Temporary storage for IARG
ITER	Blank		Outer iteration counter, Incremented by 1 at beginning of each outer iteration
ITS(NSL)	SLCOM		Vertical mesh line number of last intersection of a streamline with a vertical mesh line inside blade region at trailing edge
ITSON	INPUTT		Integer input indicating multiple of outer iterations at which information is printed as input for TSONIC program (ref. 3)
JARG		LINDV	Integer indicator for mesh line where incidence correction ends

Variable name	COMMON block	Subroutine	Description and comments
JZ		TVELCY	Integer used to indicate to CONTIN that subsonic ($\mathrm{JZ}=1$) or supersonic $(J Z=2)$ solution is desired
K(MM, MHTP1) (real variable)	VARCOM		k_{0} (eq. (A9)) at orthogonal mesh points
KNEW (real variable)		COEF	Updated value of k_{0} (eq. (A9)) at a mesh point
LAMBDA(MHTP 1) (real variable)		TVELCY	λ for mesh points along vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
LAMBDA (real variable)		NEWRHO OUTPUT	$\lambda, \mathrm{m}^{2} / \mathrm{sec}$
LAMBDO(MHTP1) (real variable)		TVELCY	$\left(\mathrm{rV}_{\theta}\right)$ for mesh points along vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}$
LAMBDO (real variable)		NEWRHO	$\left(r V_{\theta}\right)_{o}, \mathrm{~m}^{2} / \mathrm{sec}$
LAMIN(NIN) (real variable)	INPUTT		Input values of λ at points along line from hub to shroud on which upstream flow conditions are given, $\mathrm{m}^{2} / \mathrm{sec}$
LAMOUT(NOUT) (real variable)	INPUTT		Input values of $\left(\mathrm{rV}_{\theta}\right)$ at points along line from hub to shroud on which downstream flow conditions are given, $\mathrm{m}^{2} / \mathrm{sec}$
LAMVT	INPUTT		Input integer (0 or 1) indicating whether upstream and downstream whirl (0) or tangential velocity (1) is given as input
LBLAD	INPUTT		Input integer (0,1 , or 2) indicating type of blade geometry input
LETEAN	INPUTT		Input integer (0 or 1) indicating whether leading- and trailing-edge blade angles are given

Variable name	COMMON block	Subroutine	Description and comments
LINC		TVELCY LINDV	Integer indicating completion of transonic incidence correction at leading edge
LIPS		TSONIN	Input for TSONIC (ref. 3)
LMAX (real variable)		SOR	Maximum value of RATIO over all mesh points
LMIN (real variable)		SOR	Minimum value of RATIO over all mesh points
LOSOUT(NOUT) (real variable)	INPUTT		Input fraction of absolute total pressure loss, at points along line from hub to shroud on which downstream flow conditions are given
LOSS		TSONIN	Input for TSONIC (ref. 3)
LROT	INPUTT		Input integer (0 or 1) indicating if roration of coordinate system should be used
LRVB		TSONIN	Input for TSONIC (ref. 3)
LSFR	INPUTT		Input integer (0 or 1) indicating whether upstream and downstream flow conditions are input as a function of stream function (0) or radius (1)
LTPL	INPUTT		Input integer (0 or 1) indicating whether downstream total pressure (0) or fractional loss of stagnation pressure (1) is given in input
LWCR		TSONIN	Input for TSONIC (ref. 3)
MARK		OUTPUT	Integers between 1 and 4 indicating whether output station lines are outside blade, within blade, or on leading or trailing edge
MAXFLO (real variable)		TVELCY	Maximum mass flow for which a solution can be obtained for a vertical mesh line, $\mathrm{kg} / \mathrm{sec}$

Variable name
COMMON
block

MBBI		TSONIN	Input for TSONIC (ref. 3)
MBI	INPUTT		Input number of vertical mesh lines from left boundary of orthogonal mesh (ZOMIN) to first point of mesh-size change (ZOMBI)
MBITS		TSONIN	Input for TSONIC (ref. 3)
MBO	INPUTT		Input total number of vertical mesh lines from left boundary of orthogonal mesh (ZOMIN) to point of second mesh-size change (ZOMBO)
MBOTS		TSONIN	Input for TSONIC (ref. 3)
MHT	INPUTT		Input total number of horizontal mesh spaces from hub to shroud of orthogonal mesh; maximum of 100
MHTP1	CALCON		$\mathrm{MHT}+1$
MINFLO (real variable)		TVELCY	Minimum mass flow for which a solution can be obtained for a vertical mesh line, $\mathrm{kg} / \mathrm{sec}$
MM	INPUTT		Input total number of vertical mesh lines from left to right boundaries of orthogonal mesh (ZOMIN to ZOMOUT), maximum of 100
MMM1	CALCON		MM - 1
MMTS		TSONIN	Input for TSONIC (ref. 3)
MSFL (real variable)	INPUTT	* :	Input tota' mass flow through entire circumferential annulus of machine, $\mathrm{kg} / \mathrm{sec}$
MSL(MM, NSL) (real variable)	SLCOM		m -coordinates of points along stream- lines where they cross vertical mesh lines, m (Origin of m -coordinate is upstream boundary of orthogonal mesh.)

Variable name	COMMON block	Subroutine	Description and comments
MST(NSL) (real variable)	.	OUTPUT	m -coordinates of points where station lines cross streamlines, m (Origin of m-coordinates is upstream boundary of orthogonal mesh.)
NADD		TVELCY	Integer number of times WHUB is increased for restart of iteration procedure
NBL	INPUTT		Input number of blades in blade row
NBLPC	INDCOM		Integer number of blade planes in alternate mesh
NBLPL	INPUTT		Number of input blade planes or blade sections on which data (ZBL, RBL, THBL, TNBL, etc.) are given to describe mean flow surface and blade thickness, maximum of 50
NBLPTS		TSONIN	Number of spline points on suction or pressure surface of a blade section
NCHOK		OUTPUT	Integer number of vertical orthogonal mesh lines that are choked in the transonic solution
NCOUNT		TVELCY	Total number of iterations or attempts at satisfying velocity-gradient equation
NHUB	INPUTT		Number of input data points in ZHUB and RHUB arrays, maximum of 50
NIN	INPUTT		Number of input data points in upstream arrays of flow properties (SFIN, RADIN, TIP, PRIP, LAMIN, and VTHIN), maximum of 50
NLOSS	INPUTT		Number of input data points in PERCRD and PERLOS arrays, maximum of 50
NMAX		MESHO	Maximum of either NHUB or NTIP

Variable name	COMMON block	Subroutine	Description and comments
NOSTAT	INPUTT		Input number of hub-shroud stations (located by coordinates in ZHST, RHST, ZTST, and RTST) at which output is desired, maximum of 50
NOUT	INPUTT		Number of input data points in downstream arrays of flow properties (SFOUT, RADOUT, PROP, LOSOUT, LAMOUT, and VTHOUT), maximum of 50
NPPC	INDCOM		Integer number of vertical percentchord lines in alternate mesh
NPPP	INPUTT		Number of input data points per blade section or blade plane in ZBL, RBL, etc., arrays; maximum of 50
NREAD	Blank		Integer number of input read file
NREP		TVELCY	Integer number of repeats on outer iteration loop
NRES		TVELCY	Integer number of restarts of inner iteration for a given vertical orthogonal mesh line
NRSP		TSONIN	Input for TSONIC (ref. 3)
NSL	INPUTT		Input number of streamlines from hub to shroud (designated by values in FLFR) at which output is desired, maximum of 50
NSLTS		TSONIN	Input for TSONIC (ref. 3)
NSPL1		TSONIN	Input for TSONIC (ref. 3)
NSP L2		TSONIN	Input for TSONIC (ref. 3)
NSUB		TVELCY	Integer number of times WHUB is decreased for restart of iteration procedure
NTIP	INPUTT		Number of input data points in ZTIP and RTIP arrays, maximum of 50

COMMON
block
NWRIT, NWRT1,
NWRT2, NWRT3,
NWRT4, NWRT5,
NWRT6, NWRT7

OMEGA INPUTT
OMTEM

Blank
NWRT2, NWRT3, NWRT4, NWRT5, NWRT6, NWRT7

ORF
ORFMAX

ORFMIN

PC
PERCRD(NLOSS)

PERLOS(NLOSS)
PERLS

PHI

PITCH	CALCON
PLOSS(MM, MHTP1)	CALCON

INPUTT

INPUTT

CALCON
PLOSSL(MM)
PLOST(NSL)
PLOSTE
PPPST(NSL)
PPST(NSL)

TSONIN

OUTPUT

LINDV

OUTPUT
OUTPUT

Integer numbers of output write files. Several variables are used so that output can be stored in more than one file.

Input rotational speed, ω, rad/sec
Input for TSONIC (ref. 3), rad/sec
Overrelaxation factor
Current estimate for maximum value of ORF calculated by using LMAX

Current estimate for minimum value of ORF calculated by using LMIN

Fraction of chord from leading edge
Input fraction of chord for PERLOS input

Input fraction of loss
Fraction of loss at an orthogonal mesh point
φ, deg
OUTPUT
$2 \pi / \mathrm{NBL}, \mathrm{rad}$
Fractional loss of relative total pressure at orthogonal mesh points

Fractional loss of relative total pressure along a streamline

PLOSS at a point on a station line
Fractional loss of relative total pressure at blade trailing edge
$p^{\prime \prime}$ along a station line, N / m^{2}
p^{\prime} along a station line, N / m^{2}

Variable name	COMMON block	Subroutine	Description and comments
PREL(MHTP 1)		NEWRHO	$\mathrm{p}^{\prime \prime}$ at mesh points along vertical mesh lines, $\mathrm{N} / \mathrm{m}^{2}$
PREL		TVELCY	$\mathrm{p}^{\prime \prime}, \mathrm{N} / \mathrm{m}^{2}$
PRELN		TVELCY	New $\mathrm{p}^{\prime \prime}, \mathrm{N} / \mathrm{m}^{2}$
P RINP		LOSSOM	$\mathrm{p}_{\mathrm{i}}, \mathrm{N} / \mathrm{m}^{2}$
PRIP (NIN)	INP UTT		Input, p_{i}^{\prime}, at points along line from hub to shroud on which upstream flow conditions are given, $\mathrm{N} / \mathrm{m}^{2}$
PROP(NOUT)	INPUTT		Input, p_{o}^{\prime}, at points along line from hub to shroud on which downstream flow conditions are given, N / m^{2}
PST(NSL)		OUTPUT	p along a station line, $\mathrm{N} / \mathrm{m}^{2}$
R1(MM)		MESHO	r-coordinate of intersection of line (1), fig. 9 , with upper horizontal mesh line, m
RADIN(NIN)	INPUTT		Input r-coordinates of points along line from hub to shroud on which upstream flow conditions are given, m
RADLE		TSONIN	r at leading edge, m
RADOUT (NOUT)	INPUTT		Input r-coordinates of points along line from hub to shroud on which downstream flow conditions are given, m
RADSP 1 (MM)		TSONIN	r-coordinates of upper-blade-surface spline points, m
RADSP2 (MM)		TSONIN	r-coordinates of lower-blade-surface spline points, m
RADTE		TSONIN	r at trailing edge, m
RATIO		SOR	u_{i}^{m+1} / u_{i}^{m} for use in equations (B2) and (B3) of reference 9
RBL (NPPP, NBLPL)	INPUTT		Input array of \mathbf{r}-coordinates, corre-

Variable name	COMMON block	Subroutine	Description and comments
			sponding to ZBL, of points describing mean blade surface, m
RBLR		THIK OM	Rotated RBL points at leading and trailing edges, m
RBLROT(NPPP, NBLPL)	ROTATN		Rotated RBL array, m
RCARB (MHTP 1)		TVELCY	$\cos (\alpha-\varphi) \mathrm{rB}$ along a vertical mesh line, m
REDFAC	INPUTT		Input factor used to reduce mass flow (MSFL) in order to ensure subsonic flow throughout flow passage
REDTEM		TSONIN	Input for TSONIC (ref. 3)
RELER		NEWRHO	Maximum relative change in W at any mesh point between two outer iterations
RELERA		NEWRHO	Average relative change in W for all mesh points between two outer iterations
REPEAT		TVELCY	Logical variable indicating that velocity-gradient solutions should be repeated with new values of TIPT, RHOIP, and LAMBDA
REVERS		OUTPUT	Indicator of which blade surface (leading or trailing) is suction surface
RFAC2		LOSSOM	REDFAC squared, or 1.0 for transonic solution
RHIN	INPUTT		Input or calculated r-coordinate of intersection with hub profile of line on which upstream flow conditions are given, m
RHO(MM, MHTP1)	VARCOM		ρ, at orthogonal mesh points, $\mathrm{kg} / \mathrm{m}^{3}$
RHOAV(MM, MHTP1)	VARCOM		Average density across flow channel from suction surface to pressure surface, at orthogonal mesh points, $\mathrm{kg} / \mathrm{m}^{3}$

RHOBF		INDEV LINDV	$\rho_{\mathrm{bf}}, \mathrm{kg} / \mathrm{m}^{3}$
RHOBFN		LINDV	New $\rho_{\text {bf }}, \mathrm{kg} / \mathrm{m}^{3}$
RHOFS		INDEV	$\rho_{\mathrm{fs}}, \mathrm{kg} / \mathrm{m}^{3}$
		LINDV	
RHOIP(MHTP1)		TVELCY	$\rho_{\mathrm{i}}^{\prime}$ (1-Ploss) for mesh points along vertical mesh lines, $\mathrm{kg} / \mathrm{m}^{3}$
RHOIP (NIN)		RHOIP F	ρ_{i}^{\prime} at input points of upstream flow conditions, $\mathrm{kg} / \mathrm{m}^{3}$
RHOIP		NEWRHO	$\rho_{\text {L }}^{\prime}(1-\mathrm{Ploss}), \mathrm{kg} / \mathrm{m}^{3}$
		OUTPUT	
		LINDV	
RHOIP		TSONIN	$\rho_{\mathrm{i}}^{\prime}$ input for TSONIC, $\mathrm{kg} / \mathrm{m}^{3}$
RHOL		BLDVEL	$\rho_{l}, \mathrm{~kg} / \mathrm{m}^{3}$
		TVELCY	
RHOP		OUTPUT	$\rho^{\prime}, \mathrm{kg} / \mathrm{m}^{3}$
RHOPP		OUTPUT	$\rho^{\prime \prime}, \mathrm{kg} / \mathrm{m}^{3}$
RHOSL		TSONIN	ρ at a ZSL, RSL point along a streamline, $\mathrm{kg} / \mathrm{m}^{3}$
RHOST(NSL)		OUTPUT	ρ along a station line, $\mathrm{kg} / \mathrm{m}^{3}$
RHOT		BLDVEL TVELCY	$\rho_{\text {tr }}, \mathrm{kg} / \mathrm{m}^{3}$
RHOUT	INPUTT		Input or calculated r-coordinate of intersection with hub profile of line on which downstream flow conditions are given, m
RHOWAV		TVELCY	$\left(\rho W_{a v}, \mathrm{~kg} /(\mathrm{sec})(\mathrm{m})^{2}\right.$
RHROT(NHUB)	ROTATN		Rotated RHUB array, m
RHST(NOSTAT)	INPUTT		Input or calculated r-coordinates of intersections of hub-shroud output station lines with hub profile, m

Variable name	COMMON block	Subroutine	Description and comments
RHUB(NHUB)	INPUTT		Input r-coordinates of points defining hub or bottom boundary of flow channel, m
RII		TSONIN	Input for TSONIC (ref. 3), m
RI2		TSONIN	Input for TSONIC (ref. 3), m
RILOM(MHTP 1)		LAMDAF	Radii for spline fit of stream function against radius
RIR		LOSSOM	Rotated r-coordinate of intersection of upstream or downstream input station line with horizontal mesh line, m
RLE(NBLPL)	CALCON		r -coordinates of input blade-section points defining leading edge of blade, m
RLEH	CALCON		r-coordinate of intersection of leading edge of blade with hub profile, m
RLEOM(MHTP1)	CALCON		```r-coordinates of intersections of hori- zontal mesh lines with blade leading edge, m```
RLEOMR(MHTP1)	ROTATN		Rotated RLEOM array, m
RLESL		TSONIN	r-coordinate of intersection of a streamline with leading edge of blade, m
RLET	CAL CON		\mathbf{r}-coordinate of intersection of leading edge of blade with shroud profile, m
RMSP(MM)		TSONIN	r-coordinates of points defining a stream channel, printed as input for TSONIC (ref. 3), m
RNOR(2)		MESHO	Rotated r-coo rdinates of points on straight line normal to previous row, m
RO1		TSONIN	Input for TSONIC (ref. 3), m

Variable name	COMMON block	Subroutine	Description and comments
RO2		TSONIN	Input for TSONIC (ref. 3), m
ROLOM(MHTP1)		RVTHTA	Radii for spline fit of stream function against radius
ROM (MM, MHTP1)	CALCON		r-coordinates of orthogonal mesh, m
ROMBI	INPUTT		Input or calculated r-coordinate of intersection of vertical mesh line with hub profile where first change in mesh spacing occurs (MBI), m
ROMBO	INPUTT		Input or calculated r-coordinate of intersection of vertical mesh line with hub profile where second change in mesh spacing occurs (MBO), m
ROMIN	INPUTT		Input or calculated r-coordinate of intersection of left boundary of orthogonal mesh with hub profile, m
ROMOUT	INPUTT		Input or calculated r-coordinate of intersection of right boundary of orthogonal mesh (MM) with hub profile, m
ROMROT(MM, MHTP1)	ROTATN		Rotated ROM array, m
RPC(NPPC, NBLPC)	INDCOM		\mathbf{r}-coordinates of intersections of percent-chord lines with input blade planes; later set to r-coordinates of alternate mesh (fig. 27), m
RPCT1(NBLPL)		THETOM	r-coordinates of intersections of percent-chord lines with input blade planes, m
RPCT2 (NBLPC)		THETOM	r-coordinates along percent-chord lines of alternate mesh, m
RRAD(NHUB, MHTP1)		MESHO	r-coordinates of points along lines from input points on hub profile to shroud profile, m

Variable name	COMMON block	Subroutine	Description and comments
RSL(MM, NSL)	SLCOM		Array of r-coordinates of points along streamlines where they cross vertical mesh lines, m
RSLTEM(NSL)		OUTPUT	Temporary storage for calculated values to be put into RSL array, m
RST(NSL)		OUTPUT	r-coordinates of points along station lines where they cross streamlines, m
RTE(NBLPL)	CALCON		r-coordinates of input blade- section points defining trailing edge of blade, m
RTEH	CALCON		r-coordinate or intersection of trailing edge of blade with hub profile, m
RTEM(MHTP1, NOSTAT, or 20)		OUTPUT	Temporary storage for values from ROM array on vertical mesh lines; also temporary storage for values from RST array along station lines, m
RTEOM (MHTP1)	CALCON		r-coordinates of intersections of horizontal mesh lines with blade trailing edge, m
RTEOMR(MHTP1)	ROTATN		Rotated RTEOM array, m
RTESL		TSONIN	r-coordinate of intersection of a streamline with trailing edge of blade, m
RTET	CALCON		r-coordinate of intersection of trailing edge of blade with shroud profile, m
RTIN	CALCON		Input or calculated r-coordinate of intersection with shroud profile of line on which upstream flow conditions are given, m
RTIP (NTIP)	INPUTT		Input r -coordinates of points defining shroud or top boundary of flow channel, m

Variable name
COMMON
block

RTOUT

RTROT(NTIP)

RVA

RVAS

RVTHI

RVTHO
SAL
SAMP(MM, MHTP1)
SBETA

SDIST

SF

SFIN(NIN)

SFOUT(NOUT)

INPUTT

ROTATN

INPUTT

VARCOM

INPUTT

INPUTT

TVELCY

TVELCY

TVELCY

TSONIN

TSONIN

TVELCY
Subroutine

TVET

TVELCY
INDEV LINDV

LAMDAF
RVTHTA
TIPF
RHOIPF

Description and comments

Tolerance for relative error of calculated values of integrated mass flow

Input or calculated r-coordinate of intersection with shroud profile of line on which downstream flow conditions are given, m

Rotated RTIP array, m
Input or calculated r-coordinates of intersections of hub-shroud output station lines with tip profile, m
$(\rho \mathrm{W})_{\underset{\operatorname{av}, \mathrm{j}}{ }} \cos \beta_{\mathrm{j}} \cos (\alpha-\varphi)_{\mathrm{j}} \mathrm{r}_{\mathrm{j}} \mathrm{B}_{\mathrm{j}}$, $\mathrm{kg} /(\mathrm{m})(\mathrm{sec})$
$\left.{ }^{(\rho W}\right)_{a v, \mathbf{j}+1} \cos \beta_{\mathbf{j}+1}$ $\times \cos (\alpha-\varphi)_{\mathbf{j}+1} \mathbf{r}_{\mathbf{j}+1} \mathbf{B}_{\mathbf{j}+1}$, $\mathrm{kg} /(\mathrm{m})$ (sec)

Input for TSONIC (ref. 3), $\mathrm{m}^{2} / \mathrm{sec}$ Input for TSONIC (ref. 3), $\mathrm{m}^{2} / \mathrm{sec}$ $\sin \alpha$
$\sin (\alpha-\varphi)$ at orthogonal mesh points
$\sin \beta$
DISTLE (or DISTTE) plus distance from blade leading (or trailing) edge out to first adjacent mesh point, m

Stream function

Input values of stream function along hub-shroud line on which upstream flow conditions are given

Input values of stream function along

Variable name	COMMON block	Subroutine	Description and comments
			hub-shroud line on which downstream flow conditions are given
SLENTH		LOSSOM	Overall s-distance over which loss is distributed, m
SLEOM(MHTP1)	CALCON		s-coordinates of intersections of horizontal mesh lines with blade leading edge, m
SLIDLE		INDEV LINDV	Solidity at leading edge of blade where it is intersected by a horizontal mesh line
SLIDTE		INDEV LINDV	Solidity at trailing edge of blade where it is intersected by a horizontal mesh line
SLOM(MM)		MESHO	Slopes of horizontal mesh lines at mesh points
SLOPE(NIN		TIPF	Derivatives of spline-fit curves
or NOUT)		RHOIPF	
-		LAMDAF	
		RVTHTA	
SOM(MM, MHTP1)	CALCON		s-coordinates of orthogonal mesh, m
SOMIN(MHTP1)		LOSSOM	s-coordinate of intersection of line on which upstream flow conditions are given with horizontal mesh lines, when there are no blades, m
SOMOUT(MHTP 1)		LOSSOM	s-coordinates of intersection of line on which downstream flow conditions are given with horizontal mesh lines, m
SPHI(MM, MHTP1)	CALCON		$\sin \varphi$ at orthogonal mesh points
STEOM(MHTP1)	CALCON		s-coordinates of intersections of horizontal mesh lines with blade trailing edge, m
STGR		TSONIN	Input for TSONIC (ref. 3), rad

Variable name	COMMON block	Subroutine	Description and comments
SZRBL(NPPP or NBLPL)		PRECAL THETOM	Arc length along input blade section or along hub-shroud percent-chord lines in meridional plane, m
$\begin{aligned} & \text { SZ RPC(NPPC } \\ & \text { or NBLPC) } \end{aligned}$		THETOM	Arc length along vertical or horizontal lines of alternate mesh (fig. 27)
TANBBF		$\begin{aligned} & \text { INDEV } \\ & \text { LINDV } \end{aligned}$	$\tan \beta_{\text {bf }}$
TANBBL		INDEV LINDV	$\tan \beta_{b}$
TBFTIP		LINDV	$\mathrm{T}_{\mathrm{bf}} / \mathrm{T}_{\mathbf{i}}$
TGROG	CALCON		$2 \gamma \mathrm{R} /(\gamma+1)$
TH1BL(NPPP, NBLPL)	INPUTT		Input array of θ-coordinates, corresponding to ZBL, RBL of points describing upper blade surface, rad
TH2BL(NPPP, NBLPL)	INPUTT		Input array of θ-coordinates, corresponding to ZBL, RBL of points describing lower blade surface, rad
THBL (NPPP, NBLPL)	INPUTT		Input array of θ-coordinates, corresponding to ZBL, RBL of points describing mean blade surface, rad
THLEOM (MHTP1)	CALCON		θ-coordinates of intersections of horizontal mesh lines with blade leading edge, rad
THLESL		TSONIN	θ-coordinate of intersection of streamline with blade leading edge, rad
THPC(NPPC, NBLPC)	INDCOM		θ-coordinates of intersections of percent-chord lines with input blade planes; later set to θ-coordinates of alternate mesh (fig. 27), rad
THPCT1 ${ }^{\text {(NBLPL) }}$		THETOM	```0-coordinates of intersections of percent-chord lines with input blade planes, rad```

Variable name	COMMON block	Subroutine	Description and comments
THPCT2 (NBLPC)		THETOM	θ-coordinates along percent-chord lines of alternate mesh, rad
THSL		TSONIN	θ-coordinate (relative to MERIDL origin, not TSONIC origin) of mean blade surface at points along meridional streamlines, rad
THSP1(MM)		TSONIN ${ }^{\text {' }}$	Input for TSONIC (ref. 3), rad
THSP2 (MM)		TSONIN	Input for TSONIC (ref. 3), rad
THSTAK		TSONIN	θ-coordinate of blade section in relation to hub blade section, rad
THTEOM(MHTP1)	CALCON		θ-coordinates of intersections of horizontal mesh lines with blade trailing edge, rad
THTESL		TSONIN	θ-coordinate of intersection of meridional streamline with blade trailing edge, rad
TINP		LOSSOM	$\mathrm{T}_{\mathrm{i}}^{\prime}, \mathrm{K}$
TIP (NIN)	INPUTT		Input $\mathrm{T}_{\mathrm{i}}^{\dagger}$ at points along the line from hub to shroud on which upstream flow conditions are given, K
TIPT(MH TP1)		TVELCY	T_{1} at points along vertical mesh lines, K
TIPT		NEWRHO OUTPUT	Temporary $\mathrm{T}_{\mathbf{i}}$
TIPTEM		TSONIN	T_{i} along a streamline, K ; input TIP for TSONIC (ref. 3)
TITLEI(20)	INPUTT		Alphanumerical contents of input title card
TLTAN1		TSONIN	θ-coordinate at upper blade surface leading-edge tangency point, rad
TLTAN2		TSONIN	θ-coordinate at lower blade surface leading-edge tangency point, rad

Variable name	COMMON block	Subroutine	Description and comments
TMSL		TSONIN	m-coordinates of tangency points on both blade surfaces, m
TNBL(NPPP, NBLPL)	INPUTT		Input array of blade normal thicknesses, corresponding to ZBL, RBL coordinates, m
TOLER		TIPF RHOIPF LAMDAF RVTHTA	Tolerance for a point close to a spline point
TOM(MM, MHTP 1)	CALCON		t-coordinates of orthogonal mesh, m
TOP		LOSSOM	$\mathrm{T}_{\mathrm{O}}, \mathrm{K}$
TPP(MHTP 1)		NEWRHO TVELCY OUTPUT	T" along a vertical mesh line, K
TPP		OUTPUT TVELCY LINDV	$\mathrm{T}^{\prime \prime}, \mathrm{K}$
TPPN		TVELCY	New $\mathrm{T}^{\prime \prime}$, K
TPPST(NSL)		OUTPUT	T"' along a station line, K
TPPTIP		INIT	$T^{\prime \prime} / T_{i}^{\prime}$
TPST(NSL)		OUTPUT	T' along a station line, K
TST(NSL)		OUTPUT	T along a station line, K
TTBL(NPPP, NBLPL)	INPUTT		Input array of blade tangential thicknesses, corresponding to ZBL, RBL coordinates, rad
TTIP		NEWRHO BLDVEL TVELCY	$\mathrm{T} / \mathrm{T} \mathbf{i}$
TTPC(NPPC, NBLPC)	INDCOM		Tangential blade thicknesses at intersections of percent-chord lines with input blade planes; later set to tang-

Variable name	COMMON block	Subroutine	Description and comments
			gential blade thicknesses on alternate mesh (fig. 27), rad
TTPCT1(NBLPL)		THETOM	Tangential blade thicknesses at intersections of percent-chord lines with input blade planes, rad
TTPCT2 (NBLPC)		THETOM	Tangential blade thicknesses along percent-chord lines of alternate mesh, rad
TTTAN1		TSONIN	θ-coordinate at upper blade surface trailing-edge tangency point, rad
TTTAN2		TSONIN	θ-coordinate at lower blade surface trailing-edge tangency point, rad
TVERT(MHTP 1)		NEWRHO	Temporary storage for values from
		BLDVEL	TOM array on a vertical mesh
		OUTPUT	line, m
		TVELCY	
TWLMR(MHTP1)		TVELCY	$2 \omega \lambda-(\omega r)^{2}$ at points along vertical mesh lines, $\mathrm{m}^{2} / \mathrm{sec}^{2}$
TWLMR		BLDVEL	$2 \omega \lambda-(\omega \mathrm{r})^{2}, \mathrm{~m}^{2} / \sec ^{2}$
		LINDV	
UBDEV(MHTP1)		LINDV	Deviation angle, neglecting blockage correction, where horizontal orthogonal intersects blade, $\left(\beta_{f s}-\beta_{b}\right)_{l e}$, deg
UBDEV		INDEV	Deviation angle, neglecting block age correction, $\left(\beta_{f s}-\beta_{b}\right)_{t e}$, deg
UBINC(MHTP1)		LINDV	Incidence angle, neglecting block age correction, where horizontal orthogonal intersects blade, $\left(\beta_{f s}-\beta_{b}\right)_{l e}, \operatorname{deg}$
UBINC		INDEV	Incidence angle, neglecting blockage correction, $\left(\beta_{f s}-\beta_{b}\right){ }_{l e}$, deg

Variable name	COMMON block	Subroutine	Description and comments
UILOM(MHTP1)		LAMDAF	Stream-function values for spline fit of stream function against radius
UNEW (MHTP1)		TVELCY	New estimate for u along a vertical mesh line
UNEW		SOR	New estimate for u at a mesh point
UOLOM(MHTP1)		RVTHTA	Stream-function values for spline fit of stream function against radius
UOM(MM, MHTP1)	VARCOM		Stream function \mathbf{u} at orthogonal mesh points
UTEM(MHTP1 or 20)		OUTPUT	Temporary storage for values from UOM array on vertical mesh lines; also stream function at 20 equally spaced points from hub to shroud
UVERT(MHTP1)		NEWRHO	Temporary storage for values from UOM array along vertical mesh lines
VELTEM		TSONIN	Input for TSONIC (ref. 3)
VELTOL	INPUTT		Input convergence tolerance on maximum velocity change in each outer iteration, over all mesh points, for reduced mass flow
VST(NSL)		OUTPUT	V along a station line, $\mathrm{m} / \mathrm{sec}$
VTH (MM, MHTP1)	VARCOM		V_{θ} at orthogonal mesil points, $\mathrm{m} / \mathrm{sec}$
VTHIN(NIN)	INPUTT		Input values of $\left(V_{\theta}\right)_{i}$ at points along line from hub to shroud on which upstream flow conditions are given, $\mathrm{m} / \mathrm{sec}$
VTHOUT(NOUT)	INPUTT		Input values of $\left(V_{\theta}\right)_{0}$ at points along line from hub to shroud on which downstream flow conditions are given, $\mathrm{m} / \mathrm{sec}$
VTHST(NSL)		OUTPUT	V_{θ} along station line, $\mathrm{m} / \mathrm{sec}$

Variable name	COMMON block	Subroutine	Description and comments
W (MM, MHTP1)	VARCOM		W at orthogonal mesh points, m/sec
wAS		TVELCY	First estimate of W_{j+1} at next mesh point along vertical mesh line (eq. (5)), $\mathrm{w}_{\mathrm{j}+1}^{*}, \mathrm{~m} / \mathrm{sec}$
WASS		TVELCY	Second estimate of W_{j+1} at next mesh point along vertical mesh line (eq. (5)), $\mathrm{w}_{\mathrm{j}+1}^{* *}, \mathrm{~m} / \mathrm{sec}$
WFS		LINDV	$\mathrm{W}_{\mathrm{f} s}$ at blade leading or trailing edge, $\mathrm{m} / \mathrm{sec}$
WHIRL		TVELCY	$\lambda \text { or }\left(\mathrm{rV}_{\theta}\right)_{0}, \mathrm{~m}^{2} / \mathrm{sec}$
WIIUB		TVELCY	Estimate of $W_{\text {hub }}, \mathrm{m} / \mathrm{sec}$
WLSRF		TVELCY	$\mathrm{W}_{l}, \mathrm{~m} / \mathrm{sec}$
WLSSL(MM, NSL)	SLCOM		W_{l} at points along streamlines where they cross vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WLSST(NSL)		OUTPUT	W_{l} at points along station lines where they cross streamlines, $\mathrm{m} / \mathrm{sec}$
WLSURF (MM, MH'TP1)	VARCOM		W_{l} on orthogonal mesh, $\mathrm{m} / \mathrm{sec}$
WMAX		TVELCY	Maximum value of W at hub for which a solution can be obtained for a vertical mesh line, $\mathrm{m} / \mathrm{sec}$
WMIN		TVELCY	Minimum value of W at hub for which a solution can be obtained for a vertical mesh line, $\mathrm{m} / \mathrm{sec}$
WMSL(MM, NSL)	SLCOM		W_{m} at points where streamlines cross vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WMSON		LINDV	Sonic value for $W_{m}, \mathrm{~m} / \mathrm{sec}$
WMST(NSL)		OUTPUT	W_{m} at points where station lines cross streamlines, $\mathrm{m} / \mathrm{sec}$
WMVERT(MHTP1)		TVELCY	W_{m} along vertical mesh lines, $\mathrm{m} / \mathrm{sec}$

Variable name	COMMON block	Subroutine	Description and comments
WRFSEX(MHTP1)		OUTPUT	W_{r} extrapolated up to leading or trailing edge of blade, $\mathrm{m} / \mathrm{sec}$
WRSL(MM, NSL)	SLCOM		W_{r} at points where streamlines cross vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WRST(NSL)		OUTPUT	W_{r} at points where station lines cross streamlines, $\mathrm{m} / \mathrm{sec}$
WSL(MM, NSL)	SLCOM		W at points where streamlines cross vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WST(NSL)		OUTPUT	W at points where station lines cross streamlines, $\mathrm{m} / \mathrm{sec}$
WSUBM(MM, MHTP1)	VARCOM		W_{m} at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
WSUBR(MM, MHTP1)	VARCOM		W_{r} at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
WSUBS(MM, MHTP1)	VARCOM		W_{s} at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
WSUBT(MM, MHTP1)	VARCOM		W_{t} at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
WSUBZ ${ }^{\text {(MM, MHTP1) }}$	VARCOM		W_{z} at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
WTEMP		NEWRHO	New calculated value of W at a mesh point, $\mathrm{m} / \mathrm{sec}$
WTH(MM, MHTP1)	VARCOM		W_{θ} at orthogonal mesh points, $\mathrm{m} / \mathrm{sec}$
WTHETA		TVELCY LINDV	$\mathrm{W}_{\theta}, \mathrm{m} / \mathrm{sec}$
WTHSL (MM, NSL)	SLCOM		W_{θ} at points where streamlines cross vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WTHST(NSL)		OUTPUT	W_{θ} at points where station lines cross streamlines, $\mathrm{m} / \mathrm{sec}$
WTSRF		TVELCY	$\mathrm{W}_{\text {tr }}, \mathrm{m} / \mathrm{sec}$
WTSSL(MM, NSL)	SLCOM		$W_{t r}$ at points where streamlines cross vertical mesh lines, m/sec
WTSST(NSL)		OUTPUT	W_{tr} at points where station lines cross streamlines, m/sec

Variable name	COMMON block	Subroutine	Description and comments
WTSURF(MM, MHTP1)	VARCOM		W_{tr} on orthogonal mesh, $\mathrm{m} / \mathrm{sec}$
WTVERT(MHTP1)		TVELCY	W_{θ} along vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WWCR(MM, MHTP1)	VARCOM		$\mathrm{W} / \mathrm{W}_{\mathrm{cr}}$ at orthogonal mesh points
WWCRSL (MM, NSL)	SLCOM		$\mathrm{W} / \mathrm{W}_{\mathrm{cr}}$ at points where streamlines cross vertical mesh lines
WWCRST(NSL)		OUTPUT	$\mathrm{W} / \mathrm{W}_{\mathrm{cr}}$ at points where station lines cross streamlines
WZFSEX(MHTP1)		OUTPUT	W_{z} extrapolated up to leading or trailing edge of blade, $\mathrm{m} / \mathrm{sec}$
WZSL(MM, NSL)	SLCOM		W_{z} at points where streamlines cross vertical mesh lines, $\mathrm{m} / \mathrm{sec}$
WZST(NSL)		OUTPUT	W_{z} at points where station lines cross streamlines, $\mathrm{m} / \mathrm{sec}$
XIOM (MM, MHTP1)	VARCOM		ξ at orthogonal mesh points, $\text { (eq. (A2)), } 1 / \mathrm{m}$
XIOMT		NEWRHO	New estimated value of ξ at a mesh point
XNEW		NEWRHO	Percentage of new calculated value of XIOMT used in updating XIOM
Z1(MM)		MESHO	z-coordinate of intersection of line (1), figure 9, with upper horizontal mesh line, m
Z2		MESHO	z-coordinate of intersection of line (2), figure 9, with upper horizontal mesh line, m
ZBL (NPPP, NBLPL)	INPUTT		Input array of z-coordinates of points describing blade surface, m
ZBLROT(NPPP, NBLPL)	ROTATN		Rotated ZBL array, m
ZETOM(MM, MHTP1)	VARCOM		ζ at orthogonal mesh points (eq. (A3)), $\mathrm{m} / \mathrm{sec}^{2}$

Variable name	COMMON block	Subroutine	Description and comments
ZETOMT		NEWRHO	New estimated value of ζ at a mesh point
ZHIN	INPUTT		Input z-coordinate of intersection with hub profile of line on which upstream flow conditions are given, m
ZHOUT	INPUTT		Input z-coordinate of intersection with hub profile of line on which downstream flow conditions are given, m
ZHROT(NHUB)	ROTATN		Rotated ZHUB array, m
ZHST(NOSTAT)	INPUTT		Input z-coordinates of intersections of hub-shroud output station lines with hub profile, m
ZHUB(NHUB)	INPUTT		Input z-coordinates of points defining hub or bottom boundary of flow channel, m
ZIR		LOSSOM	Rotated z-coordinate of intersection of upstream or downstream input station line with horizontal mesh line, m
ZLE(NBLPL)	CALCON		z-coordinates of input blade section points defining leading edge of blade, m
ZLEH		PRECAL	z -coordinate of intersection of leading edge of blade with hub profile, m
ZLEOM(MH TP1)	CALCON		z-coordinates of intersections of horizontal mesh lines with blade leading edge, m
ZLEOMR(MHTP1)	ROTATN		Rotated ZLEOM array, m
ZLESL		TSONIN	z-coordinate of intersection of a streamline with leading edge of blade, m
ZLET		PRECAL	z-coordinate of intersection of leading edge of blade with shroud profile, m

Variable name	COMMON block	Subroutine	Description and comments
ZLTAN1		TSONIN	m -coordinate at upper blade surface leading-edge tangency point, m
ZLTAN2		TSONIN	m -coordinate at lower blade surface leading-edge tangency point, m
ZMRSP(MM)		TSONIN	Input for TSONIC (ref. 3), m
ZMSFL		TSONIN	Input for TSONIC (ref. 3), kg/sec
ZMSP1(MM)		TSONIN	Input for TSONIC (ref. 3), m
ZMSP2 (MM)		TSONIN	Input for TSONIC (ref. 3), m
ZNEW		NEWRHO	Percentage of new calculated value of ZETOMT used in updating ZETOM
ZNOR(2)		MESHO	Rotated z-coordinates of points on straight line normal to previous row, m
ZOM(MM, MHTP1)	CALCON		z-coordinates of orthogonal mesh, m
ZOMBI	INPUTT		Input z-coordinate of intersection of vertical mesh line with hub profile where first change in mesh spacing occurs (MBI), m
ZOMBO	INPUTT		Input z -coordinate of intersection of vertical mesh line with hub profile where second change in mesh spacing occurs (MBO), m
ZOMIN	INPUTT		Input $z-$ coordinate of intersection of left boundary of orthogonal mesh with hub profile, m
ZOMOUT	INPUTT		Input z-coordinate of intersection of right boundary of orthogonal mesh (MM) with hub profile, m
ZOMROT(MM, MHTP1)	ROTATN	-.	Rotated ZOM array, m
ZPC(NPPC, NBLPC)	INDCOM		z-coordinates of intersections of percent-chord lines with input blade

Variable name	COMMON block	Subroutine	Description and comments
			planes; later set to z-coordinates of alternate mesh (fig. 27), m
ZPCT1 (NBLPL)		THETOM	z -coordinates of intersections of percent-chord lines with input blade planes, m
ZPCT2 (NBLPC)		THETOM	z-coordinates along percent-chord lines of alternate mesh, m
ZRAD(NHUB, MHTP1)		MESHO	z-coordinates of points along lines from input points on hub profile to shroud profile, m
ZSL (MM, NSL)	SLCOM		z-coordinates of points where stream- lines cross vertical mesh lines, m
ZSLTEM(NSL)		OUTPUT	Temporary storage for calculated values to be put into ZSL array, m
ZSPL		ILETE	z-coordinate on leading or trailing edge of blade corresponding to a streamline, m
ZST(NSL)		OUTPUT	z-coordinates of points where station lines cross streamlines, m
ZTE(NBLPL)	CALCON		z-coordinates of input blade-section points defining trailing edge of blade, m
ZTEH		PRECAL	z -coordinate of intersection of trailing edge of blade with hub profile, m
ZTEM(MHTP1, NOSTAT, or 20)		OUTPUT	Temporary storage for values from ZOM array on vertical mesh lines; also temporary storage for values from ZST array along station lines, m
ZTEOM(MHTP1)	CALCON		z-coordinates of intersections of horizontal mesh lines with blade trailing edge, m
ZTEOMR(MHTP1)	ROTATN		Rotated ZTEOM array, m

Variable name	COMMON block	Subroutine	Description and comments
ZTESL		TSONIN	z-coordinate of intersection of a streamline with trailing edge of blade, m
ZTET		PRECAL	z -coordinate of intersection of trailing edge of blade with shroud profile, m
ZTIN	INPUTT		Input z -coordinate of intersection of line on which upstream flow conditions are given with shroud profile, m
ZTIP(NTIP)	INPUTT		Input z-coordinates of points defining shroud or top boundary of flow channel, m
ZTOUT	INPUTT		Input z -coordinate of intersection of line on which downstream flow conditions are given with shroud profile, m
ZTROT(NTIP)	ROTATN		Rotated ZTIP array, m
ZTST(NOSTAT)	INPUTT		Input z-coordinates of intersections of hub-shroud output station lines with shroud profile, m
ZTTAN1		TSONIN	m -coordinate at upper blade surface trailing-edge tangency point, m
ZTTAN2		TSONIN	m -coordinate at lower blade surface trailing-edge tangency point, m

PROGRAM LISTING

```
C
C--MERIDL PROGRAM -- UPDATED TO JULY 1, 1977
C--REPORTS -- NASA TND-843C AND TND-8431, 1977
C--PROGRAM AVAILABLE FROM COSMIC -- NUMBER LEW-12129
C--FOR INFORMATION CONTACT : DR. T. KATSANIS (MAIL STOP 77-2) OR
C-- DR.W. MCNALLY (MAIL STOP 5-9)
C-- NASA LEWIS RESEARCH CENTER
C-- CLEVELAND, OHIO 44135
C-- PHONF: (215)--433-4000
C
C
    COMMON NREAD,NWRIT,ITER,IEND,NHRT1,NHRT2,NHRT3,NHRT4,NGRT5,NHPTG
    COMMON/INPUTT/GAM,AR,MSFL,OMEGA, REDPAC,VELTOL, FNEW,DNRG,MBI,MRO,
    1 MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
    2 LSFR,LTPL,LAMVT, LROT,LBLAD,LFTGAN,ANGROT,IMESH,ISLINE,
    3 ISTATL, IPLOT, ISUPER,ITSON,IDEBIG,ZOMIN,ZOMBT, ZOMBO,ZOMOUT,
        ROMIN,ROMBI,ROMBO,ROMOUT, ZHIN, ZTIN,ZHOUT, ZTOUT,RHIN,RTTN,BHOUT,
        RTOUT,TITLEI(20), ZHUB(50), RHUB(5) , ZTIP(50),RTIP(50),SFIN(50),
        RADIN(50),TIP(50),PRIP(50),LAMIN(50),VTHIN(50),SFOTN(5^).
        RADOUT (50), PROP(50), LOSOUT (5)),LAMOUT (50), VTHOUT (59).
        BETALE(50), BETATE(50), 2HST(50), ZTST(50), PHST(5^), RTST(50),
        FLPR(50),PERCRD(50), PERLOS (5)), ZBL(50,50), RBL (50,50),
        THBL (50,50),TNBL(50,50), TTBL (50,50),TH1BL (50,50),TH2BL (50,50)
    COMMON/CALCON/MMM1,MHTP1,CP, EXPON,TGROG,PITCH,RLFH,RLET,RTEH,RTET,
        ZLE(50),RLE(50),ZTE(50),RTE(50), ZLEOM(10 1),RLEOM(101).
        SLEOM(101), THLEOM(101), ZTEOM(101), RTEOM(101), STEOM(101),
        THTEOM(101), ILE(101).ITE(101), ZOM(100,101),ROM(100,101).
        SOM(100,101), TOM(10., 101), BTH(100,101), DTHDS(10),101),
        DTHDT(100,101), PLOSS(1C0,101), CPHI(100.101), SPHI (100,101)
    COMMON/\nablaARCOM/A (4,100,101), UOM (1^?,101),K(100,101),RHO (100,101),
        GSUBS (100, 101), WSUBT(100,101), WSUBZ(100,101),WSTJBR(100,101).
        WSOBM (100,101), WTH(100,101), VTH(100,101), 口(100,101).
        ALPHA(100,101), BETA(10n,101), WWCR(100,101), CURV(10\cap,1^1),
        WLSURF(100,101),VTSURF(10n,1:1), CAMP(100,1n1), SAMP(100,101),
        RHOAV (100,101), DELRHO(100,191),FT(100,101), DFDM(100,101),
        XIOM(100,101), ZETOM(100,101), DLDU(100,101)
    COMMON/SLCOM/ILS(50),ITS(50), 2SL(100,50),RSL(100,50),MSL(100,50),
    1 WZSL (100,50),WRSL(100,50),WMSL(100,50),WTHSL(10n,50),
    2 ALPSL(100,50), BETSL(100,50),WSL(100,50), WWCRSL(100,50),
        CURVSL(100.50),WLSSL (100,50),WTSSL(100.50)
    COMMON/KOTATN/ZHROT(50), RHROT (50), ZTROT (50), RTROT(50),
        ZLEOMR(101), RLEOMR(101), ZT EOMR (1)1), RTEOMR(101).
        ZBLROT(5),50),RBLROT(50,50), ZOMROT(100,101), ROMROT(100, 101)
    COMMON/INDCOM/NBLPC,NPPC,ZPC (51,51), RPC (51,51),TTPC(51,51),
        THPC (51,51),DTHDZ (51,51),DTHDR(51,51). BTHLE(101), BTHTE(101).
        BTBFLE(101), BTBFTE(101)
    COMMON/PLTCOM/ZLRNG,ZRRNG,RBRNG,RTRNG,ZHPLT(100).RHPLT(100).
                ZSPLT(100),RSPLT(100),ZLPLT(100),RLPLT(100),ZTPLT(100),
        RTPLT(100)
        10 IEND = -1
        ITER = 0
C
C--READ AND PLOT INPUT DATA
            CALL INPUT
            CALL INPLOT
C
```

```
c--generate orthogonal mesh
    CALL MESHO
C
C--CALCULATE ALL PRELIMINARY FIXED CONSTANTS
    call precal
C
C--PLOT ORTHOGONAL MESH
    CALL MEPLOT
C
C--CALCULATE COEFFICIENTS, SOLVE DIFFERENTIAL EQUATIONS FOR STREAM
C--FUNCTION, AND COMPUTE NEW VELOCITIES AND DENSITIES
    CALL INIT
    20 ITER = ITER+1
    CALL COEF
    CALL SOR
    CALL LOSSOM
    CALL NEURHO
C
C--CALCULATE AND PRINT MAJOR OUTPOT DATA
    CALL OUTPUT
    IF (MBI.NE.O) CALL INDEV
    IF (MBI.NE.O) CALL TSONIN
C
C--plot Streamlines and plot velocities
    CALL SLPLOT
    CALL SVPLOT
    IF (IEND.LT.0) GO TO 20
    IF (REDFAC.EQ.1.0) GO TO 10
C
C--OBTAIN TRANSONIC SOLUTION WITH FULL MASS FLOW
    30 CALL TVELCY
            REDFAC = 1.0
            CALL TOUTPT
            IF (MBI.NE.O) CALL PINDV
            IF (MBI.NE.O) CALL TSONIN
            CALL SLPLOT
            CALL SVPLOT
            IF (ISUPER.EQ.O.OR.ISUPER.EQ.2) GO TO 10
            ISUPER = 2
            GO TO 30
            END
            SUBROUTINE INPUT
C
C--INPUT READS AND PRINTS ALL INPOT DATA CARDS
C
            COMMON NREAD,NHRIT, ITER,IEND,NHRT1,NHRT2,NWRT3,NHRT4,NWRT5,NWRTG
            COMMON/INPUTT/GAM,AR,MSFI,OMEGA, REDFAC,VELTOL,FNEH, DNEH,MBI,MBO,
            1 MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
            2 LSFR,LTPL, LAMYT,LROT,LBLAD,LETEAN,ANGROT,IMESH,ISLINE,
            3 ISTATL,IPLOT,ISUPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMBO,ZOMOUT,
            4 ROMIN, ROMBI, ROMBO, ROMOUT,ZHIN,ZTIN,ZHOUT, ZTOUT,RHIN,RTIN,RHOUT,
            5 RTOUT,TITLEI(20), ZHUB(50), RHOB(50), 2TIP(50), RTIP(50),SFIN(50).
            6 RADIN(50),TIP(50),PRIP(50),LAMIN(50),VTHIN(50),SPOUT(50),
```

```
                RADOUT (50), PROR(50),LOSOUT (50), LAMOUT(50), VTHOUT (57),
                BETALE(50), BETATE(50), ZHST (50), ZTST (50), FHST(50), RTST(50),
                FLFR(50), PERCRD(50), PERLOS (50), 2BL (50,50), RBL (50,50),
                THBL (50,50), TNBL (50,50), TTBL (50, 50), TH1BL (50, 50), TH2BL (50,50)
            COMMON/CALCON/MMM1,MHTP1,CP,FXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTEN',
                ZLE(50),RLE(50),ZTE(50),RTE(50),ZLFOM(101),RLEOM(1C1),
                SLEOM(101),THLEOM(1^1),ZTEOM(1^1), RTEOM(1^1),STEOM(1\cap1),
                THTEOM(101), ILE(101), ITE(1C1), ZOM(100,101), ROM(100,101),
                        SOM(100.101), TOM(100,101), BTH(10),101), DTHDS (100.171),
                        DTHDT (100, 101), PlosS(100,101), CPHI(10n,101), SPHT(100,1)1)
                            DIMENSION DIST(50),DTDS(5^),ANG(50)
    REAL MSFL,LAMIN,IAMODT, LOSOUT
C
C--READ AND PRINT INPUT DATA
C
    NREAD=5
    NWRIT = 6
    NWRT1 = 6
    NWRT2 = 6
    NWRT3 = 6
    NWRT4 = 6
    NWRT5 = 6
    NWRT6 = 6
    10 READ (NREAD,1050) (TITLEI(I),I=1,20)
    WRITE(NWRIT,1000)
    WRITE(NWRIT,106%) (TITLEI(I), I= 1, 2^)
    READ (NREAD,1O30) GAM,AR,MSFL,OMEGA, REDFAC,VELTOL,FNEW,DNEG
    IF (GAM.NE.O.) WRITE(NWRIT,11(C)
    IF (GAM.EQ.0.) WRITE(NGRIT,1102)
    IF (REDFAC.LE.0.) REDFAC=1.0
    IF (VELTOL.LE.O.) VELTOL=.n1
    IF (FNEW.LE.O.) FNEW=C.5
    IF (DNEW.LE.O.) DNEW=O.5
    WRITE(NWRIT,104O) GAM,AR,MSFI,OMEGA,REDFAC, VFLTOL,FNEW, DNEW
    VELTOL = VELTOL*AMIN1(FNEW,DNEW)
    IF (FNEW.LT.1.0.OR.DNEW.LT.1.0) MRITE(NGRIT.1105) VELTOL
    WRITE(NURIT.1110)
    READ (NREAD,1010) MBI,MBO,MM,MHT,NBL,NHOB,NTIP,NIN,NOUT,NBLPL,
    1NPPP,NOSTAT,NSL,NLOSS
    IF (MBI.EQ.0) NBL=1
    WRITE(NWRIT, 1020) MBI,MBO,MM,MHT,NBL,NHOR,NTIP,NIN,NOUT,NBLPL,
1NPPP,NOSTAT,NSL,NLOSS
    WRITE(NWRIT,1120)
    READ (NREAD,1010) LSFR,LTPL,LAMVT,LROT,LBLAD,LETEAN
    WRITE(NWRIT,1020) LSFR,LTPL,LAMVT,LROT, LELAD,LETEAN
    ANGROT = 0.
    IF (LROT.EQ.0) GO TO 15
    WRITE(NGRIT,1125)
    READ (NREAD,1030) ANGROT
    HRITE(NWRIT,1040) ANGROT
    ANGROT = ANGROT/57.295780
    15 WRITE (NWRIT, 1130)
    READ (NREAD,1030) ZOMIN,ZOMBI,ZOMBO,ZOMOUT,ROMIN,ROMBI, ROMBO,
1ROMOUT
    WRITE(NWRIT,1040) ZOMTN,ZOMBI,ZOMBO,ZOMOUT,ROMIN, ROMBI,ROMBO,
1ROMOUT
    WRITE(NHRIT,1140)
    READ (NREAD,1030) (ZHUB (I), I=1,NHUB)
    WRITE(NGRIT,1040) (ZHOB(I),I=1,NHUB)
```

```
    WRITE(NWRIT,1150)
    FEAD (NREAD,1230) (RHUB(I), I=1,NHUB)
    WRITE(NWRIT,1040) (RHUB(I),I=1,NHUB)
    WRITE(NHPIT,1160)
    READ (NREAD,1030)
    WRITE(NWRIT,1气40)
    WRITE(NWEIT,1170)
    READ (NREAD,1030) (RTIP(I),I=1,NTIP)
    WRITE(NWRTT,1040) (RTIP(I),I=1,NTIP)
    HRITE(NWRIT,1180)
    EEAD (NREAD,1030) ZHIN,ZTIN,RHTN,RTIN
    WRITE(NGRIT,104C) ZHIN,ZTIN,RHIN,RTIN
    IF (LSFR.EQ.1) GO TO 20
    WRITE(NWPIT,1190)
    READ (NREAD,1039) (SFIN(I).I=1,NIN)
    WRITE(NWRIT,1240) (SFIN(I),I=1,NIN)
    GO TO 30
20 WRITE(NWRIT,1200)
    READ (NREAD,1030) (RADIN(I),I=1,NTN)
    WRITE(NWRIT,1040) (RADIN(I),I=1,NIN)
3C GRITE (NWRIT,1210)
    READ (NREAD,1030) (TIP(I),I=1,NIN)
    WRITE(NWRIT,104)) (TIP(I),I=1,NIN)
    WRITE(NWRIT,1220)
    PEAD (NREAD,1030) (PRIP(I),I=1,NIN)
    WRITE(NWFIT,9040) (PRIP(I), I=1,NIN)
    IF (LAMVT.EQ.1) GO TO 40
    WRITE(NHRIT,1230)
    READ (NREAD,1030) (LAMIN(I),I=1,NIN)
    MRITE(NWRIT,1040) (LAMIN(I),I=1,NIN)
    GO TO 50
40 HRITE (NWRIT, 1240)
    READ (NREAD,1030) (VTHIN(I),I=1,NIN)
    WRITE(NWRIT.104%) (VTHIN(I),I=1,NIN)
50 WRITE (NHRIT,1250)
    READ (NREAD,1030) ZHOUT, ZTOUT,RHOUT,RTOUT
    WRTTE(NWRIT,1049) ZHOUT, ZTOUT,RHOUT,RTOUT
    IF (LSFR.EQ.1) GO TO 60
    GRITE(NURIT,1260)
    READ (NREAD,1C30) (SFOUT(I), I=1,NOUT)
    WRITE (NWRIT,1040) (SFOUT(I),I=1,NOUT)
    GO TO 70
60 WRITE(NGRIT,1270)
    READ (NREAD,1030) (RADOUT(I), I= 1,NOJT)
    WRITE (NWRIT, 1040) (RADOUT(I),I=1,NOUT)
7C IF (LTPL.EQ.1) GO TO 80
    WRITE(NWRIT,1280)
    READ (NREAD,1030) (PROP(I), I=1, NOOT)
    WRITE(NWRIT,1040) (PROP(I),I=1,NOUT)
    GO TO }9
80 HRITE(NWRIT,1290)
    READ (NREAD,1030) (LOSOUT(I), I=1,NOUT)
    HRITE(NWRIT,1040) (LOSOUT(I),I=1,NOOT)
90 IF(MBI.EQ.0) GO TO 157
    IF (LAMVT.EQ. 1) GO TO 100
    GRITE (NWRIT,1300)
    READ (NREAD,1030) (LAMOUT(I), I=1,NOUT)
    WRITE(NRRIT,1040) (LAMOUT(I),I=1,NOUT)
    GO TO 110
```

```
100 WRITE(NWRIT,1.310)
    READ (NREAD,1030) (VTHOUT(I),I=1,NOUT)
    URITE (NWEIT,1040) (VTHOUT(I),I=1,NOUT)
110 WRITE(NGRIT,1320)
    DO 120 JN=1,NELPI
    READ (NREAD,1030) (ZEL(IN,JN),IN=1,NPPP)
120 WRITE(NWRIT,1040) (ZBL(IN,JN),IN=1,NPPP)
    GRITE(NWRIT,1330)
    DO 13C JN=1.NBLPL
    READ (NREAD,1030) (RBL(IN,JN), IN=1,NPPP)
130 WRITE(NWRIT,1040) (RBI,(IN,JN),IN=1.NPPP)
    TF (LBLAD.EQ. 2) GO TO 150
    WRITE(NWRIT,1340)
    DO 140 JN=1,NBLPL
    FEAD (NREAD,1030) (THBL(IN,JN), IN=1,NPPP)
140 WRITE(NWRIT,1040) (THBL(IN,JN),IN=1,NPPPP)
    IF (LBLAD.EQ.1) GO TO 146
    WRITE(NWRIT,1350)
    DO 145 JN=1,NBLPL
    READ (NREAD,1030) (TNBL(IN,JN),IN=1,NPPP)
145 WRITE(NHRIT,1040) (TNBL(IN,JN),IN=1,NPPP)
    GO TO 156
146 WRITE(NWRIT,1352)
    DO 148 JN=1,NBLPL
    READ (NREAD,1030) (TTBL(IN,JN),IN=1,NPPP)
148 HRITE(NWRIT,1040) (TTBL(IN,JN),IN=1,NPPP)
    GO TO 150́
150 WRITE(NWRIT,1354)
    DO 152 JN=1,NBLPL
    READ (NREAD,1030) (TH1BL(IN,JN),IN=1,NPPP)
152 WRITE(NWRIT,1040) (TH1BL(TN,JN),IN=1,NPPP)
    WRITE(NWRIT,1356)
    DO 154 JN=1,NBLPL
    READ (NREAD,1^30) (TH2BL(IN,JN), IN=1,NPPP)
154 WRITE(NWRIT,1040) (TH2BL (IN,JN),IN=1,NPPP)
156 IF (LETEAN. EQ.0) GO TO 157
    WRITE (NWRIT,1358)
    READ (NREAD,1030) (BETALE(JN),JN=1,NBLPL)
    WRITE(NWRIT,1040) (BETALE(JN).JN=1,NBLPL)
    QRITE (NGRIT.1359)
    READ (NREAD,1030) (BETATE(JN),JN=1,NBLPL)
    URITE(NURIT,1040) (BETATE(JN),JN=1,NBLPL)
157 IF (NOSTAT.EQ.O) GO TO 160
    URITE(NRRIT,1360)
    READ (NREAD,1030) (ZHST(I), I=1,NOSTAT)
    MRITE(NWRIT,1040) (ZHST(I),I=1,NOSTAT)
    IF (LROT.EQ.O) GO TO 158
    URITE (NWRIT,1365)
    READ (NREAD,1030) (RHST(I), I=1,NOSTAT)
    #RITE(NHRIT.1040) (RHST(I),I=1,NOSTAT)
158 GRITE(NMRIT,1370)
    READ (NREAD,1030) (ZTST(I), I=1,NOSTAT)
    WRITE(NHRIT,1040) (ZTST(I).I=1,NOSTAT)
    IF (LROT.EQ.O) GO TO 160
    WRITE(NQRIT,1375)
    READ (NREAD,1030) (RTST(I),I=1,NOSTAT)
    #RITE(NHRIT,1040) (RTST(I),I=1,NOSTAT)
160 IF (NSL.EQ.O) GO TO 165
    MRITE (NMRIT,1380)
    READ (NREAD,1030) (FLFR(I), I=1,NSL)
```

```
        URITE(NHRIT,1040) (FLFR(I).T=1,NSL)
    165 IF (NLOSS.EQ.O) GO TO }17
        HRITE(NHRIT,1385)
        KEAD (NREAD,1030) (PERCRD(I),I=1,NLOSS)
        WRITE(NWRIT,1040) (PERCRD(I),I=1,NLOSS)
        GRITE (NWRIT,1386)
        READ (NREAD,1030) (PERLOS(I),I=1,NLOSS)
        HRITE (NWRIT,1040) (PERLOS(I),I=1,NLOSS)
    170 WRITE(NWRIT,1390)
    READ (NREAD,1010) IMESH,ISLINE,ISTATL,IPLOT,TSOPER,ITSON,IDEBUG
    HRITE(NWRIT,1020) IMESH,ISLINE,ISTATL,IPLOT,ISUPER,ITSON,IDEBDG
    WRITE (NWRIT,1070)
    IF (MM.LE.10O.AND.MHT.LE.10C.AND.NHUB.LE.50.AND.NTIP.LE.5O.AND.
    1NIN.LE.50.AND.NOUT.LE.50.AND.NBLPL, LE.50.AND.NPPP.LE.50.AND.
    2NOSTAT.LE.50.AND.NSL.LE.50.AND.NLOSS.LE.50.AND.LSFR.GE.O.AND.
    3LSFR.LE.1.AND.LTPL.GE.O.AND.LTPL.LE.1.AND.LAMVT.GE.C.AND.
    4LAMVT.LE.1.AND.LROT.GE.O.AND.LROT.LE.1.AND.LBLAD.GE.O.AND.
    5LBLAD.LE.2.AND.LETEAN.GE.O.AND.LETEAN.LE. 1) GO TO 180
        WRITE(NWRIT,1400)
        STOP
C
C--CALCULATE MISCELLANEOUS CONSTANTS
C
    180 MMM1 = MM-1
    MHTP1= MHT+1
    EXPON=1./(GAM-1.)
    CP=AR*GAN*EXPON
    TGROG=2.*GAN*AR/(GAM+1.)
    PITCH=2,*3.1415927/FIOAT(NEL)
    MSFL=MSFL/FLOAT(NBL)
C
C--CALCULATE VALUES FOR RHIN,RTIN,RHOUT, AND RTOUT
C--IF ROTATION IS NOT USED
C
    IF (LROT.NE.0) GO TO 200
    CALL SPLINT(ZHUB,RHUB,NHUB,ZHIN,1,RHIN,DYDX,D2YDX2)
    CALL SPLENT (ZHOUT,1,RHOUT,DYDX,D2YDX2)
    CALL SPLINT(ZTIP,RTIP,NTIP,ZTIN,1,RTIN,DYDX,D2YDX2)
    CALL SPLENT (ZTOUT,1,RTOUT,DYDX,D2YDX2)
C
C--CALCULATE ESTINATED UPSTREAM AND DORNSTREAM VALUFS OF
C--STREAM FUNCTION, IF RADIUS WAS GIVEN AS INPUT
C
    200 IF (LSFR.EQ.0.AND.LAMVT.EQ.O) GO TO 320
        RINSQ = RTIN**2-RHIN**2
        ROUTSQ = RTOUT**2-RHOUT**2
        IF (LSER.EQ.O) GO TO 230
        IF(RINSQ*ROOTSQ.EQ.O.) HRITE(NURIT,1410)
        IF(RINSQ*ROUTSQ.EQ.O.) STOP
        DO 210 J=1,NIN
    210 SFIN (J) = (RADIN(J)**2-RHIN**2)/RINSQ
        DO 220 J=1,NOUT
    220 SFOUT(J) = (RADOUT(J)**2-RHOUT** 2)/ROUTSQ
        GO TO 260
C
C--CALCULATE ESTIMATED UPSTREAM AND DODNSTREAM VALUES OF
C--RADIOS. IF STREAM FUNCTION HAS GIVEN AS INPUT
C
    230 DO 240 J=1,NIN
```

```
    240 RADIN(J) = SQRT(RHIN**2+SFIN(J)*RINSQ)
        DO 250 J=1,NOUT
    250 RADOUT(J) = SQRT(RHOUT**2+SFOIJT(J)*ROUTSQ)
C
C--CALCULATE ESTIMATED UPSTREAM AND DOWNSTREAM TANGENTIAL VELOCTTIES,
C--IF MHIRL WAS GIVEN AS INPUT
C
    260 IF (LAMVT.EQ.1) GO TO 290
    DO 270 J=9,NIN
    270 VTHIN(J) = LAMIN(J)/RADIN(J)
        IF (LSFR.EQ.1) LAMVT=1
        IF (MBI.EQ.0) RETURN
        DO 280 J=1, NOUT
    280 VTHOOT(J) = LAMODT(J)/RADOUT(J)
        GO TO 320
C
C--CALCULATE ESTIMATED UPSTREAM AND DOWNSTREAM WHIRL,
C--If taNGENTIAL VELOCITY WAS GIVEN AS INPUT
C
    290 DO 300 J=1,NIN
    300 LAMIN(J) = RADIN(J)*VTHIN(J)
        IF (MBI.EQ.O) RETURN
        DO 310 J=1,NOUT
    310 LAMOUT(J) = RADOOT(J)*VTHOOT (J)
C
C--CALCULATE TANGENTIAL THICKNESS, IF NORMAL THICKNESS GIVEN AS INPOT
C
    32C IF (MBI.EQ.O) RETURN
        IF (LBLAD.EQ.1) GO TO 370
        IF (LBLAD.EQ.2) GO TO 390
        DIST(1) = 0.
        DO 360 JN=1.NBLPL
        DO 330 IN=2,NPPP
    330 DIST(IN) = DIST(IN-1) +SQRT((ZBL(IN,JN)-ZBL(IN-1,JN))**2*
        1(RBL(IN,JN)-RBL(IN-1,JN))**2)
                IF (LETEAN.EQ.1) GO TO 340
            CALL SPLINE(DIST,THBL(1,JN),NPPP,DTDS,ANG)
            GO TO 350
    340 DTHDSL = TAN(BETALE(JN)/57.295780)/RBL(1,JN)
        DTHDST = TAN(BETATE(JN)/57.295780)/RBL(NPPP,JN)
        CALL SPLISL (DIST,THBL (1,JN),NPPP,DTHDSL,DTHDST,DTDS,ANG)
    350 DO 360 IN=1,NPPP
        ANG(IN) = ATAN(RBL(IN,JN)*DTDS(IN))
    360 TTBL(IN,JN) = TNBL(IN,JN)/COS(ANG(IN))/RBL(IN,JN)
C
C--CALCOLATE BLADE SURFACE THETA COORDINATES, If THEY ARE NOT
C--GIVEN AS INPOT
C
    370 DO 380 JN=1,NBLPL
        DO 380 IN=1,NPPP
        TH1BL(IN,JN) = THBL(IN,JN) +TTBL (IN,JN)/2.
    380 TH2BL(IN,JN) = THBL(IN,JN)-TTBL(IN,JN) /2.
        RETURN
C
C--CAlCULATE MEAN CAMBER LINE THETA COORDINATES AND TANGENTIAL THICKNESS
C--If SURPACE THETA COORDINATES GIVEN AS INPOT
C
    390 DO 400 JN=1,NBLPL
        DO 400 IN=1.NPPP
        THBL(IN,JN)=(TH1BL(IN,JN) +TH2BL(IN,JN))/2.
```

```
    4OC TTBL(IN,JN) = TH1BL(IN,JN)-TH2BL(IN,JN)
        RETURN
C
C--FORMAT STATEMENTS
C
    1000 FORMAT (1H1//5CX,21(1H*)/50X,1H*,7X,6HMERIDL,5X,1H*/50X,21H* PRO
    1GRAM INPOT */50X,21(1H*)///)
    1010 FORMAT (16I5)
    1020 FORMAT (2X,16(2X,I5))
    1030 FORMAT (8F10.5)
    1040 FORMAT (1X,8G16.7)
    1050 FORMAT (20A4)
    1060 FORMAT (1X,20A4)
    1070 FORMAT (1H1)
    1100 FORMAT (///4X,20HGENERAL INPUT DATA/7X, 3HGAM,14X,2HAR,13X,
        14HMSFL, 11X,5HOMEGA,11X,6HREDFAC,1^X,6HVELTOL, 10X,4HFNEW,11X,
        24HDNEW)
    1102 FORMAT (///4X,2OHGENERAL INPUT DATA/7X,3HGAM,13X,3HRHO,13X,
        14HMSFL, 11X,5HOMEGA,11X,6HREDFAC,1CX,6HVELTOL, 10X,4HFNEH, 11X,
        24HDNEW)
    11C5 FORMAT (7X,71HVELTOL HAS BEEN BEDUCED BY THE MINIMIMM OF FN
        1EK OR DNEW TO =,8X,6HVELTOL/81X,G16.7)
    1110 FORMAT (103H MBI MBO MM NHT NBL NHUB NTIP
        1 NIN NOUT NBLPL NPPP NOSTAT NSL NLOSS)
    112C FORMAT (47H LSFR LTPL LAMVT LROT LBLAD LETEAN)
    1125 FORMAT (6X,6HANGROT)
    1130 FORMAT (///4X,29HHUB AND SHROIJD INPUT DATA/7X,5HZOMIN,11X,
        1 5HZOMBI, 11X,5HZOMBO, 10X,6HZOMOUT, 11X,5HROMIN, 11X,5HROMBI, 11X,
        2 5HROMBO, 10X,6HRCMOUT)
1140 FORMAT (7X,11HZHUB ARRAY)
1150 FORMAT (7X,11HRHOB ARRAY)
1160 FORMAT (7X,11HZTIP ARRAY)
1170 FORMAT (7X,11HRTIP ARRAY)
118C FORMAT (///4X,21HUPSTREAM INPUT DATA/7X,4HZHIN,11X,4HZTIN,
    1 11X,4HRHIN,11X,4HRTIN)
1190 FORMAT (7X,11HSFIN ARRAY)
12C0 FORMAT (7X,12HRADIN ARRAY)
1210 FORMAT (7X,10HTIP ARRAY)
1220 FORMAT (7X,11HPRIP ARRAY)
1230 FORMAT (7X,12HLAMIN ARRAY)
1240 FORMAT (7X,12HVTHIN ARRAY)
1250 FORMAT (///4X,23HDOWNSTREAM INPUT DATA/7X,5HZHOTT, 10X,5HZTOUT.
    1 10X,5HRHOUT, 10X,5HRTOUT)
1260 FORMAT (7X,12HSFOOT ARRAY)
1270 FORMAT (7X,13HRADODT ARRAY)
1280 FORMAT (7X,11HPROP ARRAY)
1290 FORMAT (7X,13HLOSOUT ARRAY)
1300 FORMAT (7X,13HLAMOUT ARRAY)
1310 FORMAT (7X,13HVTHOUT ARRAY)
1320 FORMAT (///4X,54HBLADE MEAN CAMBER LINE AND THICKNESS INPUT
    1 DATA/7X,10HZBL ARRAY)
133C FORMAT (7X, 10HRBL ARRAY)
1340 FORMAT (7X,11HTHBL ARRAY)
1350 FORMAT (7X,11HTNBL ARRAY)
1352 PORMAT (7X, 11HTTBL ARRAY)
1354 FORMAT (7X,12HTH1BL ARRAY)
1356 FORMAT (7X,12HTH2BL ARRAY)
1358 FORMAT (7X,13HBETALE ARRAY)
```

1359 FORMAT ($7 \mathrm{X}, 13 \mathrm{HBETATE}$ ARPAY)
1360 FORMAT (///4X,31HODTPUT STATION LOCATION DATA/7X,11HzHST ARRAY 1)

1365 FORMAT (7X, 11HRHST ARRAY)
1370 FORMAT ($7 \mathrm{X}, 11 \mathrm{HZTST}$ ARRAY)
1375 FORMAT ($7 \mathrm{X}, 11$ HRTST ARRAY)
1380 FORMAT (///4X, 4CHOUTPIT STREAMLINE FLOW FRACTION DATA/7X,11HFL 1FR ARRAY)
1385 FORMAT (///4X. 28 HDISTRIBUTION OF LOSS DATA/7X. 13 HPERCRD ARRAY)
1386 FORMAT ($7 \mathrm{X}, 13 \mathrm{HPERLOS}$ AFRAY)
1390 FORMAT ($/ / / 4 X, 28$ HOUTPUT PRINT CONTPOL DATA/5X,48HIMESH ISLINE 1ISTATL IPLOT ISUPER ITSON TDEBJG)
1400 FORMAT ($1 \mathrm{H} 1,10 \mathrm{X}, 90 \mathrm{HM}, \mathrm{MHT}, \mathrm{NHUB}, \mathrm{NTIP}$. NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL 1, NLOSS, LSFR, LTPL, LAMVT, LROT, LBLAD,OR LETEAN/13X, 25 HIS TOO LARGE OR 2 TOO SMALL)
141 C FORMAT (1H1, 1CX, 74 HWHEN UPSTREAM AND DOWNSTREAM INPUT DATA ARE GIV 1EN AS A FUNCTION OF RADTUS, /11X, 86 HTHERE MUST BE A CHANGE IN VALUE 2 BETHEEN RHIN AND RTIN AND ALSO RETWEEN RHOUT AND RTOTT/11X,57HAND 3 a CORPESPONDING CHANGE IN THE RADIN AND RADOUT ARRAYS) END

SUBROUTINE INPLOT
C--INPLOT PLOTS THE UPSTREAM AND DOWNSTREAM INPUT FLOW VARIABLES
C--AS WELL AS THE INPUT BLADF, SECTTONS FROM HOB TO SHROUD C

COMMON/INPUTT/GAM,AR,MSFL,OMEGA,REDFAC, VELTOL, FNE日, DNEG,MBI,MBO,
1 MM, MHT, NBL, NHUB, NTIP,NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL, NLOSS. LSFR, LTPL, LAMVT, LROT, LBLAD, LETEAN, ANGROT, IMESH, ISIINE, ISTATL, IFLOT, ISUPFR, ITSON, IDEBUG, ZOMIN, ZOMBI, ZOMBO, ZOMOUT, HOMIN, GOMBI, KCMBO, ROMOUT, ZHIN, Z,TIN, ZHOUT, ZTOUT, RHIN, RTIN, RHOUT,
 RADIN (50), TIP (59), PRIP(50), LAMIN (5n), VTHIN(50), SFOUT (5n), RADOUT (50), PROP (50), LOSOUT (5^), LAMOUT (50), VTHOUT (50). $\operatorname{BETALE}(50), \operatorname{BETATE}(50), \operatorname{ZHST}(50), \operatorname{ZTST}(50), \operatorname{RHST}(50), \operatorname{RTST}(50)$, $\operatorname{FLPR}(50), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), \mathrm{ZBL}(50,50), \operatorname{RBL}(50,50)$, $\operatorname{THBL}(50,50), \operatorname{TNBL}(50,50), \operatorname{TTBL}(50,50), \operatorname{TH} 1 \mathrm{BL}(50,50), \operatorname{TH} 2 \mathrm{BL}(50,50)$
COMMON/CALCON/MMM1, MHTP1,CP, EXPON,TGROG, PITCH,RLEH,RLET, RTEH,RTET, ZLE (50), RLE (50), ZTE (50), RTE (50), ZLEOM (10 1), RLEOM (101), SLEOM (101), THLEOM (101), $\operatorname{ZTFOM}(101), \operatorname{RTEOM}(101), \operatorname{STEOM}(101)$. THTEOM (101). ILE (101), ITE (101), ZOM (100, 101), $\operatorname{ROM}(100,101)$. $\operatorname{SOM}(100,101), \operatorname{TOM}(100,101), \operatorname{BTH}(101,101), \operatorname{DTHDS}(100,101)$, DTHDT $(100,101), \operatorname{PLOSS}(100,101), \operatorname{CPHI}(100,101), \operatorname{SPHI}(100,101)$
 RRTHBL $(50,50), \operatorname{RTH} 3 B L(50,50)$, RTH4BL $(50,50)$. PLTX(101), PLTY(101), DYDX(101), D2YDX2(101). $\operatorname{TITL} 1$ (9), TITL2 (9) , TITL3 (5), TITL4 (9), TITL5 (8), TITL6 (9), TITLT (6) , TITL8 (9), TITL10(13).,TITL11 (6), TITL12 (6), TITL13 (4), TITL14(2), TITL15 (5), TITL16(5), TITL17 (5), TITL18(5), TITL19 (5), TITL20 (5),TITL21(5), TITL22(5),TITL24(10), TITL25(9), TITL26(7), TITL27(2). TITI28 (2)
REAL MBL, LAMIN, LAMOUT, LOSOUT, LRNG
DATA TITLY/' INL', 'ET A', 'BSOL', 'UTE ' ''TOTA','L TE', MPER', 'ATOR' 1.'E 1/

DATA TITL2/'INLE','T AB','SOLU','TET','OTAL',' PRE','SSUR','E

```
    1/
            DATA TITL3/'INLE','T AB','SOLU','TE W','HIRL'/
            DATA TITL4/'INLE'.'T AB','SOLU','TE T','ANGE','NTIA','L VE','IOCI'
    1,'TY 1/
    DATA TITL5/'OUTL','ET A','BSOL','UTE ','TOTA','L PR','ESSU','RE '
    1/
    data TITL6/'OUTL'.'ET A','bSOL','UTE ','TOTA','L PR','ESSJ','RE L'
    1,'0SS '/
    DATA TITLT/'OUTL','ET A','BSOL','UTE ','WHIR','LL '/
    DATA TITL8/'OUTL','ET A','BSOL','UTE ','TANG','ENTI','AL V','ELOC'
    1,'ITY 1/
    DATA TITLIO/'INPO','T BL','ADE ','SRCT','IONS','$C1$','L2FR',
    ''OM Z','BL,','RBL,',' THB','L, T','NBL '
    DATA TITL11/'' B','LADE',' SEC','TION','NO.','XXXX',
    DATA TITL12/'COMB','INED',' BLA','DE S*,'ECTI','ONS '/
    DATA TITL13/'STRE','AM F','ONCT','ION '/
    DATA TITLI4/' RA','DIUS'/
    DATA TITL15/'INPO','T AR','RAY ',' TI','P 1/
    DATA TITL16/'INPU','T AR','RAY !', PR','IP %
    DATA TITL17/'INPU','T AR','RAY ','- LA','MIN '/
    DATA TITL18/'INPU','T AR','RAY ',' VT','HIN '/
    DATA TITL19/'INPU','T AR','RAY ',' PR','OP 1/
    DATA TITL20/'INPU','T AR','RAY ','- LO','SOUT'/
    DATA TITL21/'INPU','T AR','RAY ','- LA','MOUTM/
    DATA TITL22/'INPU','T AR','RAY ','I- VT','HOUT'/
    DATA TITL24/'BLAD','E S','ECTI','ON ','MERI'.'DION','AL '.
    1'COOR','DINA','TE %/
    DATA TITL25/'TANG','ENTI','AL C','OORD','INAT','E - ','RADI',
    1'OS*T','HETA'/
    DATA TITL26/'PRES','SURE',' LOS','S DI','STRI','BUTI','ON '/
    DATA TITL27/'PERC','RD 1/
    DATA TITL28/'PERI',OS '/
    DATA BLNK/: 1/
    DATA SYM/'X'/
    IF (IPLOT.LE.O) RETORN
C
C--PLOT TITLE ON HICROFILM
C
    CALL LRSIZE(0.0, 20.0,0.0,10.0)
    CALL LRCHSZ (4)
    CALL LRLEGN(TITLEI,80,0,1.C.5.0.1.0)
    CALL LRCHSZ (2)
    CALL LRSIZE(0.0, 10.0,0.0.10.0)
    CALL LRMON
    CALL LRXLEG(BLNK,1)
    CALL LRMOFP
C
C--PREPARE FOR PLOTTING OF INLET CONDITIONS
    IF (LSFR.EQ.1) GO TO 20
    PLTY(1) = SFIH(1)
    PLTY(101) = SPIN(NIN)
    DEL = (SFIN (NIN) -SFIN(1))/100.
    DO 10 J=2.100
    10 PLTY(J) = PLTY (J-1) + DEL
    BRNG = AMIN1{SFIN(1),SPOUT (1))
    TRNG = AMAX1(SFIN(NIN),SPOOT(NOUT))
    GO TO 40
    20 PLTY(1) = RADIN(1)
```

```
        PLTY(101) = RADIN(NIN)
        DEL = (RADIN(NIN)-RADIN(1))/100.
        DO 30 J=2.100
        30 PLTY (J) = PLTY (J-1) + DEL
        BRNG = AMIN1 (RADIN(1),RADOUT(1))
        TRNG = AMAX1(RADIN(NIN), RADOOT(NOUT))
        40 CALL LRANGE(0..O.,BRNG,TRNG)
C--PLOT INLET ABSOLUTE TOTAL TEMPERATURE
C
    IF (LSFR.EQ.0) CALL SPLINT(SFIN,TIP,NIN,PLTY, 101, PLTX,DYDX,
        1D2YDK2)
    IF (LSFR.EQ.1) CALL SPLINT(RADIN,TIP,NTN,PLTY,101,PLTX,OYDX,
        1D2YDX2)
            CALL LRMRGN(1.0,1.0,2.0.1.0)
            CALL LRGRID(1,1,11.0,11.0)
            CALL LRCHSZ (4)
            CALL LRLEGN(TITL1,36,C,1.0,0.5,0.0)
            CALL LRCHSZ (2)
            CALL LRLEGN(TITL15,20,0.4.C,1.3.0.0)
            IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
            IF (LSFR.EQ.1) CALL LRLEGN (TITL14,8,1,0.2,4,7,0.0)
            CALL LRCHSZ (4)
            CALL LRCURV (PLTX,PLTY,101,2,SYM.0.0)
            IF (LSFR.EQ.0) CALL LRCURV(TIP,SFIN,NIN,4,SYM,1.0)
            IF (LSFR.EQ.1) CALL LRCURV(TIP,RADIN,NIN,4,SYM,1.0)
C
C--PLOT INLET ABSOLUTE TOTAL PRESSURE
C
    IF (LSFR.EQ.0) CALL SPLINT(SFIN,PRIP,NIN,PLTY,101,PLTX,DYDX,
1D2YDX2)
    IF (LSFR.EQ.1) CALL SPLINT(RADIN,PRIP,NIN,PLTY, 101,PLTX,DYDX,
1D2YDX2)
CALL LELEGN(TITL2,32,0.1.6.0.5.0.0)
CALL LRCHSZ (2)
CALL LRLEGN(TITL16,20,0.4.0.1.3.0.0)
IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
IF (LSFR.EQ.1) CALL LRLEGN(TITL14,8,1,C.2,4.7.0.0)
CALL LRCHSZ (4)
CALL LRCORV(PLTX,PLTY, 101,2,SYM,0.0)
IF (LSFR.EQ.O) CALL LRCURV(PRIP,SFIN,NIN,4,SYM,1.0)
IP (LSFR.EQ.1) CALL LRCURV(PRIP,RADIN,NIN,4,SYM,1.0)
C
C--PLOT INLET ABSOLUTE WHIRL
C
    IF (LAHVT.EQ.1) GO TO 80
    IF (LSFR.EQ.0) CALL SPLINT(SFIN,LAMIN,NIN,PLTY,101, PLTX,DYDX,
1D2YDX2)
    IF (LSFR.EQ.1) CALL SPLINT(RADIN,LAMIN,NIN,PLTY,1O1,PLTX,DYDX,
1D2YDX2)
    CALL LRLEGN(TITL3,20,0.2.5,0.5,0.0)
    CALL LRCHSZ (2)
    CALL LRLEGN(TITL17,20,0,4.0,1.3,0.0)
    IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
    IF (LSFR.EQ.1) CALL LRLEGN(TITL14.8.1.0.2,4.7.0.0)
    CALL LRCHSZ (4)
    CALL LRCURV (PLTX,PLTY, 101,2,SYM,0.0)
    IF (LSFR.EQ.0) CALL LACURV(LAMIN,SFIN,NIN,4,SYM,1.0)
    IF (LSFR.EQ.1) CALL LRCURV(LAMIN,RADIN,NIN,4,SYM,1.0)
```

```
                            GO TO 110
C
            80 IF (LSFR.EQ.0) CALL SPLINT(SFIN,LAMIN,NIN, PLTY,1C1, PLTX,DYDX,
            1D2YDX2)
                IF (LSFR.EQ.1) CALL SPLINT(RADIN,LAMIN,NIN, PLTY, 101, PLTX,DYDX,
            1D2YDX2)
                CALL LRLEGN(TITL4,36,0.1.1,0.5,0.0)
            CALL LRCHSZ (2)
            CALL LRLEGN(TITL18,20,0,4, `,1.3,0.2)
                IF (LSFR.EQ.0) CALL LRLEGN(TTTLL13,16,1,0.2,4.2,0.0)
                IF (LSFR.EQ.1) CALL LRLEGN(TITL14,8,1,0.2,4.7,0.0)
            CALL LRCHSZ(4)
            RINSQ = RTIN**2-RHIN**2
            DO 1C0 J=1,101
            IF (LSFR.EQ.O) PLTX(J)=PLTX(J)/SQRT(RHIN**2+PLTY(J)*RINSQ)
            IF (LSFR.EQ.1) PLTX (J)=PLTX (J)/PLTY (J)
            CALL LRCURV(PLTX,PLTY,101,2,SYM,0.0)
            IF (LSFR.EQ.0) CALL LRCURV (VTHIN,SFIN,NIN,4,SYM,1.0)
            IF (LSFR.EQ.1) CALL LRCURV(VTHIN,RADIN,NIN,4,SYM,1.0)
C
C--PREPARE FOR PLOTTING OF OUTLET CONDITIONS
C
    11C IF (LSFR.EQ.1) GO TO 130
            PLTY(1) = SFOUT(1)
            PLTY(101) = SFOUT(NOUT)
            DEL = (SFOUT(NOUT)-SFOUT (1))/10N.
            DO 120 J=2,100
    120 PLTY(J)= PLTY (J-1) +DEL
        GO TO }15
    130 PLTY(1) = RADOUT(1)
        PLTY(101) = RADOUT(NOUT)
        DEL = (RADOUT (NOUT) - RADOUT (1))/100.
        DO 140 J=2,100
    140 PLTY(J) = PLTY(J-1) + DEL
C
C--PLOT OUTLET ABSOLUTE TOTAL ERESSURE
C
    150 IP (LTPL.EQ.1) GO TO 170
        IF (LSFR.EQ.0) CALL SPLINT(SFOUT,PROP,NOUT,PLTY, 101,PLTX,DYDX,
        1D2YDX2)
        IF (LSFR.EQ.1) CALL SPLINT(RADOUT,PROP,NOUT,PLTY,1DT,PLTX,DYDX,
        1D2YDX2)
            CALL L.RLEGN(TITL5,32,0,1.5,0.5,0.0)
            CALL LRCHSZ(2)
            CALL LRLEGN(TITL19,20,0,4.0,1.3,0.0)
            IF (LSFR.EQ.O) CALL LRLEGN(TITL13,15,1,0.2,4.2,0.0)
            IF (LSFR.EQ.1) CALL LRLEGN (TITL14,8,1,0.2,4.7.0.0)
            CALL LRCHSZ (4)
            CALL LRCURV(PLTX,PLTY,101,2,SYM,0.0)
            IF (LSFR.EQ.O) CALL LRCORV(PROP,SFOUT,NOUT,4,SYM,1.C)
            IF (LSFR.EQ.1) CALL LRCURV (PROP, RADOUT,NOUT,4,SIM,1.0)
            GO TO 190
c
C--PLOT OUTLET ABSOLUTE TOTAL PRESSURE LOSS
C
    170 IF (LSFR.EQ.9) CALL SPLINT(SFOUT,LOSOUT,NOUT,PLTY,1C1,PLTX,DYDX,
        1D2YDX2)
            IF (LSPR.EQ.1) CALL SPLINT(RADOOT,LOSODT,NOOT,PLTY,101,PLTX,DYDX,
```

```
    1D2YDX2)
    CALL LELEGN(TITL6,36,0,1.0,0.5,0.0)
    CALL LRCHSZ (2)
    CALL LRLEGN(TITL20,20,0.4.0.1.3.0.0)
    IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
    IF (LSFR.EQ.1) CALL LRLEGN(TITL14,8,1,0.2,4,7,0.0)
    CALL LRCHSZ (4)
    CALL LRCURV (PLTX,PLTY,101,2,SYM,0.0)
    IF (LSFR.EQ.0) CALL LRCURV (LOSOUT,SPOUT,NOUT,4,SYM, 1.0)
    IF (LSFR.EQ.1) CALL LRCURV(LOSOUT,RADOUT,NOUT,4,SYM,1.0)
    19C CALL LRCHSZ (0)
    IF (MBT.EQ.0) GO TO 240
C
C--PLOT OUTLET ABSOLUTE WHIRL
C
    IF (LAMVT.EQ.1) GO TO 210
    IF (LSFR.EQ.0) CALL SPLINT(SFOOT,LAMOUT,NOUT,PLTY,101,PLTX,DYDX,
    1D2YDX2)
    IF (LSFR.EQ.1) CALL SPLINT(RADOUT,LAMOUT,NODT,PLTY,101,PLTX,DYDX,
    1D2YDX2)
    CALL LRCHSZ (4)
    CALL LRLEGN(TITL7,24,0,2.0,0.5,0.0)
    CALL LRCHSZ(2)
    CALL LRLEGN(TITL21,20,0,4,0,1,3,0.0)
    IF (LSFR.EQ.0) CALL LRLEGN(TITL13,16,1,0.2,4.2,0.0)
    IF (LSFR.EQ.1) CALL LRLEGN(TITL14,8,1,0.2,4.7.0.0)
    CALL LRCHSZ (4)
    CALL LRCURV(PLTX,PLTY,101,2.SYM,0.0)
    IF (LSFR.EQ.0) CALL LRCURV (LAMOUT,SFOUT,NOUT,4,SYM,1.0)
    IF (LSFR.EQ.1) CALL LRCURV(LAMOUT, RADOMT,NOUT.4,SYM,1.0)
    GO TO 240
C
C--PLOT OUTLET ABSOLUTE TANGENTIAL VELOCITY
C
    210 IF (LSFR.EQ.O) CALL SPLINT (SFOUT,LAMOUT,NOUT,PLTY, 1O1,PLTX,DYDX,
    1D2YDX2)
    IF (LSFR.EQ.1) CALL SPLINT(RADOOT,LAMOUT,NOUT,PLTY,101,PLTX,DYDX,
    1D2YDX2)
            CALL LRCHSZ (4)
            CALL LRLEGN(TITL8,36,C,1.0, C.5,0.C)
            CALL LRCHSZ (2)
            CALL LRLEGN(TITL22,20,0,4.0,1,3,0.0)
            IF (LSFR.EQ.0) CALL LALEGN(TITL13,15,1,0.2,4.2,0.0)
            IF (LSFR.EQ.1) CALL LRLEGN(TITL14.8.1.0.2,4.7.0.0)
            CALL LRCHSZ(4)
            ROUTSQ = RTOUT**2-RHOUT**2
            DO 230 J=1.101
            IF (LSFR.EQ.0) PLTX(J)=PLTX (J)/SQRT (RHOUT**2+PLTY(J)*ROUTSQ)
    230 IF (LSFR.EQ.1) PLTX(J)=PLTX (J)/PLTY (J)
            CALL LRCURV(PLTX,PLTY,101,2,SYM,0.0)
            IF (LSFR.EQ.0) CALL LRCURV (VTHOUT,SFOUT,NOUT,4,SYM, 1.0)
            IP (LSFR.EQ.1) CALL LRCURV(VTHOUT,RADOUT,NOUT.4.SYM,1.0)
C
C--PLOT PERCRD AND PERLOS
C
    240 IF (NLOSS.EQ.0) GO TO 248
            LRNG = PERCRD(1)
            RRNG = PERCRD(NLOSS)
            BRNG = PERLOS(1)
```

```
    TRNG = PERLOS(NLOSS)
    DO 242 I=1,NLOSS
    LRNG = AMIN1(LRNG,PERCRD(I))
    RRNG = AMAX1(RRNG,PERCRD(I))
    BRNG = AMIN1(BRNG,PERLOS(I))
    242 TRNG = AMAX1(TRNG,PERLOS (I))
    PLTX(1) = PERCRD(1)
    PLTX(101) = PERCRD(NLOSS)
    DEL = (PERCRD(NLOSS)-PERCRD(1))/100.
    DO 244 I=2,100
    244 PLTX(I) = PLTX(I-1) +DEL
    CALL SPLINT(PERCRD,PERLOS,NLOSS, PLTX,101, PLTY,DYDX,D2YDX2)
    CALL LRANGE(LRNG,RRNG,BRNG,TRNG)
    CALL LRCHSZ (4)
    CALL LRLEGN(TITL26, 28,0.1.7,r.5.0.0)
    CALL' LRCHSZ (2)
    CALL LRLEGN(TITL27,8,0,4.7,1.3,0.0)
    CALL LRLEGN(TITL28,8,1,0.2,4.7,0.0)
    CALL LRCHSZ (4)
    CALL LRCURY (PLTX,PLTY, 101,2,SYM,0.0)
    CALL LRCURV (PERCRD,PERLOS,NLOSS,4,SYM,1.0)
    CALL LRCHSZ(0)
C
C--PLOT INPUT BLADE SECTIONS
C
    248 IF (MBI.EQ.0) RETURN
C--CALCULATE blade SECtION plot coordinates along meridional plane
    DO 250 JN=1,NBLPL
        MBL(1,JN) = ZBL(1,JN)
        DO 250 IN=2,NPPP
    250MBL(IN,JN)=MBL(IN-1,JN)+SQRT((ZBL(IN,JN)-ZBL (IN-1,JN))**2*
    1(RBL (IN,JN)-RBL (IN-1,JN))**2)
C--CALCOLATE TANGENTIAI PLOT COORDINATES
    DO 260 JN=1,NBLPL
    DO 260 IN=9,NPPP
    DELRTH = RBL(IN,JN)*PITCH
    RTHBL (IN,JN) = RBL (IN,JN)*THBL(IN,JN)
    RTH1BL(IN,JN) = RBL(IN,JN)*TH1BL.(IN,JN)
    RTH2BL(IN,JN) = RBL(IN,JN)*TH2BL(IN,JN)
    RRTHBL(IN,JN) = RTHBL(IN,JN) +DELRTH
    BTH3BL(IN,JN) = RTH1BL(IN,JN) +DELRTH
    260 RTH4BL(IN,JN) = RTH2BL(IN,JN) +DELRTM
C--CALCULATE RANGE OF PLOTS, AND SET UP FOR PLOTTING INDIVIDUAL
C--BLADE SECTIONS
    LRNG = MBL (1,1)
    RRNG = MBL (NPPP, 1)
    BRNG = RTH2BL (1,1)
    TRNG = RTH3BL (NPPP,NBLPL)
    DO 270 JN=1,NBLPL
    LRNG = AMIN1 (LRNG,MBL (1,JN))
    RRNG = AMAX1(RRNG,MBL (NPPP,JN))
    DO 270 IN=1,NPPP
    BRNG = AMIN1(BRNG,RTH2BL(IN,JN))
270 TRNG = AHAX1(TRNG,RTH3日L(IN,JN))
    RRTEM = RRNG
    DELLR = RRNG-LRNG
    DELBT = TRNG-BRNG
    DELRNG = AHAX1 (DELLR,DELBT)
    RRHG = LRNG +DELRNG
```

```
    TRNG = BRNG+DEI.RNG
    CALL LRANGE(LRNG,RRNG,BRNG,TRNG)
C--PLOT BLADE SECTIONS AND SHOW SOLIDITY
    CALL LRCHSZ (4)
    CALL LRLEGN(TITL10,52,0,2.7.C.7.0.0)
    DO 280 J N=1,NBLPL
    CALI LRCHSZ (3)
    CALL LRCNVT(JN, 1,TITL11(6),1,4,0)
    CALL LRLEGN(TITL11,24,0,3.0.9.5,0.0)
    CALL LRCHSZ(2)
    CALL LRLEGN(TITL24,40.0.2.8,1.3,0.0)
    CALL LRLEGN(TITL25,36,1,0.2,3.3,0.0)
    CALL LRCHSZ(4)
    CALL LRCURV (MBL (1,JN),RTHBL (1,JN),NPPP, 2,SYM,0.0)
    CALL LRCORV (MBL(1,JN),RTH1BL(1,JN),NPPP,2,SYM,0.0)
    CALL LRCORV (MBL (1,JN),RTH2BL (1,JN),NPPP,2,SYM,0.0)
    CALL LRCURV (MBL(1,JN),RRTHBL(1,JN),NPPP,2,SYM,0.0)
    CALL LRCORV (MBL (1,JN),RTH3BL(1,JN),NPPP,2,SYM,0.0)
    CALL LRCURV (MBL(1,JN), RTH4BL(1,JN),NPPP,2,SYM,0.0)
    IF (LBLAD.EQ.2) GO TO 275
    CALL LRCURV (MBL (1,JN), RTHBL (1,JN),NPPP,4,SYM,0.0)
    CALL LRCURV(MBL(1,JN),RRTHBL(1,JN),NPPP,4,SYM,1.0)
    GO TO 280
    275 CALL LRCURV(MBL(1.JN),RTH1BL(1,JN),NPPP,4,SYM,0.0)
    CALL LRCORV (MBL(1,JN),RTH2BL(1,JN),NPPP,4,SYM,0.0)
    CALL LRCURV (MBL (1,JN),RTH3BL(1,JN),NPPP,4,SYM,0.0)
    CALL LRCURV (MBL(1,JN), RTH4BL(1,JN),NPPP,4,SYM,1.0)
    280 CONTINUE
C--CALCULATE RANGE OF PLOT, AND SET UP FOR PLOT OF MOLTIPLE
C--BLADE SECTIONS
    RRNG = RRTEM
    TRNG = RTH1BL(NPPP,NBLPL)
    DO 290 JN=1.NBLPL
    DO 290 IN=1,NPPP
    290 TRNG = AMAX1(TRNG,RTH1BL(IN,JN))
    DELBT = TRNG-BRNG
    DELRNG = AMAX1 (DELLR,DELBT)
    RRNG = LRNG+DELRNG
    TRNG = BRNG+DELRNG
    CALL IRANGE(LRNG,RRNG,BRNG,TRNG)
C--PLOT MULTIPLE BLADE SECTIONS
    CALI LRGRID (3,3,11.0,11.0)
    CALL LRCHSZ (3)
    CALL LRLEGN(TITL12,24,0.3.4.9.5.0.0)
    CALL LRCHSZ(2)
    CALL LRLEGN(TITL24,40.0,2.8,1.3,0.0)
    CALL LRLEGN(TITL25,36,1,0.2,3.3,0.0)
    CALL LRCHSZ (4)
    EOP = 0.0
    DO 300 JN=1,NBLPL
    IF (JN.EQ.NBLPL) EOP=1.0
    CALL LRCORV (MBL (1,JN),RTHBL (1,JN),NPPP,2,SYM,0,0)
    CALL LRCORV (MBL (1,JN),RTH1BL (1,JN),NPPP,2,SYM,0.0)
    30C CALL LRCORV (MBL (1,JN),RTH2BL(1,JN),NPPP,2,SYM,EOP)
    CALL LRCORV(ZBL,RBL,0,1,SYM,1.0)
    CALL LRCHSZ(0)
    RETORN
    FND
```

```
    SUBROUTINE MESHO
C
C--mESHO CALCULATES COORDINATES OF AN ORTHOGONAL MESH
C--COVERING THE SOLUTION REGION
C
    COMMON/INPUTT/GAM,AR,MSFL,OHFGA,REDFAC,VELTOL,FNEW,DNEG,MBI,MBO,
    1 MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
    2 LSFR,LTPL,LAMVT,LROT,LBLAD,LETEAN,ANGROT,IMESH,ISLINE,
    3 ISTATL,IPLOT,ISMPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMBO,ZOMOUT,
    4 ROMIN, ROMBI, ROMBO,ROMOUT, ZHIN, ZTIN,ZHOUT, ZTOUT, RHIN,RTIN, RHOUT,
    5 RTOUT,TITLEI (20), ZHUB(50), RHUB(50), ZTIP(50), RTIP(50),SFIN(50),
    6 RADIN(50),TIP(50), PRIP(50), LAMIN(50),VTHIN(50),SFOUT(50),
    7 RADOUT(50), PROP(50), LOSOUT(5^), LAMOUT (50),VTHOUT(50),
    8 BETALE(50), BETATE (50), ZHST (50), ZTST(50), RHST(50), RTST(50),
    9 FLFR(50), PERCRD(50), PERLOS(50), ZBL(50,50), RBL (50.50).
    1TTHBL}(50,50),\operatorname{TNBL}(50,50),TTBL (50,50),TH1BL (50,50),TH2BL (50,50
    COMMON/CALCON/MMM1,MHTP1,CP,EXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
    1 ZLE(50),RLE(50), ZTE(50),RTE(50), ZLFOM(1C1),RLEOM(101),
    2 SLEOM (101), THLEOM(101), ZTEOM(101), RTEOM (101),STEOM(101).
    3 THTEOM(101),ILE(101).ITE(101),ZOM(100,101), ROM(100,101).
    4 SOM(100,101), TOM(100,101), 晶(100,101), DTHDS (100, 101).
    5 DTHDT (100,101), PLOSS (100,101), CPHI (100,101), SPHI (100,101)
            COMMON/ROTATN/ZHROT (50), RHROT (50), ZTROT(50), RTROT (50).
            I ZLEOMR(101),RLEOMR(101), ZTEOMR(101),RTEOMR(101).
            2 ZBLROT (50,50), BBLROT (50,50), ZOMROT (100, 101), ROMROT (100, 101)
            DIMENSION ZRAD (50.101), RRAD (50.101). Z1(100), R1(100).
    1 7,NOR(2), RNOR(2),SLOM(100), AAA (100), BBB(100)
C
C--ROTATE HUB AND TIP COORDINATES
    CALL ROTATE (ANGROT,ZHUB,RHUB,NHIS,1,5C,1,ZHROT,RHROT)
    CALL ROTATE (ANGROT,2TIP,RTIP,NTIP,1,50.1,ZTROT,RTROT)
C
C--DIVIDE HUB AND TIP CONTOURS
    NMAX = MAXO(NHUB,NTIP)
    IF (NHUB.EQ.NTIP) GO TO 8
    IF (NHUB.EQ.NMAX) GO TO 4
    DELH = (ZHROT (NHUB)-ZHROT (1))/FLOAT (NMAX-1)
    DO 2 I=1,NMAX
    ZRAD(I,MHTP1) = 2TROT(I)
    RRAD (I,MHTP1) = RTROT(I)
    2 2RAD(I, 1) = 2HROT(1) +FLOAT (I-1)*DELH
    CALL SPLINT (2HROT,RHROT,NHUB, ZRAD (1,1),NMAX,RRAD(1,1),AAA,BBB)
    GO TO 15
        4 DELT = (ZTROT (NTIP)-2TROT(1))/FLOAT(NMAX-1)
            DO 6 I=1,NMAX
            ZRAD(I, 1) = 2HROT(I)
            RRAD(I,1) = RHROT(I)
        2 ZRAD(I,MHTP1) = 2TROT(1) +FLOAT(I-1)*DELT
            CALL SPLINT(ZTROT,RTROT,NTIP,ZRAD(1,MHTP1),NMAX,RRAD(1,MHTP1),AAA,
            1 BBB)
            GO TO 15
        8 DO 10 I=1,NMAX
            ZRAD(I,1) = ZHROT(I)
            RRAD(I,1) = RHROT(I)
            ZRAD(I,MHTP1) = ZTROT(I)
    10 RRAD (I,MHTP1) = RTROT(I)
    15 CONTINUE
C
C--FILI ZRAD AND RRAD ARRAYS FROM HUB TO TIP
```

```
        DO 20 I = 1,NMAX
        DELZ = (ZRAD(I,MHTP1)-ZRAD(I, 1))/FLOAT(MHT)
        DELR = (RRAD(I,MHTR1)-RRAD(I, 1))/FLOAT(MHT)
        DO 20 J=2,MHT
        ZRAD(I,J) = ZRAD (I,J-1) + DELZ
        20 RRAD(I,J) = RRAD(I,J-1) + DELR
C
C--ROTATE INPUT MESH BOUNDARIES
    CAN = COS (ANGROT)
    SAN = SIN(ANGROT)
    ZOMINR = ZOMIN*CAN*ROMIN*SAN
    ZOMBIR = ZOMBI*CAN+ROMBI*SAN
    ZOMBOR = ZOMBO*CAN+ROMBO*SAN
    ZOMOUR = ZOMOUT*CAN+ROMOUT*SAN
C
C--COMPUTE ZOMROT ON HUB
            ZOMROT(1,1) = ZOMINR
            IF (MBI.EQ.0) GO TO 50
            MBIM1 = MBI-1
            DELZ= (ZOMBIR-ZOMINR)/FLOAT(MBIM1)
            DO 3C I=2,MBI
    3^ ZOMROT (I,1)= ZOMROT (I- 1,1) +DELZ
            DELZ = (ZCMBOR-ZOMBIP)/FLOAT(MBO-MBT)
            MBIP1 = MBI+1
            DO 40 I=M8IP1,MBC
    40 ZOMROT (I,1)= ZOMROT(I-1,1) + DELZ
            DELZ=(ZOMOUR-ZOMBOR)/FLCAT (MM-MBO)
            MBOP1 = MBO+1
```



```
            IF (MBI.EQ.0) MBOP1=2
            DO 50 I=MBOR1,MM
    60 ZOMROT (I, 1)= ZOMROT(I-1,1) + DELZ
C
C--COMPUTE ROMROT AND SLOPE ON HUB
        CALL SPLINT(ZRAD(1,1), RRAD(1, 1),NMAX,ZOMROT (1, 1),MM,ROMROT (1, 1),
        1SLOM,BBB)
            DO 70 I=1,MM
            PHI = ATAN(SLOM(I)) + ANGROT
            SPHI(I,1) = SIN(PHI)
    7C CPHI(I,1) = COS(PHI)
C
C--COMPUTE ZOMROT AND ROMROT RON BY ROW FROM HUB TO TIP
C
    DO 100 J=2,MHTP1
c
C--MOVE ALONG PRESENT RON, ONE POINT AT A TTME, LOCATING
C--COORDINATES OF INTERSECTIONS OF LINES NORMAL TO PREVIOUS ROW
    DO }80\textrm{I}=1,\textrm{MM
C
C--CALCULATE POINTS ON STRAIGHT LINE NORMAL TO PREVIOUS ROK
    RNOR(2) = ROMROT(I,J-1)
    ZNOR(2) = ZOMROT(I,J-1)
    RNOR(1) = RNOR(2)-DELR
    ZNOR(1) = ZNOR(2)+SLOM(I)*DELR
C
C--LOCATE INTERSECTION OF LINE NORMAL TO PREVIOUS ROW WITH PRESENT ROW
    80 CALL INRSCT(ZRAD (1,J),RRAD(1,J),NMAX,ZNOR,RNOR,2,Z1(I),R1(I))
C
C--CALCULATE SLOPES OF PRESENT ROW AT INTERSECTION POINTS
```

CALL SPLINT(ZRAD (1, J), RRAD (1, J), NMAX,Z1, MM, AAA, SLOM, BBB)

C

C--CALCUlATE INTERSECTIONS OF LINE NORMAL TO PRESENT ROW WITH
C--PRESENT ROW
DO $90 \quad I=1, M M$
$\mathrm{Z} 2=($ ZOMROT $(\mathrm{I}, \mathrm{J}-1)+(\operatorname{BOMROT}(\mathrm{I}, \mathrm{J}-1)-\mathrm{RI}(\mathrm{I})) * \operatorname{SLOM}(\mathrm{I})+21(\mathrm{I}) * S L O M(I) * * 2$
1)/(1.+SLOM(I)**2)

90 ZOMROT $(\mathrm{I}, \mathrm{J})=(\mathrm{Z} 1(\mathrm{I})+22) / 2$.

C

c--CALCULATE ROMROT AND SLCPES AND ANGLES ON PRESENT ROW
CALL SPLENT (ZOMROT $(1, J)$, MM, ROMROT $(1, J), S L O M, B B B)$
DO $100 \quad \mathrm{I}=1$, MM
PHI = ATAN(SLOM(I)) +ANGROT
$\operatorname{SPHI}(I, J)=S I N(P H I)$
$100 \operatorname{CPHI}(\mathrm{I}, \mathrm{J})=\cos (\mathrm{PHI})$
C
C-ONROTATE ZOMROT AND ROMROT TO GET ZOM AND ROM
C
CALL ROTATE(-ANGROT, ZOMROT, ROMROT,MM,MHTP1,100,101,ZOM, ROM) RETURN
END

SUBROUTINE MEPLOT
C
C--meplot plots the blade geometry and the generated orthogonal mesh C

COMMON/INPUTT/GAM, AR,MSFL, OMEGA, REDFAC, VELTOL, FNEH, DNEM,MBI,MBO,
1 MM, MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
2 LSFR, ITPL,LAMVT,LROT, LBLAD,LETEAN,ANGROT, IMESH, ISLINE,
3 ISTATL,IPLOT, ISUPER, ITSON, IDEBUG, ZCMIN, ZOMBI, ZOMBO, ZOMOUT,
4 ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN, RTIN, RHODT,
5 RTOUT, TITLEI (20), ZHUB (50), RHUB (50), 2 TIP(50), RTIP (50), SFIN(50),
6 RADIN (50), TIP (50), $\operatorname{PRIP}(50), \operatorname{LAMIN}(50), \operatorname{VTHIN}(50), S F O T T(50)$,
7 RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50),
$8 \operatorname{BETALE}(50), \operatorname{BETATE}(50), \operatorname{ZHST}(50), \operatorname{ZTST}(50), \operatorname{PHST}(50), \operatorname{RTST}(50)$,
$9 \operatorname{FLFR}(50), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), \operatorname{ZBL}(50,50), \operatorname{RBL}(50,50)$,
1 Thbl $(50,50), \operatorname{TNBL}(50,50), \operatorname{TtBL}(50,50), \operatorname{TH} 1 \mathrm{BL}(50,50), \operatorname{Th} 2 \mathrm{BL}(50,50)$
COMMON/CALCON/MMM1,MHTP1, CP, EXPON,TGROG, PITCH,RLEH, RLET,RTEH,RTET, $\mathrm{ZLE}(50), \operatorname{RLE}(50), \mathrm{ZTE}(50), \operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLEOM}(1 \cap 1)$,
$2 \operatorname{SLEOM}(101), \operatorname{THLEOM}(101), \operatorname{ZTEOM}(101), \operatorname{RTEOM}(101), \operatorname{STEOM}(101)$,
3 THTEOM(101), ILE(101), TTE (101), ZOM(100, 101), ROM (100, 1C1),
$4 \operatorname{SOM}(100,101), \operatorname{TOM}(100,101), \operatorname{BTH}(100,101), \operatorname{DTHDS}(100,101)$,
$5 \operatorname{DTHDT}(100,101), \operatorname{PLOSS}(100,101), \operatorname{CPHI}(100,101), \operatorname{SPHI}(100,101)$
COMMON/PLTCOM/ZLRNG, ZRRNG,RBRNG,RTRNG, ZHPLT(100), RHPLT(100).
$1 \operatorname{ZSPLT}(100), \operatorname{RSPLT}(100), \operatorname{ZLPLT}(100), \operatorname{RLPLT}(100), \operatorname{ZTPLT}(100)$.
2 RTPLT(100)
DIMENSION TITL1(15), TITL2(10), TITL3(3), TITL4(3), 2TEM(101),
1 RTEM (101)
data titli/'HUB,',' SHR', OUD,',' AND', BLA', 'dE B', 'OUND', 'ARIE'
1, 'S\$C1', '\$R8I', 'N ME', 'RIDI', 'ONAL', 'PLA', 'NE '/
DATA TITL2/'ORTH', 'OGON', 'ALM', 'ESH\$', 'C1\$L', '2IN ', 'MERI', 'DION'
1.'AL P','LANE'/

DATA TITL3/'Z D'.'IREC', TTION'/
DATA TITL4/'R D','IREC', 'TION'/
DATA SYM/'XI/

```
            DATA SYN/'O'/
            IF (IPLOT.LE.O) RETURN
    c
    C--OBTAIN PLOT BOUNDARIES, AND SCALE THE PLOT
            CALL PTBDRY
    C
    C--PLOT BLADE GEOMETRY AND PLOT ORTHOGONAL MESH
            CALL LRMRGN(1.0,1.0.2.7.1.0)
            CALL LRAMGE(ZLRNG,ZRRNG, BBRNG,RTRNG)
            IPLT= 1
        10 EOP = 0.
            IF (IPLT.EQ.1.OR.IPLT.EQ.3)
            CALL LRGRID (-1,-1;1.0,1.0)
            CALL LRCHSZ (4) CALL LRGRID(3,3,11.0.11.0)
            IF (IPLT
            CALL LRLEGN(TITL1.50.0.1.3.0.7,0.0)
            CALL LRCHSZ (2)
            CALL LRLEGN(TITL3,12,0,4.5,1,5,0.0)
            CALL LRLEGN(TITL4,12,1,5.4,4.5,0.0)
            CALL LRCHSZ (4)
            CALL LRCURV(ZHPLT,RHPLT, 100.2,SYM,0.0)
            CALL LRCURV(ZSPLT,RSPLT, 100,2,SYM,0.0)
            IF(MBI.EQ.0) GO TO 12
            CALL LRCURV (ZLPLT,RLPLT, 100,2.SYM,0.0)
            CALL LRCURV(ZTPLT,RTPLT, 100,2,SYM,O.0)
        12 IF (IPLT.GT.2) GO TO 20
            IF(MBI.EQ.0) EOP = 1.
            CALL LRCURV(ZHOB,RHUB,NHUB,4,SYM,0.2)
            CALL LRCURV(ZTIP,RTIP,NTIP,4,SYM,EOP)
            IF(MBI.EQ.O) GO TO 18
            DO 15 JN=1,NBLPL
        15 CALL LRCURV(ZBL(1,JN),RBL(1,JN),NPPP,2,SYM,C.0)
            CALL ROTATE (-ANGROT,ZLE,RLE,NBLPL,1,50,1, ZTEM,RTEM)
            CALL LRCURV (ZTEM,RTEM,NBLPL,3,SYN,0.0)
            CALL ROTATE(-ANGROT, 2TE,RTE,NBLPL,1,50,1,ZTEM,RTEM)
            CALL LRCURV(ZTEM,RTEM,NBLPL,3,5YN,1.0)
        IPLT = IPLT+1
            GO TO 10
C--PLOT VERTICAL MESH LINES
    2C DO 40 I=1.MM
            DO 30 J=1,MHTP1
            ZTEM(J) = ZOM(I,J)
    30 RTEM(J)= ROM(I,J)
    40 CALL LRCURV(ZTEM,RTEM,MHTP1,2,5YM,0.0)
C--PLOT HORIZONTAL MESH LINES
    EOP=0.0
    DO 50 J=2,MHT
    IF (J.EQ.MHT) EOP=1.0
    50 CALL LRCORV(ZOM (1,J),ROM (1,J),MM,2,SYM,EOP)
    IF (IPLT.LE.4) GO TO 10
    CALL LRCURV(ZTEM,RTEM,0,1,SYM,1.0)
    CALl LRCHSZ (0)
    RETURN
    END
```

```
C
C--PTBDRY OBTAINS THE FUB AND SHROUD AND BLADE LEADING AND TRAILING EDGE
C--BOUNDARIES FOR PLOTTING, AND SCALES THE PLOT
C
    COMMON/INPUTT/GAM,AR,MSFL,OMEGA,REDFAC,VELTOL,FNEW,DNEW,MBI,MRO,
    1 MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
        LSFR, LTPL, LAMVT, LROT, LBLAD,LETEAN,ANGROT, IMESH,ISLINE,
        ISTATL,IPLOT,ISUPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMBO,ZOMOUT,
        ROMIN, FOMBI,ROMBO, ROMOOT, ZHIN,ZTIN, ZHOUT, ZTOUT, RHIN, RTIN,RHOUT,
        RTOUT,TITLEI(20), ZHUB(5C), PHUB(50), 2TIN(50), RTIP(5n),SFTN(50),
        RADIN(50),TIP(50),PRIP(50), LAMIN(50),VTHIN(50),SFOUT(52).
        RADOUT (50), PROP(50), LOSOUT (5), LAMOUT (50),VTHOUT (50),
        BETALE (50), BETATE (50), ZHST (5`), ZTST (50), RHST (50), PTST(50),
        FLFR(50), PERCRD (50), PERLOS (50), ZBL (50.50), RBL (50.50),
        THBL (50,50),TNBL (50,50),TTBL (50,50),TH1BL (50,50),TH2BL (50,50)
        COMMON/CALCON/MMM1,MHTY1,CP,FXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
            ZLE(50),RLE(50), ZTE(50),RTE(50), ZLEOM(1C1), RLEOM(171),
    2 SLEOM(101).THLEOM(101), ZTFOM (101), RTEOM(101),STEOM (101).
    3 THTEOM(101), ILE(101).ITE(101), ZOM(1CO,101), ROM(120,101).
    4 SOM(100,101), TOM(100,101), BTH(100,101), DTHDS(100.101),
    5 DTHDT(100,101), PLOSS (100,101), CPHI (100,1^1),SPHI(100, 101)
    COMMON/ROTATN/ZHROT(50).RHROT (50), 2TROT(50), RTROT (50),
    1 ZLEOMR(101), RLEOMR(101), ZTEOMR(101), RTEOMR(101),
    2 ZBLROT (50,50), RBLPOT (50,50), 2OMROT (100,1C 1), POMROT (100, 101)
        COMMON/PLTCOM/ZLRNG,ZRRNG,RBRNG,RTRNG,ZHPLT(100), RHPLT(100),
    1 ZSPLT(100),RSPLT(100), ZLPLT(100),RLPLT(100),ZTPLT(100).
    2 RTPLT (100)
        DIMENSION AAA(100), BBB(100)
C
C-OBGTAIN PLOT POINTS ON HUB
C
    DELZ = (ZHROT (NHOB) - ZHROT (1))/99.
    ZHPLT(1) = ZHROT(1)
        DO 10 I =2,100
        10 ZHPLT(I) = ZHPLT(I-1)+DELZ
        CALL SPLINT (ZHROT, RHPOT, NHUR,7HPLT, 1OO, RHPLT,AAA, BBB)
        CALL ROTATE (-ANGFOT, ZHPLT, FHPLT, 1\capO, 1, 10@,1, ZHPLT, RHPLT)
C
C--OBTAIN PLOT POINTS ON SHROUD
C
        DELZ = (ZTROT(NTIP)-ZTROT(1))/99.
        ZSPLT(1) = ZTROT(1)
        DO 20 I= 2,100
        20 ZSPLT(I) = 2SPLT(I-1)+DELZ
        CALL SPLINT (ZTROT,RTROT,NTIP,ZSPLT,10O,RSPLT,AAA,BRB)
        CALL ROTATE(-ANGROT, ZSPLT,RSPLT,1に0,1,100,1, ZSPLT, RSPLT)
        IF (MBI.EQ.O) GO TO 50
C
C--OBTAIN PLOT pOINTS UP BLADE LEADING EDGE
C
    DELR = (RLET-RLEH)/99.
    RLPLT(1) = RLEH
    RLPLT(1CO) = RLET
    DO 30 J=2,99
    30 RLPLT (J) = RLPLT (J-1) + DELR
        CALL SPLINT (RLE,ZLE,NBLPL,RLPLT,10?, ZLPLT,AAA,BBR)
        CALL ROTATE(-ANGROT, ZLPLT,RLPLT,100,1,10^,1,2LPLT,RLPLT)
c
```

```
C--OBTAIN PLOT POINTS UP BLADE TRAILING EDGE
C
    DELR = (RTET-RTEH)/99.
    RTPLT(1) = RTEH
    RTPLT(100) = RTET
    DO 4C J=2,99
    4n RTPLT(J) = RTPLT(J-1) +DELR
    CALL SPLINT(RTE,ZTE,NBLPL,RTPLT,100, ZTPLT,AAA,BBB)
    CALL ROTATE(-ANGROT, 2TPLT, RTPLT,100,1,100,1,ZTPLT,RTPLT)
C
C--CAlculate the range of the flom
C
    50 ZLENG = ZHUB(1)
        ZRRNG = ZHUB(NHUB)
        RBRNG = RHOB(1)
        RTRNG = RTIP(1)
C--CHECK HUB AND TIP
    DO 60 I=1,NHUB
    ZLRNG = AMIN1 (ZLRNG,ZHUB(I))
    ZRRNG = AMAX1(ZRRNG,ZHUB(I))
    RBRNG = AMIN1 (RBRNG,RHUB(I))
    60 RTRNG = AMAX1(ETRNG,RHUB(I))
    DO 70 I=1,NTIP
    ZLRNG = AMIN1(ZLRNG,ZTIP(I))
    ZRRNG = AMAX1 (ZRRNG,ZTIP(I))
    RBRNG = AMIN1(RBRNG,RTIP(I))
    70 RTRNG = AMAX1 (RTRNG,RTIP(I))
C--CHECK INLET AND OUTlET MESH BOUNDARIES
    DO }80\textrm{J}=1.\mathrm{ MHTP1
    ZLRNG = AMIN1 (ZLRNG,ZOM(1,J))
    ZLRNG = AMIN1 (ZLRNG,ZOM(MM,J))
    ZRRNG = AMAX1(ZRRNG,ZOM(1,J))
    ZRRNG = AMAX1 (ZRRNG,ZOM (MM,J))
    RBRNG = AMIN1(RBRNG,ROM (1,J))
    RBRNG = AMIN1 (RBRNG,ROM (MM,J))
    RTRNG = AMAX1(RTRNG.ROM (1,J))
    80 RTRNG = AMAX1(RTRNG,ROM (MM,J))
C--CHECK HOB AND TIP MESH BOUNDARIES
    DO 90 I=1,MM
    ZLRNG = AMIN\(ZLRNG,ZOM(I,1))
    ZLRNG = AMIN1 (ZLRNG,ZOM(I,MHTP1))
    ZRRNG = AMAX1(ZRRNG,ZOM(I,1))
    ZRRNG = AMAX1(ZRRNG,ZOM(I,MHTP1))
    RBRNG = AMIN1(RBRNG,ROM (I,1))
    RBRNG = AMIN1 (RBRNG,ROM (I,MHTP1))
    RTRNG = AMAX1(RTRNG,ROM(I,1))
        90 RTRNG = AMAX1(RTRNG,ROM(I,MHTP1))
C--CHECK FIRST AND LAST INPUT BLADE SECTIONS
    IF (MBI.EQ.O) GO TO 110
    DO 100 I=1,NPPP
    ZLRNG = AMIN1(ZLRNG,ZBL (I,1))
    ZLRNG = AMIN1(ZLRNG,ZBL(I,NBLPL))
    ZRRNG = AMAX1 (ZRRNG,ZBL (I,1))
    ZRRNG = AMAX1 (ZRRNG,ZBL (I,NBLPL))
    RBRNG = AMIN1 (RBRNG,RBL (I,1))
    RBRNG = AMIN1 (RBRNG,RBL(I,NBLPL))
    RTRNG = AMAX1 (RTRNG,RBL (I,1))
1C0 RTRNG = AMAX1(RTRNG,RBL(I,NBLPL))
110 DELZ = ZRRNG-ZLRNG
```

```
    ZLRNG = ZLRNG-0.05*DELZ
    ZRRNG = ZRRNG+0.05*DELZ
    DELR = RTRNG-RBRNG
    RBRNG = RBRNG-0.05*DELR
    RTRNG = RTRNG+0.05*DELR
C
C--CHOOSE MAXIMOM RANGE, AND EXPAND RANGE IN THF OTHER DIRECTION
C
        DMD2 = 1.1*ABS(DELZ-DELR)/2.
        IF (DELR.GT.DELZ) GO TO 120
        RTRNG = RTRNG+DMD2
        RBRNG = RBRNG-DMD2
        RETORN
    120 ZRRNG = 2RRNG +DMD2
        ZLRNG = ZLRNG-DMD2
        RETURN
        END
SUBROUTINE PRECAL
C
C--PRECAL CALCULATES MANY OF THE REQOIRED FIXED CONSTANTS
C
        COMMON NREAD,NHRIT,ITER,IEND,NHRT1,NGRT2,NHRT3,NGRT4,NHRT5,NGRTG
        COMMON/INPUTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL, FNEW,DNEW,MBI,MBO,
        1 MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
        2 LSFR,LTPL,LAMVT,IROT, LBLAD,LETEAN,ANGROT, IMESH,ISLINE,
        3 ISTATL,IPLOT,ISUPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMBO,ZOMOUN,
        ROMIN,ROMBI, ROMBO,ROMOUT,ZHIN, ZTIN,ZHOUT, ZTOUT, RHIN,RTIN,RHOUT,
        RTOUT,TITLEI(20), ZHUB(50), RHUB(50), 2TIP(50),RTIP(50),SPIN(50),
        RADIN(50),TIP(50), PRIP(50),LAMIN(50),VTHIN(50),SFOUT(50).
        RADOUT (50), PROP (50), LOSOUT (50), LAMOITT(50), VTHOUT (50),
        BETALE(50), BETATE(50), ZHST(50), ZTST(50), RHST(5n), RTST(50),
        FLFR(50),PERCRD(50),PERLOS (50), ZBL (50,50), RBL (50,5^),
        THBL (50,50),TNBL(50,50),TTBL (50,50),TH1BL(50,50),TH2BL (50,50)
        COMMON/CALCON/MMM1,MHTP1,CP,EXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
            ZLE(50), RLE(50),ZTE (50),RTE(50), ZLEOM(101),RLEOM(131),
            SLEOM(101),THLEOM(101), ZTEOM(101),RTEOM(101),STEOM(101),
            THTEOM(101), ILE(101),ITE(101),ZOM(100.101),ROM(100,101).
            SOM(100,101),TOM(100,101), BTH(10),101),DTHDS(10n.101),
            5 DTHDT(100,101), PLOSS(100,101), CPHI(100,101),SPHI(10^,101)
        COMMON/VARCOM/A (4,100,101), UOM (100,101), K(100,101), RHO (100, 101),
            MSUBS (100,101), VSUBT (100,101), WSOBZ(100,101), WSUBR(100,101),
            ⿴SUBM(100,101), VTH (100,101),VTH(100,101),W(100, 101),
            ALPHA(100,101), BETA (100,101), WWCR(100,101), CURV(100,1[1),
            @LSURF(100,101), WTSURF(100,101), CAMP(100,101), SAMP(100,101),
            RHOAV (100,101), DELRHO (100, 101), FT (100, 101), DFDM(10), 101),
            XIOM(100,101),ZETOM(100,101), DLDO(100,101)
    COMMON/GOTATN/ZHROT (50), RHROT (50), ZTROT (50), RTROT (50).
    1 ZLEOMR(101), RLEOMR(101), ZTEOMR(101), RTEOMR(101).
    2 ZBLROT (50,50), RBLROT (50,50), ZOMROT(100,1C 1), ROMROT (100, 101)
        DIMENSION DYDX(101), D2YDX2(101),TTEM(50), DOM (101), DIP(50),
    1 S2RBL (50), BLOCK (50)
        REAL MSFL,LAMIN,LAMOUT
C
C--INITIALIZE TIPF, RHOIPF, LANDAF, AND RVTHTA
```

```
    C
        CALL LAMNIT
        CALL RVTNIT
        IF (GAM.NE.O.) CALL TIPNIT
        IF (GAM.NE.O.) CALL RHINIT
    C
    C--INITIALIZE THE BTH APRAY
    C
        DO 30 J=1,MHTP1
        DO 30 I=1,MM
        30. BTH(I,J)=PITCH
    C
    C--INITIALIZE tHE PLFR ARRAY IF IT WAS NOT READ IN
        IF (NSL.GE. 1) GO TO 50
        NSL = 11
        FLFR(1) = 0.
        FLFR(11)=1.0
        DO 40 J}=2,1
        4^ FLFR(J)= FLFR(J-1)+0.1
        GO TO 80
C
C--SET END POINTS FOR FLFR ARRAY
C
    50 IF (PLFR(1).LE.O.) GO TO 70
        TEMP1 = 0.
        DO }60\textrm{JL}=1,NS
        TEMP2 = FLFR(JL)
        FLFR(JL) = TEMP1
    60 TEMP1 = TEMP2
        NSL = NSL+1
        FLFR(NSL) = TEMP1
    70 IF (FLFR(NSL).GE.1.0) GO TO 80
        NSL = NSL+1
        FLFR(NSL) = 1.0
C
C--CALCULATE SOM FROM THE ZOM,ROM ARRAYS
    8C DO 90 J=1,MHTP1
        SOM (1,J) = 0.
        DO 90 I=2,MM
        90 SOM (I,J)= SOM(I-1,J) +SORT((ZOM(I,J)-ZOM(I-1,J))**2+(ROM (I,J)-
C
C--CALCULATE TOM PROM THE ZOM, ROM ARRAYS
C
        DO 100 I= 1, MM
        TOM (I,1) = 0.
        DO 100 J=2,MHTP1
        100 TOM (I,J) = TOM (I,J-1) +SQRT((ZOM (I,J)-ZOM (I,J-1))**2+(ROM (I,J) -
C
C--ROTATE HOB AND SHROOD STATION LINE LOCATION ARRAYS
            IF (NOSTAT.EQ.0) GO TO 101
        CALL ROTATE (ANGROT,ZHST,RHST,NOSTAT,1,50,1, ZHST,RHST)
        CALL ROTATE (ANGROT, ZTST,RTST,NOSTAT,1,50,1, ZTST, RTST)
C
C--ROTATE ZBL AND RBL TO GET ZBLROT AND RBLROT
    101 CALL ROTATE (ANGROT, ZBL,RBL,NPPP,NBLPL,50,50, ZBLROT, RBLROT)
```

```
C--SET TLE AND ITE ARRAYS WHEN THZRF ARE NO SLADES
C
    IF (MBI.NE.)) GO TO 1.94
    DO 102 J=1,MHTP1
    ILE(J)=MM+1
    102 ITE(J) =MM+1
    GO TO 225
C
C--CALCULATE LEADING EDGE ARRAY, ZLE,RLE, FFOM ZBL AND RBL ARRAYS
C--CALCULATE INTERSECTION OF LEADING EDGR WITH HUB AND SHFOUD PROFILES
C
    104 DO 110 JN=1,NBLPL
    ZLE(JN) = ZBLROT (1,JN)
    110 PLE(JN)= RBLROT(1,JN)
    CALL INRSCT (ZHROT,RHKOT,NHUB,ZLE,FLE,NBLPL,ZLEH,RLEH)
    CALL INRSCT (ZTROT,RTROT,NTIP,ZLE,PLE,NELPL,ZLET,RLET)
C
C--CALCULATE TRAILING EDGE ARRAY, ZTF, OTE , FROM ZEL AND PBL ARPAYS
C--CALCULATE INTERSFCTIONS OF TRAILING EDGE WITH HUR AND SHRODD PROPILES
C
    DO 120 JN=1,NBLPL
    ZTE(JN) = ZRLROT(NPPP,JN)
    120 RTE(JN) = RBLROT (NPFP,JN)
    CALL INRSCT (ZHROT, RHROT,NHUB,ZTE,RTE,NBLPL,ZTEH,RTEH)
    CALL INRSCT(ZTROT,RTROT,NTIP,ZTE,RTE,NBLPL,7TET,RTET)
C
C--CALCOLATE ORTHOGONAL MESH ARRAYS AT THE LFADING EDGE
C--ZLEOM(AND ZLEOMR), RLEOM(AND RLPOMR), SLEOM, AND THLEOM
C--CALCTILATE ILE AREAY OF MESH POTNT LOCATIONS INSIDE BLADE
C--LEADING EDGF
C
    ZLEOMR(1) = ZLEH
    RLEOMR(1) = RLEH
    ZLEOMR(MHTP1) = ZLET
    RLFOMR(MHTP1) = RLEm
    DO 130 J=2,MHT
    130 CALL INRSCT (ZOMROT (1,J), KOMRDT(1,J), MM,ZLE,RLE,NBLPL,ZLEOMR(J),
        1RLEOMR(J))
        DO 16C J=1,MHTP1
        DO 140 I=1,MM
        IF (ZLEOMR(J).LE. TOMROT (I,J)) GO TO 15*
    14% CONTINUE
    15C ILE(J) = I
    160 SLEOM(J) = SOM (I-1,J) +SORT ((ZLEOMP(J)-ZOMROT (I-1,J))**2
        1+(RLEOMR(J)-ROMROT (I-1,J))**2)
            DO 170 JN=1,NBLPL
    170 TTEM(JN) = THBL(1.JN)
        DOM(1) = 0.
        DO 174 J=2,MHTP1
    174 DOM(J) = DOM(J-1)+SQRT ((ZLEOMR (J)-ZLEOMR (J-1))**2
        1+(RLEOMR(J)-RLEOMR(J-1))**?)
        DIP(1) = 0.
        DO 176 JN=2,NBLPL
    176 DIP(JN) = DIP(JN-1)+SQRT((ZLE (JN)-ZLE(JN-1))**2*
        1(RLE(JN)-RLE(JN-1))**2)
        CALL SPLTNT (DIP,TTEM,NBLPL,DOM,MHTP1,THLEOM,DYDX,D2YDX 2)
        CALL ROTATE(-ANGBOT,ZLEOMR,RLEOMP,MHTP1,1,101,1, ZLEOM,RLEOM)
C
C--CALCULATE ORTHOGONAL MESH ARRAYS AT THE TRAILING EDGE
```

```
C--ZTEOM(AND ZTEOMR), RTPOM(AND RTEOMR), STEOM, AND THTEOM
C--CALCULATE ITE ARRAY Of MESH POINT LOCATIONS INSIDE BLADE
C--TRAILTNG EDGE
C
    ZTEOMR(1) = ZTEH
    RTEOMR(1) = RTEH
    ZTEOMR(MHTP1) = ZTET
    RTEOMR(MHTP1) = RTET
    DO 18C J=2,MHT
    18C CALL INRSCT(ZOMROT(1,J),ROMROT(1,J),MM,ZTE,RTE,NBLPL,ZTFOMR(J),
    1RTEOMR(J))
    DO 210 J=1,MHTP1
    ILEJ = ILE(J)-1
    DO 190 I=ILEJ,MM
    IF (ZTEOMR(J).LT.ZOMROT (I,J)) GO TO 2JO
    190 CONTINUE
    200 ITE (J) = I-1
    ITEJ = I-1
    21C. STEOM(J) = SOM(ITEJ,J) +SQRT((ZTEOMR(J) -ZOMROT(ITEJ,J))**2
    1+(RTEOMR(J) -ROMROT (ITEJ,J))**2)
    DO 220 JN=1,NBLPL
    220 TTEM(JN) = THBL(NPPP,JN)
    DOM(1) = ?.
    DO 222 J=2,MHTP1
    222 DOM(J) = DOM(J-1) +SQRT((2TEOMR(J)-2TEOMR(J-1))**2
    1+(RTEOMR(J)-RTEOMR(J-1))**2)
        DIP(1) = 0.
        DO 223 JN=2,NBLPI
    223 DIP(JN) = DIP(JN-1) +SQRT((ZTE(JN)-ZTE(JN-1))**2+
    1(RTE (JN)-RTE(JN-1))**2)
    CALL SPLINT(DIP TTEM,NBLPL,DOM,MHTP1,THTEOM,DYDX,D2YDX2)
    CALL ROTATE(-ANGROT, ZTEOMR,RTEOMR,MHTP1,1,101,1, ZTEOM,RTEOM)
C
C--PrINT BLADE GEOMETRY ON TNPUT PLANES
C
            WRITE (NWRIT,1000)
            DO 224 JN=1,NBLPL
            SZRBL(1) = 0.
            BLOCK(1) = TTBL(T,JN)/PITCH
            DO 226 IN=2,NPPP
            SZRBL(IN) = SZRBL(IN-1) +SQRT ((ZBL(IN,JN)-ZBL(IN-1,JN))**2
            1+(RBL(IN,JN)-RBL(IN-1,JN))**2)
    226 BLOCK(IN) = TTBL(IN,JN)/PITCH
            IF(LETEAN.EQ. 1) GO TO 232
            CALL SPLINE (SZRBL,THBL(1,JN),NPPP,DYDX,D2YDX2)
            GO TO 234
    232 DTHDSL = TAN(BETALE(JN)/57.295780)/RBL(1,JN)
            DTHDST = TAN(BETATE(JN)/57.295780)/RBL(NPPP,JN)
            CALL SPLISL (SZRBL,THBL(1,JN),NPPP,DTHDSL,DTHDST,DYDX,D2YDX2)
    234 HRITE (NHRIT, 1010) JN,(IN,ZBL(IN,JN),RBL(IN,JN),THBL(IN,JN),
        1TTBL(IN,IN),BLOCK(IN),SZRBL (IN),DYDX(IN),D2YDX2(IN),IN=1,NPPP)
    224 CONTINUE
        WRITE (NWRIT, 1 240)
C
c--calculate theta gradients cN the orthogonal mesh
C
    CALL THETOM
C
C--CORPECT BTH FOR BLADE THICKNESS ON THE ORTHOGONAL MESH
C
```

CALL THIKOM
C
C--REDUCE MASSFLOW, HHEEL SPEED, AND WHIRL FOR REDUCED FLOW SOLOTTON
C
225 IF (REDFAC.EQ.1.0) GO TO 260
OMEGA = OMEGA*REDFAC
MSFL = MSFL*REDFAC
DO $230 \mathrm{~J}=1$, NIN
$\operatorname{LAMIN}(\mathrm{J})=\operatorname{LAMIN}(\mathrm{J}) * \operatorname{REDFAC}$
$230 \operatorname{VTHIN}(\mathrm{~J})=\mathrm{VTHIN}(\mathrm{J}) * \operatorname{REDFAC}$
IF (MBI.EQ.O) GO TO 250
DO $240 \mathrm{~J}=1$, NOUT
LAMOUT (J) = LAMOUT (J) *REDFAC
240 VTHOUT (J) $=$ VTHOUT (J)*REDFAC
C
C--RE-INITIALIZE LAMDAF AND RVTHTA FOR REDUCED FLOW
C
call rvtnit
250 CALL LAMNIT
C
C
$\mathrm{C}--P R I N T$
C
C
260 IF (IDEBUG.LE. O) GO TO 270
HRITE (NHRIT, 1020)
WRTTE(NGRIT, 1030) ((I,J,SOM (I, J), TOM (T,J), BTH (I,J), DTHDT (I, J) ,
$1 \mathrm{CPHI}(\mathrm{I}, \mathrm{J}), \mathrm{SPHI}(\mathrm{I}, \mathrm{J}), I=1, \mathrm{MM}), J=1, \mathrm{MHTP} 1)$
WRITE(NWRIT. 1040)
C
C C-fOR INCOMPRESSIBLE FLOW, INITIALIZE THE DENSITY (RHO ARRAY)
C
270 IF (GAM.NE.O.) RETURN
DO $280 \mathrm{~J}=1$, MHTP1
DO $280 \mathrm{I}=1, \mathrm{MM}$
280 RHO (I,J) $=A R$
RETURN
C
C--FORMAT STATEMENTS
C
1000 FORMAT ($1 \mathrm{H} 1 / / 42 \mathrm{X}, 4 \mathrm{~B}\left(1 \mathrm{H}^{*}\right) / 42 \mathrm{X}, 48 \mathrm{H}$ * BLADE GEOMETRY ON INPIT BLADE
1 SECTIONS */42X,48(1H*)//)
1010 FORMAT $(/ / / 4 \mathrm{X}, 28 \mathrm{H**}$ INPUT BLADE PLANE NUMBER, $13,4 \mathrm{H} * * / / 2 \mathrm{X}, 2 \mathrm{HIN}$,
$16 \mathrm{X}, 3 \mathrm{HZBL}, 13 \mathrm{X}, 3 \mathrm{HRBL}, 13 \mathrm{X}, 4 \mathrm{HTHBL}, 12 \mathrm{X}, 4 \mathrm{HTTBL}, 10 \mathrm{X}, 8 \mathrm{HBLOCKAGE}, 10 \mathrm{X}$,
25 HSZABL, $10 \mathrm{X}, 6 \mathrm{HDT}$ HDSP, $10 \mathrm{X}, 7 \mathrm{HDTHDSP} 2 /(2 \mathrm{X}, \mathrm{I} 2,8 \mathrm{G} 16.7)$)
1020 FORMAT ($1 \mathrm{H} 1 / / 35 \mathrm{X}, 57(1 \mathrm{H} *) / 35 \mathrm{X}, 57 \mathrm{H}$ * CONSTANT QUANTITIES ON THE
1 ORTHOGONAL MESH $\quad * / 35 \mathrm{X}, 57(1 \mathrm{H} *) / / 4 \mathrm{X}, 1 \mathrm{HI}, 4 \mathrm{X}, 1 \mathrm{HJ}, 6 \mathrm{X}, 3 \mathrm{HSOM}, 12 \mathrm{X}$,
23 HTOM, $12 \mathrm{X}, 3 \mathrm{HBTH}, 11 \mathrm{X}, 5 \mathrm{HDTHDT}, 10 \mathrm{X}, 4 \mathrm{HCPHI}, 11 \mathrm{X}, 4 \mathrm{HSPHI})$
1030 FORMAT (2I5.6G15.5)
1040 FORMAT (1H1)
END
SUBROUTINE THETOM
C--ThETOM CALCULATES THE DERIVATIVES OF THETA WITH RESPECT TO S and T
C--THETOM CALCULATES THE DERIVATIVES
C--DIRECTIONS ON THE ORTHOGONAL MESH
C

```
    COMMON NREAD,NWRIT,ITER,IEND,NHRT1,NHRT2,NWRT3,NWRT4,NWRT5,NWRTG
    COMMON/INPUTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL,FNEW,DNEW,MBI,MBO,
    1 MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS.
        LSFR,LTPL,LAMVT, LROT, LBLAD,LETEAN,ANGROT, IMESH, ISLINE,
        ISTATL,IPLOT,ISTPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMRO,ZOMOIT,
        ROMIN, ROMBI, ROMBO, ROMOUT,ZHIN,ZTIN, ZHOUT, ZTOUT, RHIN,RTIN, RHOITT,
        RTOUT,TITLEI(20), ZHUB(50),RHOB(5%), ZTIP(50),RTIP(5), SFIN(50),
        RADIN(50),TIP(50),PRIP(50),LAMIN(50),VTHIN(50),5FOUT(50).
        RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (5^),
        BETALE (50), BETATE (50), ZHST (50), ZTST (50), FHST(50), RTST(50),
        FLFR(50), PERCRD(50), PERLOS(50), ZBL (50,50), PBL (50,50).
        THBL (50,50), TNBL (50,50), TTBL (50,50), TH1BL (50,50),TH2BL (50,50)
    COMMON/CALCON/AMM1,MHTP1,CP, EXPON,TGROG,PITCH,RLEH, RLET, RTEH, RTET,
        ZLE(50),RLE(50), ZTF(50), RTE(50), ZLEOM(101),RLEOM(1^1),
        SLEOM(101). THLEOM(101), ZTEOM(101), RT EOM(101), STEOM (101),
        THTEOM(101), ILE(101), ITE(101), ZOM(100,101), ROM(10^,101).
        SOM(100,101), TOM(100,101), BTH(100,101), DTHDS(105,101),
        DTHDT (100,101), PLOSS (100,101), CPHI (100,101), SPHI (100,101)
    COMMON/ROTATN/ZHROT (50), RHROT (5?), ZTROT (50), RTROT (50).
        ZLEOMR(101), RLEOMR(101), ZTEOMR(1)1), RTEOMR(101),
        ZBLROT (50,50), RBLROT (50,50), ZOMROT (100,101), ROMROT (10n, 101)
    COMMON/INDCOM/NBLPC,NPPC,ZPC (51,51), RPC (51,51),TTPC(51,51),
        THPC(51,51),DTHDZ (51.51), DTHDR(51.51). BTHLE(101), BTHTE(101).
        BTBFLE(101), BTBFTE(101)
    DIMENSION ANGZ (51,51), ANGR (51,51), DTHDSP(51,51), DTHDTP(51,51),
        SZRBL (51), SZRPC(51), 2PCT1(51), RPCT1(51),THPCT1(51).TTPCT1(51),
        ANGT1(51), DTST1(51), ZPCT2(51), RPCT2(51),THPCT2(51),TTPCT2(51),
        ANGT2(51),DTST2(51),DYDX(51),D2YDX2(51)
    NBLPC = 21
    NPPC = 21
C
C--CALCOLATE GRADIENTS OF THETA WITH RESPECT TO DISTANCE ALONG INPUT
C--ZBL,RBL LINES
C
C--LOCATE TNTERSECTIONS OF INPUT ZBL,RBL LINES WITH LINES FROM
C--HUB TO TIP AT FIVE PERCENT CHORD INTERVALS
        5 DO 60 JN=1,NBLPL
            DELZ= (ZBLROT (NPPP,JN)-ZBLROT (1,JN))/FLOAT (NPPC-1)
            ZPC(1,JN)= ZBLROT(1,JN)
            DO 10 KN=2,NPPC
        10 ZPC (KN,JN) = ZPC (KN-1,JN) +DELZ
C
C--CALCULATE R COORDINATES AND ANGLES WITH PESPECT TO Z AXIS AT
C--INTERSECTION POINTS
            CALL SPLINT(ZBLROT(1,JN),RBLROT (1,JN),NPPP,ZPC(1,JN),NPPPC,
            1RPC(1,JN),ANGZ(1,JN),D2YDX2)
            DO 20 KN=1,NPPC
        20 ANGZ(KN,JN)=ATAN(ANGZ(KN,JN)) + ANGROT
C
C--CALCULATE ARC LENGTH ALONG INPUT LINES USING INPOT POINTS
            SZRBL(1)=0.
            DO 30 IN=2,NPPP
        30 SZRBL(IN) = SZRBL(IN-1) +SQRT((ZBL(IN,JN)-ZBL(IN-1,JN))**2
        1+(RBL(IN,JN)-RBL(IN-1,JN))**2)
C
C--CALCOLATE arc length along InPut lines uSing points at five
C--PERCENT OF CHORD
            SZRPC(1)=0.
            DO 40 KN=2,NPPC
```

```
    40 SZRPC(KN) = SZRPC(KN-1) +SQET ((ZPC (KN,JN)-ZPC(KN-1.JN))**2
    1+(RPC(KN,JN)-RPC (KN-1,JN))**2)
C
C--CALCULATE theta and CHANGE OF theta hith arc lengTh along INPOT LINES
        IF (LETEAN.EQ.1) GO TO 5C
        CALL SPLINT(SZRBL,THBL(1,JN),NPPP,SZRPC,NPPC,THPC(1,JN),
    1DTHDSP(1,JN),D2YDX2)
        GO TO 55
    50 DTHDSL = TAN(BETALE (JN)/57.29578^)/RBL(1,JN)
        DTHDST = TAN(BETATE(JN)/57.205780)/RAL(NPPP,JN)
        CALL SPINSL(SZRBL,THBL(1,JN),NPPP,DTHDSL,DTHDST,SZRPC,NPPC,
        1T!PC(1,JN),DTHDSP(1,JN),D2YDX2)
    55 CONTINUE
C
C--CALCULATE BLADE THICKNESS IN THETA DIRECTION AT POINTS AS
C--FIVE PERCENT OF CHORD
        CALL SPLINT(SZRBL,TTBL(1,JN),NPPP,SZRPC,NPPC,TTPC(1,JN),DYDX,
        1D2YDX2
    60 CONTINUE
C
C--CALCULATE GRADIENT Of thftA WITH RESPECT TO dTSTANCE OP FIVE percent
C--CHORD ZPC,RPC LINES
DO 13C KN=1,NPPC
C--STORE DATA AT FIVE PERCENT CHORD POTNTS ON INPUT BLADE PLANES INTO
C--TEMPORARY ARRAYS FOR SPLINT CALLS
DO 70 JN=1,NBLPL
ZPCT1(JN) = 2PC(KN,JN)
    RPCT1(JN) = RPC(KN,JN)
    THPCT1(JN) = THPC(KN,JN)
        TTPCT1(JN) = TTPC(KN,JN)
        ANGT1(JN) = ANGZ(KN,JN)
        70 DTST1(JN) = DTHDSP(KN,JN)
C
C--CALCULATE ARC LENGTH UP FIVE PERCFNT CHORD LINES
        DO 8C JN=2,NBLPL
        80 SZRBL(JN) = SZRBL(JN-1) +SQRT((ZPCT1(JN)-ZPCT1(JN-1))**2
        1+(RPCT1(JN)-RPCT1(JN-1))**2)
C
C--CALCillate poINTS ON the Alternate mesh
        DELR = (RPC (KN,NBLPL)-RPC(KN,1))/FLOAT (NBLPC-1)
        RPCT2(1) = RPC(KN,1)
        DO 90 LN=2,NBLPC
        90 RPCT2(LN) = RPCT2(LN-1) +DELR
            CALL SPLINT(RPCT1,ZPCT1,NBLPL,RPCT2,NBLPC,ZPCT2,DYDX,D2YDX2)
    C
    C--CHORD LINES ON THE ALTERNATE MESH
            ANGR(KN,1) = ATAN(DYDX(1))-ANGROT
            DO 100 LN=2,NBLPC
            SZRPC(LN) = SZRPC(LN-1)+SQRT((RPCT2(LN)-RPCT2(LN-1))**2
            1+(2PCT2(LN)-ZPCT2(LN-1))**2)
        100 ANGR(KN,LN) = ATAN(DYDX(LN))-ANGROT
c
C--CALCULATE theta AND CHANGE OF theta wtth respect to arC LENGTH OP
C--FIVE PERCENT CHORD LINES
                CALL SPLINT(SZRBL,THPCT1,NBLPL,SZRPC,NBLPC,THPCT2,DYDX,D2YDX2)
                DO 110 LN=1,NBLPC
        110 DTHDTP(KN,LN) = DYDX(L,N)
```

```
    C
    C--CALCULATE ANGLE hITH RESPECT TO Z, CHANGE OF THETA WITH ARC LENGTH
    C--ALONG INPUT LINES, AND TANGENTIAL THICKNESS UP THE FIVE PERCENT
            CALL SPLINT(SZRBL,ANGT1,NBLPL,SZRPC,NBLPC,ANGT2,DYDX,D2YDX2)
                            CALL SPLINT(SZRBL,DTST1,NBLPL,SZRPC,NBLPC,DTST2,DYDX,D2YDX2)
    C
        C--STORE CALCULATED VALUES IN THO-DIMENSIONAL ARRAYS ON THE ALTERNATE
            DO 120 LN=1,NBLPC
            ZPC(KN,LN)= ZPCT2(LN)
            RPC(KN,LN) = RPCT2(LN)
            THPC(KN,LN) = THPCT2(LN)
            TTPC(KN,LN)= TTPCT2(LN)
            ANGZ (KN,LN) = ANGT2(LN)
        120 DTHDSP(KN,LN) = DTST2(LN)
        130 CONTINUE
    C
    C--CALCULATE DTHDZ AND DTHDR FROM DTHDSP AND DTHDTP ON THE ALTERNATE
    C--MESH
    C
            DO 140 LN=1,NBLPC
            DO 140 KN=1,NPPC
            COSAB= COS (ANGZ (KN,LN) +ANGR (KN,LN))
            DTHDZ(KN,LN) = (DTHDSP(KN,LN)*COS (ANGR(KN,LN))-DTHDTP(KN,LN)*STN(
            1ANGZ(KN,LN)))/COSAB
        140 DTHDR(KN,LN)=(-DTHDSP(KN,LN)*SIN(ANGR(KN,LN)) +DTHDTP(KN,LN)*COS(
C
C--INTERPOLATE TO OBTAIN DTHDZ AND DTHDR AT THE POINTS OF THE ORTHOGONAL
C--MESH
C--ROTATE DTDZOM AND DTDROM ON ORTHOGONAL MESH TO OBTAIN DTHDS AND DTHDT
C--THE GRADIENTS OF THETA IN THE S AND T DIRECTIONS
    II = 1
    JJ = 1
            DO 150 J=1,MHTP1
            ILEJ = ILE(J)
            ITEJ = ITE(J)
            DO 150 I=ILEJ,ITEJ
            CALL LININT (ZPC,RPC, DTHDZ,NPPC,NBLPC,51,51,ZOMROT (I,J).
            1ROMROT(I,J),DTDZCM,II,JJ)
            CALL LININT (ZPC,RPC,DTHDR,NPPC,NBLPC,51,51,ZOMROT (I,J) .
            1ROMROT (I,J),DTDROM,II,JJ)
            DTHDS(I,J) = DTDZOM*CPHI (I,J) +DTDROM*SPHI(I,J)
C
C--PRINT DEBUG BLADE GEOMETRY ON ALTERNATE MESH
            IF (IDEBUG.LE.0) RETMRN
            WRITE(NWRT5,1000)
            CALL ROTATE(-ANGROT, ZPC,RPC,NPPC,NBLPC,51,51, ZPC,RPC)
            WRITE(NRRT5,1010) ((KN,LN, ZPC (RN,LN),RPC (KN,LN),THPC(KN,IN),
            1TTPC (KN,LN),DTHDSP(KN,LN),DTHDTP(KN,LN),KN=1,NPPC),LN=1,NBLPC)
            CALL ROTATE (ANGROT,ZFC,RPC,NPPC,NBLPC,51,51, ZPC,RPC)
            MRITE(NWRT5,1020)
    RETURN
C
```

 36HDTHDSP, \(10 \mathrm{X}, 6 \mathrm{HDTHDTP} / /\))
 1010 PORMAT (2 I5,6G16.7)
 1020 FORMAT (1H1)
 END

SUBROUTINE THIKOM

C
C--THIKOM CALCOLATES THE BLADE THICKNESS IN THE THETA DIRECTION AT C--THE POINTS OF THE ORTHOGONAL MESH
C
COMMON/INPUTT/GAM, AR, MSFL, OMEGA, REDFAC, VELTOL, FNER, DNEH, MBI, MBO,
1 MM, MHT,NBL,NHOB, NTIP, NIN, NODT, NBLPL, NPPP, NOSTAT, NSL,NL.OSS,
2 LSPR, LTPL, LAMVT, LROT, LBLAD,LETEAN, ANGROT, IMESH, ISLINE,
3 ISTATL, IPLOT, ISUPER, ITSON, IDEBUG, ZOMIN, ZOMBI, ZOMBO, ZOMOUT, 4 ROMIN,ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN,RTIN,RHOUT, 5 RTOUT,TITLEI (20), ZHUB (50), RHUB (50), 2 TIP (50), RTIP (50), SFIN(50).
6 RADIN (50), TIP (50), PRIP(50), LAMIN(50), VTHIN(50), SFOUT (50).
7 RADOOT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50),
8 BETALE (50), BETATE (50), ZHST (50), ZTST (50), RHST (50), RTST (50),
$9 \operatorname{FLPR}(50), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), Z \operatorname{BL}(50,50), \operatorname{RBL}(50,50)$,
1 THBL $(50,50)$, TNBL $(50,50)$, TTBL $(50,50)$, TH1BL $(50,50)$, TH2BL $(50,50)$
COMMON/CALCON/MMM1, MHTP1, CP, EXPON, TGROG, PITCA,RLEH,RLET,RTEH,RTET, ZLE (50), RLE (50), $\operatorname{ZTE}(50), \operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLEOM}(101)$,

3 THTEOH(101), ILE(101), ITE(101), $\operatorname{ZOM}(100,101), \operatorname{ROM}(100,101)$.
$4 \operatorname{SOM}(100,101), \operatorname{TOM}(100,101), \operatorname{BTH}(100,101), \operatorname{DTHDS}(100,101)$,
5 DTHDT $(100,101), \operatorname{PLOSS}(100,101), \operatorname{CPHI}(100,101), \operatorname{SPHI}(100,101)$
COMMON/ROTATN/ZAROT (50), RHROT (50), ZTROT (50), RTROT (50).
ZLEOMR (101), RLEOMR (101), ZTEOMR(101), RTEOMR(101).

COMMON/INDCOM/NBLPC, NPPC, ZPC $(51,51), \operatorname{RPC}(51,51), \operatorname{TTPC}(51,51)$.
1 THPC (51,51), $\operatorname{DTHDZ}(51,51)$, $\operatorname{DTHDR}(51.51)$, BTHLE (101), BTHTE (101),
2 BTBFLE(101), BTBFTE(101)
DIMENSION DIST (50), DTH (50), DISEOM (101), DTHEOM (101).
1 AAA(101), BBB(101)
C--CALCOLATE STREAM CHANNEL THICKNESS ARRAYS at leading and trailing C--EDGES, BTHLE AND BTHTE
C

```
    DIST(1) = 0.
    DTH(1) = TTBL (1,1)
        DO 30 JN=2,NBLPL
        DIST(JN) = DIST(JN-1) +SQRT((2BL(1,JN)-2BL(1,JN-1))**2*
    1(RBL (1,JN)-RBL(1,JN-1))**2)
        30 DTH(JN) = TTBL (1,JN)
            RBLR = RBL (1,1)*COS (ANGROT) - ZBL (1,1) *SIN(ANGROT)
            DISEOM(1) = SQRT((ZLEOM(1)-ZBL(1,1))**2 +(RLEOM(1)-RBL (1,1))**2)
            DISEOM(1) = SIGN(DISEOM(1),RLEOMR(1)-RBLR)
            DO 40 J=2, MHTP1
        40 DISEOM(J) = DISEOM (J-1) +SQRT((ZLEOM (J)-ZLEOH(J-1))**2+
            1(RLEOM(J)-RLEOM(J-1))**2)
            CALL SPLINT (DIST, DTH,NBLPL,DISEOM,MHTPY,DTHEOM,AAA,BBB)
            DO 50 J=1.MHTP1
```

```
    50 BTHLE(J) = PITCH-DTHEOM(J)
        DTH(1) = TTBL(NPPP.1)
        DO 60 JN=2,NBLPL
        DIST(JN)= DIST(JN-1) +SQRT((ZBL(NPPP,JN) - ZBL(NPPP,JN-1))**2*
    1(RBL(NPPP,JN)-RBL(NPPP,JN-1))**2)
    E) DTH(JN) = TTBL (NPPP,JN)
        RBLR = RBL (NPPP,1)*COS(ANGROT)-ZBL(NPPP,1)*SIN(ANGROT)
        DISEOM(1) = SQRT((ZTEOM(1) - ZBL(NPPP,1))**2+(RTEOM(1)-RBL (NPPP,1))
    1**2)
            DISEOM(1) = SIGN(DISEOM(1),RTEOMR(1)-RBLR)
        DO 70 J=2,MHTP1
    70 DISEOM(J) = DISEOM (J-1) +SQRT((ZTEOM(J)-ZTEOM (J-1))**24
    1 (RTEOM(J)-RTEOM(J-1))**2)
        CALL SPLINT (DIST,DTH,NBLPL,DISEOM,MHTP1,DTHEOM,AAA,BBB)
        DO 80 J=1,MHTP1
    80 BTHTE(J) = PITCH-DTHEOM(J)
C
C--INTERPOLATE TO OBTAIN BLADE THICKNESS IN THETA DIRECTION AT THE
C--POINTS OF THE ORTHOGONAL MESH, AND CORRECT BTH IN BLADE REGION
C
    II = 1
    JJ = 1
    DO 90 J=1,MHTP1
    ILEJ = ILE(J)
    ITEJ = ITE(J)
    DO 90 I=ILEJ,TTEJ
    CALI LININT(ZPC,RPC,TTPC,NPPC,NBLPC,51,51,ZOMROT (T,J).
    1ROMROT(I,J),DBTH,II,JJ)
        BTH}(I,J)=\operatorname{BTH}(I,J)-DBT
        90 CONTINDE
            RETURN
            END
            SUBROUTINE INIT
C
C--INIT ASSIGNS INITIAL VALUES TO THE ARRAY VARIABLES
C
    COMMON/INPUTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL,FNEW,DNEM,MBI,MBO,
        MM, MHT,NBL, NHOB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT, NSL,NLOSS.
        LSFR, LTPL, LAMVT, LROT,LBLAD,LETEAN,ANGROT, IMESH, ISLINE,
        ISTATL, IPLOT, ISUPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMBO,ZOMOUT,
        ROMIN, ROMBI,ROMBO, ROMOUT, ZHIN, ZTIN,ZHOUT, ZTOUT, RHIN, RTIN,RHOUT,
        RTOUT,TITLEI(20), ZHUB(50), RHUS(50), ZTIP(50), RTIP(50),SFIN(50).
        RADIN(50),TIP(50), PRIP(50), LAMIN (50),VTHIN(50),SPOTT (50).
        RADOUT (50), PROP (5C), LOSOUT (50), LAMOUT (50),VTHOUT (50).
        8ETALE(50), BETATE (50), ZHST(50), ZTST(50), RHST(50), 致ST(50),
        FLFR (50),PERCRD (50), PERLOS (50), ZBL (50,50), RBL (50,50).
        THBL (50,50), TNBL (50,50),TTBL (50,50),TH1BL(50,50),TH2BL (50,50)
    COMMON/CALCON/MMM1,MHTP1,CP, EXPON,TGROG, PITCH,RLEH,RLET, RTEH,RTET,
        ZLE(50), RLE (50), ZTE (50), RTE(50), ZLEOM(101),RLEOM (101).
        SLEOM(101), THLEOM (101), ZTEOM(101), RTEOM(101).STEOM(101),
        THTEOM(101).ILE(101).TTE(101), 2OM(100,101).ROM(100,101):
        SOM (100,101), TOM (100,101), BTH(100,101), DTHDS (100,101).
        DTHDT (100,101), PLOSS (100,101), CPHI(100,101), SPHI (100,101)
    COMMON/VARCOM/A (4,100,101), UOM (100,101), K(100,101),RHO(100,101),
```

```
    1 WSUBS (100,101), WSUBT(100,101), WSUBZ(100,101), WSUBR(100, 101),
    2 WSOBM(100,101),WTH(100,101),VTH(100,101),W(100,101).
    3 ALPHA (100,101), BETA (100,101), WWCR(100,101), CURV(10 1, 101),
    4 WlSURF(100,101), जTSURF(10C.1`1), CAMP(100,101), SAMP(100,101).
    5 RHOAV (100,101), DELRHO(100,101),FT(100,101), DFDM(100,101),
    6
        XIOM(100,101), ZETOM(100,101), DLDU(100.101)
        REAL K,LAMDAF
        DO 10 J=1,MHTP1
    A(1,1,J) = 0.
    A(2,1,J)=0.
    A(4,1,J)=1.
    A(1,MM,J)=0.
    A(2,MM,J) = 0.
    A(3,MM,J) = 1.
    DO 10 I=1,MM
    WSUBS(I,J) = 1.
    WSUBT(I,J) = 0.
    #SUBZ(I,J) = 1.
    W(I,J)=0.
    WTH (I,J) = 0.
    VTH(I,J) = 0.
    DELRHO(I,J) = 0.
    XIOM(I,J) = 0.
    ZETOM(I,J) = 0.
    FT(I,J) = 0.
    DFDM(I,J) = 0.
    DLDU(I,J) = 0.
    SAMP(I,J)=0.
    CAMP (I,J) = 1.
    K(I,J)=0.
    PLOSS(I,J)=0.
    IF (GAM.EQ.O.) GO TO 10
    UIJ = TOM (I,J)/TOM (I,MHTP1)*(ROM (I,J) +RCM(I, 1))/
    1(ROM(I,MHTP1) & ROM (I,1)) ।
    TPPTIP = 1.0-(2.*OMEGA*LAMDAF(UIJ,I,J)-(OMEGA*ROM(I,J))**2)/
    1(2.*CP*TIPF(UIJ))
        RHO(I,J) = RHOIPF(UIJ)*TPPPTIP**EXPON
10 RHOAV (I,J) = RHO (I,J)
    RETURN
    END
```

SUBROUTINE COEF
C
C--COEF CALCULATES COEFFICIENTS, A AND K,
C--FOR THE SYSTEM OF MATRIX EQUATIONS, A*U $=K$
C

COMMON NREAD,N日RIT,ITER,IEND,NWRT1, NGRT2,NHRT3,NWRT4,NWRT5,NWRT6 COMMON/INPUTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL, FNEW, DNEW, MBI,MBO,
MM, MHT, NBL, NHUB, NTIP, NIN, NOOT, NBLPL, NPPP, NOSTAT, NSL, NLOSS,
LSFR, LTPL, LAMVT, LROT, LBLAD, LETEAN, ANGROT, IMESH, ISLINE,
ISTATL, IPLOT, ISUPER,ITSON, IDEBUG, ZOMIN, ZOMBI, ZOMBO, ZOMOUT,
ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN, RTIN, RHOUT,
RTOUT, TITLEI (20), ZHUB(50), RHUB(50), ZTIP(50), RTIP(50), SFIN(50),
RADIN (50), TIP (50), PRIP(50), LAMIN (50), VTHIN (50), SPOUT (50).
RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50).

```
    8 BETALE(50), BETATE(50), ZHST(50),ZTST(5?), RHST(5^),RTST(50).
9 FLFR(50),PERCRD(50),PERLOS (50), 2BL(50,50), RBL (50,50).
1 THBL (50,50),TNBL (50,50),TTBL (50,50),TH1BL (50,50),TH2BL(50,50)
    COMMON/CALCON/MMM1,MHTF1,CP,EXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
        ZLE(50),RLE(50), 2TE(50),RTE(50), 2LEOM(101), RLEOM (101),
        SLEOM(101),THLFOM(101), ZTEOM(101),RTEOM(101),STEOM(101).
        THTEOM(101),ILE(101), ITE(101), ZOM(100.101),ROM(10C,101),
        SOM(100,101),TOM(1C0,101), BTH(100,101),DTHDS(100,101),
        DTHDT(100,101), PLOSS(100,101),CPHI(100,101), SPHI (10), 101)
    COMMON/VARCOM/A(4,100.101),UOM(10C,101),K(1C0,101), RHO(100,1年),
        WSUBS(100,101),WSUBT (100,101), WSUBZ(100,101), WSTHBR(100,151),
        WSUBM(100,101),WTH(100,101),VTH(100,101),W(100,101),
        ALPHA(100,101), BETA (100,101),WHCR(1C0,101),CURV(100,101),
        WLSURF(100,101), WTSURF(100,101). CAMP(100.101), SAMP(100.101),
        RHOAV (100,101), DELRHO(100,101), FT(100,101), DPDM(10^,101),
        XIOM(100,101), ZETOM(100,101),DLDU(100.101)
    DIMENSION DVTHDT (100.101)
    REAL MSFL,K,KNEW
C
C--CALCULATE COEfficIENTS AND CONSTANTS FOR FINITE DIFFERENCE EQUATIONS
C
    MRITE(NHRIT,10G0) ITER
    DCHANG = 0.
    DMAX = -1.E20
    DMIN = 1.E20
    MMM1 = MM-1
    DO 50 J=2,MHT
    H4 = SOM (2,J)-SOM (1,J)
    DO 50 I=2,MMM1
    IF (ITER.EQ.1) DVTHDT(I,J) =0.
    H1 = TOM(I,J)-TCM(I,J-1)
    H2 = TOM (I,J+1)-TOM (I,J)
    H3 = H4
    H4 = SOM (I+1,J)-SOM (I,J)
    C1 = H1 + H2
    C2 = H3+H4
    IF (ABS(CPHI(I,J)).LT.0.707) GO TO 10
    DELPHS = (SPHI (I+1,J)-SPHI (I-1,J))/CPHI (I,J)
    DELPHT = (SPHI(I,J+1)-SPHI(I,J-1))/CPHI (I,J)
    GO TO 20
10 DELPHS = (CPHI (I-1,J)-CPHI (I+1,J))/SPHI(I,J)
DELPHT = (CPHI (I,J-1)-CPHI (I,J+1))/SPHI (I,J)
20 D1 = (BTH(I,J +1)-BTH (I,J-1))/BTH(I,J) +(RHO(I,J+1)-RHO(I,J-1))/
    1RHO(I,J)
    D1 = D1/C1+CPHI (I,J)/ROM (I,J) +DELPHS/C2
    D2 = (BTH(I+1,J)-BTH(I-1,J))/BTH(I,J) +(RHO(I+1,J)-RHO(I-1,J))/
    1RHO (I,J)
    D2 = D2/C2+SPHI (I,J)/ROM(I,J)-DELPHT/C1
    AO = 2./H1/H2+2./H3/H4
    A(1,I,J)=(2./Hi+D1)/AO/C1
    A (2,I,J) = (2./H2-D1)/A0/C 1
    A(3,I,J)=(2./H3+D2)/AO/C2
    A(4,I,J) = (2./H4-D2)/A0/C2
    KNEW = XIOM (I,J)*#(I,J)**2+ZETOM (I,J)
    IF (I.GE.ILE(J).AND.I.LE.ITE(J)) GO TO 30
    KNEW = KNEH+HTH(I,J)/MSFL*BTH(I,J)*RHO(I,J)*WSUBS (I,J)*DLDD(I,J)
    GO TO 40
30 DVTEMP = (ROM(I,J+1)*VTH(I,J+1)-ROM(I,J-1)*VTH(I,J-1))/C1
    DCH = ABS(DVTEMP-DVTHDT (I,J))
```

```
            DCHANG = AMAX1(DCHANG,DCH)
            IF (DCHANG.EQ.DCH) ICH = I
            IF (DCHANG.EQ.DCH) JCH = J
            DMAX = AMAX1(DMAX,DVTEMP)
            DMIN = AMIN1(DMIN,DVTFMP)
            DVTHDT(I,J) = DNEW*DVTEMP+ (1. -DNEW) *DVTHDT(I,J)
            KNEW = KNEW+WTH (I,J)/ROM (I,J)*DVTHDT (I,J) +FT (I,J)
            IF (GAM.EQ.O.) KNEW=KNEW+OMEGA*(LAMDAF(DOM(I,J+1),I,J+1)-
            1LAMDAF(UOM(I,J-1),T,J-1))/C{
    4C KNEW = KNEW*ROM(I,J)/A?*BTH(I,T)/MSFL*RHO(I,J)/WSUBS(I,J)
            K(I,J) = KNEW
50 CONTINUE
                            IF (ITER.GT.1) WRITE(NWRIT, 1010) DCHANG,ICH,JCH,DVTHDT(ICH,JCH).
                            1DMAX,DMIN
C
C--PRINT DEBUG OUTPUT
C
    TF (IDFBUG.LE.O) RETURN
    IF ((ITER/IDEBUG)*IDEBUG.NE.ITER.AND.ITER.NF.1) RETIRN
            WRITE(NWRT5,1C20)
            DO 60 J=2,MHT
            DO 60 I=1,MM
        60 WRITE(NWRT5,1030) I,J,(A(IN,I,J),IJ=1,4),K(I,J)
            WRITE (NWRT5,1040)
                RETURN
C
C--FORMAT STATEMENTS
C
    100C FORMAT(/////1X,22(1H*)/1X, 16H* ITERATION NO.,I3,3H */1X,22(1H*))
    1010 FORMAT (//5X,2GHMAXIMUM CHANGE IN DVTHDT =,G13.5,11X,6HAT I =, I.3,
        15H, J =,I3,1H,,5X,14HWHERE DVTHDT =,G13.5/5X,26HMAXIMUM VALUE OF
        2DVTHDT =,G13.5/5X,26HMINIMUM VALUE OF DVTHDT =,G13.5)
    1020 FORMAT (1H1//30X,67(1H*)/30X,67H* COEFFICIENTS OF MATRIX EQU
        1ATION FOR STREAM FONCTION */3CX,67(1H*)/// 5X,1HI,5X,1HJ,
        26x,4HA(1),12X,4HA(2), 12X,4HA(3), 12X,4HA(4), 13X, 1HK//)
    1030 FORMAT (2I6,5G16.6)
    1040 FORMAT (1H1)
        END
```

 SUBROUTINE SOR
 C
C--SOR SOLVES THE SET OF MATRIX EQUATIONS, A*U=K
C--by the successive overrelaxation technique
C
COMMON NREAD, NWRIT,ITER, IEND,NWRT1, NWRT2,NHRT3,NWRT4, NWRT5,NWRT6
COMMON/INPUTT/GAM,AR,MSFI, OMEGA, REDFAC, VELTOL, FNEW, DNEH, MBI,MBO,
MM, MHT, NBL, NHOB, NTIP, NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL, NLOSS,
LSFR, LTPL, LAMVT, LROT, LBLAD,LETEAN, ANGROT, IMESH, ISLINE,
ISTATL, IPLOT, ISUPER,ITSON, IDEBUG, ZOMIN, ZOMBI, ZOMBO, ZOMOUT,
ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN, RTIN, RHOUT,
RTOUT, TITLEI (20), $\operatorname{ZHUB}(50)$, RHOB(59), ZTIP(50), RTIP(5)), SFIN(50),
RADIN (50), TIP (50), PRIP(50), LAMIN (50), VTHIN(50), SPOUT (50).
RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (5C), VTHOOT (50).
$\operatorname{BETALE}(50), \operatorname{BETATE}(50), \operatorname{ZHST}(50), \operatorname{ZTST}(50), \operatorname{RHST}(50), \operatorname{RTST}(50)$,
FLPR(50), PERCRD (50), PERLOS (50), ZBL (50.50), RBL $(50,50)$.

```
    1THBL (50,50),TNBL (50,50),TTBL (50,50),TH1BL (50,50),TH2BL(50,5n)
    COMMON/CALCON/MMM1,MHTP1,CP,EXPON,TGROG,PITCH,RLEH,RLET,RTEH,PTET,
    ZLLE(50),RLE(50), ZTE (50), RTE(50), 2LFOM(101),RLEOM(101),
    2 SLEOM(101),THLEOM(101).ZTEOM(101).RTEOM(101),STEOM(101).
    3 THTEOM(101), ILE(101), ITE(101), ZOM(100,101),ROM(100,101).
    4 SOM (100,101), TOM(100,101), 眰(100,101), DTHDS (100,101),
    5 DTHDT (100,101), PLOSS(100,101),CPHI (100,101), SPHI(100,121)
    COMMON/VARCOM/A (4,10?,1\cap1), UOM(1\capO,101), R(1C0,101), RHO(1C0,101),
        WSUBS (100,101),WSUBT (100,101),WSUBZ(100,101), WSURR(100,101),
        WSUBM (100,101),WTH(100,101),VTH (100,101),W(100,101).
        ALPHA (100,101), BETA (100,101),WWCR(100,101), CURV(100,101),
        WLSURF(100,101),WTSURF(10^,101), CAMP(100.101), SAMP(100,101).
        RHOAV (100,101), DELRHO(100.101), FT (100,101), DFDM(100,101),
        XIOM (100,101), ZETOM(100,101), DLDU(100,101)
    REAL K,LMAX,LMIN
C
C--APTER PIRST ITERATION, JUST SOLVE EQOATION BY SOR
C
        IF (ITER.GT.1) GO TO 70
C
C--FIRST ITERATION ONLY, CALCULATE OPTIMUM ORF
C
C--SET BOUNDARY VALUES TO ZERO, AND INTERIOR VALUFS TO ONE
            DO 10 I=1,MM
            UOM (I,1)=0.
        10 UOM(I,MHTP1) = 0.
            DO 20 J=2,MHT
            DO 20 I=1,MM
        20 UOM(I,J) = 1.
C
C--CALCOLATE OPTIMUM ORF
            ORFMAX = 2.0
            ICOUNT = 0
        30 LMAX = 0.
            LMIN = 1.
            ORF = ORFMAX
            ICOUNT = ICOUNT+1
            DO 40 J=2,MHT
            DO 40 I=1.MM
            UNEM = A (1,I,J)*UCM (I,J-1) +A (2,I,J)*OOM (I,J +1)
            IF (I.NE.1) UNEW=ONEW+A(3,I,J)*UOM (I-1,J)
            IF (I.NE.MM) UNEN=UNEH+A(4,I,J)*OOM (I+1,J)
            RATIO = UNEH/UOM(I,J)
            LMAX = AMAX1(LMAX,RATIO)
            LMIN = AMIN1(LMIN,RATIO)
    40 UOM (I,J) = ONEN
            IF (LMAX.GT.1.) LMAX=1.
            ORFMAX = 2./(1.+SQRT (1.-LMAX))
            ORPMIN = 2./(1.+SQRT (1.-LMIN))
            IF ((ORFMAX-ORFMIN).GT.(2. ORFMAX).OR. (ORF-ORFMAX).GT.0.0005)
            1GO TO 30
            ORF = ORFMAX
            WRITE (NGRIT, 1000) ORF
C
C--RESTORE U BOUNDARY VALOE AT SHROUD
            DO 50 I=1,MM
        50 UOM(I,MHTP1) = 1.
C
C--SOLVE MATRIX EQUATICN BY SOR
```

```
C
    7C ERROR = 0.
    DO 80 J=2,MHT
    DO }80\textrm{I}=1,\textrm{MM
    CHANGE = A (1,I,J) *UOM (I,J-1) +A (2,I,J) *#OM (I,J+1) +K (I,J) - UOM (I,J)
    IF (I.NE.1) CHANGE=CHANGE+A (3,I,J)*UOM (I-1,J)
    IF (I.NE.MM) CHANGE=CHANGE+A (4,I,J)*UCM (T+1,J)
    CHANGE = ORF*CHANGE
    ERROR = AMAX\(ERROR,ABS (CHANGE))
    8C UOM (I,J) = UOM (I,J) +CHANGE
    IF(ERROR.GT.1.E-5) GO TO 70
    RETURN
    10CO FORMAT (//5X,4OHCALCULATED OVERRELAXATION FACTOP (OPF) =,F7.3)
    END
    SUBROUTINE LOSSOM
C
C--losSom COMPUTES the ratio of actual to ideal relative total fressure
C--AT THE DOHNSTREAM INPUT STATION, AND THEN DISTRIRUTES THIS LOSS ON
C--THE ORTHOGONAL MESH AS SPECIFIED BY THE INPUT
C
    COMMON NREAD,NWRIT,ITER,IEND,NGRT1,NGRT2,NWPTG,NGRT4,NHRT5,NWRTE
    COMMON/INPUTT/GAM,AR,MSFI,OMEGA, REDFAC,VELTOL,FNEW,DNFW,MBI,MBO,
    MM,MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP,NOSTAT,NSL,NLOSS,
    2 LSFR,LTPL,LAMVT, LROT, LBLAD,LETEAN,ANGROT, IMESH,ISLINE,
    3 ISTATL,IPLOT,ISUPER,TTSON,IDEBDG,ZOMIN,ZOMBI,ZOMBO,ZOMOUT,
    4 ROMIN,ROMBI,ROMBO, ROMOUT, ZHIN,ZTIN,ZHOUT,ZTOUT,RHIN,RTIN,RHOUT,
    5 GTOUT,TITLEI(20),ZHUB(50), RHUB(50),ZTIP(5n),RTIP(50),SFIN(50),
    6 RADIN(50),TIP(50), PRTP(50), LAMIN(50),VTHIN(50), SFOUT(50),
    7 RADOUT (50), PROP (50), LOSOUT(50), LAMOUT (50), VTHOUT (50).
    8 BETALE(50), BETATE(50), 2HST(50), ZTST(50), RHST(50), RTST(50),
    9 FLFR(50),PERCRD(50),PERLOS (50), ZBL (50,50), RBL (50,50),
        THBL (50,50), TNBL (50,50),TTBL (50,50),TH1BL (50,5C),TH2BL (50,50)
    COMMON/CALCON/MMM1,MHTP1,CP,EXPON,TGROG,PITCH,RLEH,RLET,RTEY,RTET,
    1 ZLE(5C), RLE (50), ZTE (50), RTE(50), ZLEOM(101), RLEOM (101),
        SLEOM (101).THLEOM (101), ZTEOM (101).RTEOM(101), STEOM(101).
        THTEOM(101).IIE(101),ITE(101), ZOM(100,101),ROM(100,101).
        SOM(100,101),TOM(100.101), BTH(100,101),DTHDS(10^.101),
        DTHDT (100.101), PLOSS (100,1C1), CPHI(100,101), SPHI (100,101)
    COMMON/VARCOM/A (4,100,101),UOM(100,1^1),K(1C0,101),RHO(100,191),
        WSUBS (100,101),WSUBT (100.101),WSUBZ (100,101), WSUBR(10%,101),
        WSUBM(10^,101),WTH(100,1ז1),VTH(100,101),W(1C0,101).
        ALPHA(100,101), BETA(100,101),WWCR(100,101), CURV (100.101),
        HLSURF(100,101),WTSURF(100,101), CAMP(100,101), SAMP(100,101),
        RHOAV(100,101), DELRHO(100,101), FT(100,101), DFDM(100,101),
        XIOM(100,101), ZETOM (100,101), DLDU(100,101)
    COMMON/ROTATN/ZHROT (50), RHROT (50).ZTROT (50), RTROT (50),
        ZLEOMR(101), RLEOMR (1?1), ZTEOMR(101), RTEOMR(101).
    2 ZBLROT (50,50), RBLROT(5C,5C), ZOMROT (100,101), ROMROT (100, 121)
    DIMENSION ZTEMR(2),RTEMR(2),SOMIN(101),SOMOUT(101)
    REAL LAMDAF,LOSOUT
    I1 = 1
    I2 = MM
    RFAC2 = REDFAC**2
C
```

```
C--REINITIALIZE LAMDAF AND RVTHTA FOR INCOMPRESSIRLE CASE
C
    IF (GAM.NE.O.) GO TO 5
    IF (LAMVT.EQ.O.AND.LSFR.EQ.C) RETURN
    CALL LAMNIT
    IF (MBI.NE.0) CALL RVTNIT
    RETIRN
C
C--REINITIALIZE LAMDAF, RVTHTA, TIPF, AND RHOIPF
C
    5 IF (LAMVT.EQ.O.AND.LSFR.EQ.0) GOTO 10
        CALL LAMNIT
        CALL TIPNIT
        CALL RHINIT
        IF (MBI.NE.O) CALL RVTNIT
        GO TO }1
C
C--ENTRY POINT TO UPDATE plOSS FOR TVELCY
C
    ENTRY LOSSTV(II)
    IF (GAM.EQ.O.) RETURN
    I1 = II
    I2 = II
    RFAC2 = 1.
C
C--CALCULATE LOSOUT ON DOWNSTREAM INPUT BOONDARY, IF NOT GIVEN AS INPUT
    10 IF (LTPL.EQ.1) GO TO 30
        IP (I1.NE.1) GO TO }3
        ILOS = 0
        DO 20 JN=1, NOUT
        TINP = TIPF(SFOUT(JN))
        TOP = TINP-OMEGA/CP* (LAMDAF(SFOUT (JN).ILE(1), 1) -RVTHTA(SFOUT (JN),
        1ILE(1), 1))/RFAC2
        gRINP = RHOTPF(SFOUT (JN))*AR*TINP
        LOSOUT(JN) = 1.- PROP (JN)/PRINP* (TINP/TOP) ** (GAM*EXPON)
    20 IF (LOSOUT (JN).LT.-.OO1) ILOS=1
    IF (ILOS.EQ.1) WRITE (NWRIT, 1020)
    30 IF (ITER.GT.1) GO TO 35
        IF (LTPL.EQ.O) NRITE(NWRIT,1000) (JN,LOSOUT (JN),JN=1;NOUT)
        KRITE (NWRIT,1010) (J,ILE(J),ITE(J),J=1,MHTP1)
C--DISTRIBOTE TOTAL PRESSURE LOSS AT POINTS OF ORTHOGONAL MESH
C 35 CALL SPLINT(SFOUT,LOSOUT,NOUT,O.,1,TEMP,TEMP1,TEMP2)
    DO 40 J=1,MHTP1
    DO 40 I= I1,I2
    40 CALL SPLENT (UOM (I,J).1. PLOSS (I,J),TEMP1,TEMP2)
    IF(MBI.EQ.O.OR.NLOSS.GT.O) GOTO TO
C--WITH BLADES, AND LINEAR DISTRIBIJTION OF LOSS WITHIN BLADES
    DO 50 J=1,MHTP1
    SLENTH = STEOM(J)-SLEOM(J)
    DO 50 I=I1,I2
    PC = (SOM (I,J)-SLEOM (J))/SLENTH
    50 PLOSS (I,J) = AMIN1(1.,AMAX1 (O.,PC))*PLOSS (I,J)
    RETORN
C--NO BLADES, OR INPUT DISTRIBUTION OF LOSS, CALCOLATE SOMOUT
    60 IF(ITER.GT. 1) GO TO 85
    CAN = COS (ANGROT)
    SAN = SIN (ANGROT)
    ZTEMR(1) = ZHOUT*CAN+RHOUT*SAN
```

```
    RTEMR(1) = RHOUT*CAN-ZHOUT*SAN
    ZTEMR(2) = 2TOUT*CAN+RTOUT*SAN
    RTEMR(2) = RTOUT*CAN-ZTOUT*SAN
    DO 80 J=1,MHTP1
    CALL INRSCT (ZOMROT(1,J),ROMROT (1,J),MM,ZTEMR,RTEMR,2,ZIR,RIR)
    DO }70\textrm{I}=2,\textrm{MM
    IF (ZIR.LE.ZOMROT(I,J)) GO TO 80
    7C CONTINUE
    I = MM+1
    80 SOMOUT(J) = SOM(I-1,J)+SQRT((ZIR-ZOMROT (I-1,J))**2+
    1(RIR-ROMROT (I-1.J))**2)
    85 IF(MBI.EQ.C) GO TO 100
C--GITH BLADES, AND INPUT DISTRIBUTION OF LOSS WITHIN BLADES, AND LINEAR
C--DISTRIBUTION OF LOSS PROM TRAILING EDGE TO DONNSTREAM INPUT STATION
    CALL SPLINT (PERCRD,PERLOS,NLOSS,O., 1, PERLS,TEMP1,TEMP2)
    DELPL = 1.-PERLOS(NLOSS)
    DO 90 J=1,MHTP1
    SLENTH = STEOM(J)-SLEOM(J)
    DELPCO = DELPL/(SOMOUT(J)-STEOM(J))
    PERLS = त.
    DO 90 I=I1. I2
    IF (I.LT.ILE(J)) GO TO 90
    IF (I.LE.ITE(J)) PC=(SOM(I,J)-SLEOM(J))/SLENTH
    IF (I.LE.ITE(J)) CALL SPLENT(PC,1,PERLS,TFMP1,TEMP2)
    IF (I.GT.ITE(J)) PERLS=PERLOS(NLOSS) + (SOM(I,J)-STEOM(J)) *DELPCO
    IF (PERLS.GT.1.0) PERLS=1.C
    90 PLOSS(I,J) = PERLS*PLOSS(I,J)
    RETORN
C--NO BLADES, CALCULATE SOMIN
    10C IF(ITER.GT.1) GO TO 135
        ZTEMR(1) = ZHIN*CAN+BHIN*SAN
        RTEMR(1) = RHIN*CAN-ZHIN*SAN
        ZTEMR(2) = ZTIN*CAN+RTIN*SAN
        RTEMR(2) = RTIN*CAN-ZTIN*SAN
        DO 130 J=1,MHTP1
        CALL INRSCT (ZOMROT (1,J), BOMROT (1,J),MM,ZTEMR,RTEMR,2,ZIR,RIR)
        DO 110 I=1.MM
        IF (ZIR.LE.ZOMROT (I,J)) GO TO 120
    110 CONTINUE
    120 IF (I.EQ.1) SOMIN(J)=0.
    130 IP (I.NE.1) SOMIN(J)=SOM(I-1,J) +SQRT((ZIR-ZOMROT (I-1,J))**2+
        1(RIR-ROMROT (I-1,J))**2)
C--NO BLADES, AND LINEAR OR INPUT DISTRIBUTION OF LOSS FROM
C--DPSTREAM TO DOWNSTREAM INPUT STATIONS
    135 IF (NLOSS.GT.0) CALL SPLINT(PERCRD,PERLOS,NLOSS,0.,1,PERLS.
        1TEMP1,TEMP2)
            DO 140 J=1,MHTP1
            SLENTH = SOMOUT(J) -SOMIN(J)
            DO 140 I=I1,I2
            PC = (SOM (I,J)-SOMIN(J))/SLENTH
            PERLS = PC
            IF (NLOSS.GT.0) CALL SPLENT(PC,1,PERLS,TEMP1,TEMP2)
            IF (PC.LE.O.) PERLS=0.
            IF (PC.GE.1.) PERLS=1.
    140 PLOSS (I,J) = PERLS*PLOSS (I,J)
            RETURN
1000 FORMAT (//5X,31HINITIAL CALCULATED LOSOOT ARRAY/10X, 2HJN,6X,6HLOSO
    1UT/(9X,I2,3X,F10.6))
1010 FORMAT ///5x,29HCALCULATED ILE AND ITE ARRAYS/10X,1HJ,5X,3HILE.3X,
```

13HITE/(9X,I2.4X,I3,3X,I3))
1020 FORMAT (1 H $1,5 \mathrm{X}, 82 \mathrm{HINPUT}$ PROP VALUES ARE LARGER THAN IDEAL TOTAL PR 1ESSURE. RESULTING IN NRGATIVE LOSS)
END

SUBROUTINE NENRHO
C
C--NEMRHO CALCULATES VELOCITY COMPONENTS, VELOCITY MAGNTTUDE, C--AND NEK DENSITY AT EACH MESH POINT
C
COMMON NREAD,NWRIT, ITER, IEND, NHRT1, NHRT2,NHRT3,NWRTL, NHRT5, NGRT6
COMMON/INPUTTYGAM,AR,MSFI, OMEGA, REDFAC, VELTOL, FNEW, DNEW, MBI,MBO,
1 MH, MHT, NBL, NHOB,NTIP, NIN, NOUT, NBLPL,NPPP, NOSTAT,NSL,NLOSS,
2 LSFR,LTPL,LAMVT,IROT,LBLAD,LETEAN, ANGROT, IMESH, ISLINE,
3 ISTATL, IPLOT, ISUPER, ITSON, IDEBUG, ZOMIN,ZOMBI, ZOMBO, ZOMOUT,
4 ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN, RTIN, RHOUT,
5 RTOUT,TITLEI (20), ZHUB (50), RHOB (50), ZTIP(50), RTIP (50), SFIN (50) .
$6 \operatorname{RADIN}(50), \operatorname{TIP}(50), \operatorname{PRIP}(50), \operatorname{LAMIN}(50), \operatorname{VTHIN}(50), \operatorname{SFOUT}(50)$.
7 RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50).
8 BETALE (50), BETATE (50), ZHST (50), , ZTST (50), PHST (50), RTST (50),
9 FLFR (50), $\operatorname{PERCRD}(50), \operatorname{PERLOS}(50), 2 B L(50,50), \operatorname{RBL}(50,50)$.
1 THBL $(50,50)$, $\operatorname{TNBL}(50,50), \operatorname{TTBL}(50,50)$, TH1BL $(50,50)$, TH2BL $(50,50)$
COMMON/CALCON/MMM1, MHTP1, CP, EXPON,TGROG,PITCH,RLEH,RLET,RTEH, RTEM,
$1 \operatorname{ZLE}(50), \operatorname{RLE}(50), \operatorname{ZTE}(50), \operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLEOM}(101)$,
2 SLEOM (101), THLEOM (101), ZTEOM (101), RTEOM (101), STEOM (101),
THTEOM (101), ILE (101), $\operatorname{ITE}(101), \operatorname{ZOM}(100,101), \operatorname{ROM}(100,101)$, $\operatorname{SOM}(100,101), \operatorname{TOM}(100,101), \operatorname{BTH}(100,101), \operatorname{DTHDS}(100,101)$, $\operatorname{DTHDT}(100,101), \operatorname{PLOSS}(100,101), \operatorname{CPHI}(100,101), \operatorname{SPHI}(100,101)$ COMAON/VARCOM/A $(4,100,101)$, $\operatorname{DOM}(100,101), K(100,101)$, RHO $(100,101)$,
$1 \operatorname{HSUBS}(100,101), \operatorname{GSUBT}(100,101), \operatorname{GSUBZ}(100,101), \operatorname{VSUBR}(100,101)$,
2 USUBM (100, 101), WTH (100, 101), VTH (100, 101), W(100.101),
3 ALPHA $(100,101), \operatorname{BETA}(100,101), \operatorname{WHCR}(100,101), \operatorname{CURV}(100,101)$,
4 HLSURF(100, 101), $\operatorname{WTSURE}(100.101), \operatorname{CAMP}(100,101), \operatorname{SAMP}(100,101)$,
5 RHOAV (100, 101), DELRHO (100.101), PT (100. 101). DPDM (100. 101).
6 XIOM (100,101), $\operatorname{ZETOM}(100,101), \operatorname{DLDU}(100,101)$
DIMENSION DUDS (100), TVERT(101), UVERT(101), DIIDT(101).TPP(101).
1 PREL (101), DPDT(101), DTDT (101), AAA(101)
REAL MSFL, LAMDAF,LAMBDA, LAMBDO
RELER $=0$.
RELERA $=0$.
XNEW $=1.0$
$\mathrm{ZNED}=1.0$

C

C--CALCULATE USUBT PROA THE PARTIAL OF UOM WITH RESPECT TO S USING THE C--AVERAGE BLADE-TO-BLADE DENSITY FOR CONTINUITY

C
DO $10 \mathrm{~J}=1$, HHTP 1
CALL SPLINE (SOM (1, J), UOM (1, J), MA,DUDS,AAA)
DO $10 \mathrm{I}=1, \mathrm{KM}$
MSUBT (I, J) $=(-\operatorname{DODS}(I) * M S F L /(R O M(I, J) * B T H(I, J))-$
1DFDK (I, J) *DELRHO (I, J)/12.*COS (BETA(I,J)) *SAMP (I,J))/RHOAV (I,J) 10 CONTIMUE
C
C--CALCOLATE DERIVATIVES IA THE T DIRECTION OF THE SAME VARIABLES, AND c--Calculate nen velocities and Nen density

```
C
    IREL = 1
    JREL = 1
    ICOUNT = 0
    DO 40 I=1,MM
    DO 20 J=1,MHTP1
    TVERT(J) = TOM(I,J)
    20 UVERT(J) = UOM(I,J)
    CALI SPLINE(TVERT,UVERT,MHTP1,DUDT,AAA)
    DO 30 J=1,MHTP1
    WSUBS (I,J) = (DODT (J)*MSFL/(ROM (I,J)*BTH (I,J)) -
    1DFDM(I,J)*DELRHO(I,J)/12.*COS(BETA(I,J))*CAMP(I,J))/RHOAV (I,J)
    WTH (I,J)= ROM (I,J)*(HSUBS (I,J)*DTHDS (I,J) + WSUBT (I,J) *DTHDT (I,J))
    OMR = OMEGA*ROM (I,J)
    LAMBDA = LAMDAF(UOM (I,J),I,J)
    LAMBDO = RVTHTA (UOM (I,J),I,J)
    IF (I.LT.ILE(J)) WTH(I,J)=LAMBDA/ROM(I,J)-OMR
    IF (I.GT.ITE(J)) UTH(I,J)=LAMBDO/ROM(I,J) -OMR
    VTH}(I,J)=WTH(I,J)+OMR
    WSQ = WTH (I,J)**2*GSUBS (I,J)**2*WSUBT (I,J)**2
    HTEMP = SQRT(WSQ)
    ERR = 0.
    IF (N(I,J).NE.O.) ERR=ABS((WTEMP-W(I,J))/W(I,J))
    RELER = AMAX1(GELER,ERR)
    IF (RELER.EQ.ERR) IREL = I
    IF (RELER.EQ.ERR) JREL = J
    IF (ERR.GE.VELTOL) ICOUNT=ICOUNT+1
    RELERA = RELERA+ERR
    W(I,J) = WTEMP
    IF (GAM.EQ.O.) GO TO 30
    TIPT = TIPF (OOM (I,J))
    RHOIP = RHOTPF(UOM (I,J))*(1.-PLOSS (I,J))
    TPP(J) = TIPT-(2.*OMEGA*LAMBDA-OMR**2)/CP/2.
    IF (TPP(J).LT.O.) GO TO 60
    PREL(J) = RHOIP*AR*TIPT*(TPPP(J)/TIPT)**(GAM*EXPON)
    TTIP = (TPP(J)-WSQ/CP/2.)/TIPT
    IF (TTTP.LT.O.) GO TO 50
    RHO(I,J) = RHOIP*TTIP**EXPON
    30 CONTINUE
    IF (GAM.EQ.O.) GO TO 40
    CALL SLOPES(TVERT,TPP,MHTP1,DTDT)
    CALL SLOPES (TVERT,PREL,MHTP1,DPDT)
    DO 35 J=1,MHTP1
    XIOMT = (AR/PRREL(J)*DPDT (J)/CP-DTDT (J)/TPPP(J))/2.
    ZETOMT = OMEGA**2*ROM(I,J)*CPHI(I,J)-AR/PPREL (J)*TPP(J) *DPDT (J)
    XIOM(I,J) = XNEW*XIOMT+(1. -XNEW) *XIOM(I,J)
    35 ZETOM (I,J) = ZNEW*ZETOMT + (1.-ZNEW)*ZETOM (I,J)
    40 CONTINUE
        RELERA = RELERA/FLOAT(MM*MHTP1)
        IF (ITER.GT.1) WRITE(NHRIT,1N20) RELER,IREL,JREL, RELERA,ICOUNT
C
C--ADJUST PRINTING CONTROL VARIABLES
C
    IF (RELER.GE.VELTOL) RETURN
    IF (RELER.EQ.O.) RETURN
    IEND = IEND+1
    IF (IMESH.GT.1) IMESH=1
    IF (ISLINE.GT.1) ISLINE=1
    IF (ISTATL.GT.1) ISTATL=1
    IF (IPLOT.GT.1) IPLOT=1
```

```
            IF (ITSON.GT.1) ITSON=1
            IF (IDEBUG.GT.1) IDEBUG=1
            RETURN
        5C WRITE(NWRIT,1000)
            STOP
        60 WRITE(NWRIT,1010)
        STOP
    100C FORMAT (////68H PROGRAM STOPPED IN NEYRHO DUE TO EXCESSIVE STREAM F
    IUNCTION GRADIENT)
    1010 FORMAT(////61H THE UPSTREAM INPUT WHIRL OR TANGENTIAL VELOCITY IS
        1TOO LARGE)
    1020 FORMAT(/ 5X,37HMAXIMIMM RELATIVE CHANGE IN VELOCITY=,G11.4,
        18H AT I =,I3,5H,J =,I3/5X,37HAVERAGE RELATIVE CHANGE IN VFLOCITY
        2=,G11.4/5X,37UNUMBFR OF UNCONVERGED MESH POINTS =,T5)
        END
```

 SUBROUTINE OUTPUT
 C
C-OUTPUT CALCULATES AND PRINTS THF MAJOR OUTPIJT DATA
C--AT THE ORTHOGONAL MESH POINTS, ALONG THE STREAMLINES,
C--AND ALONG STATION LINES FROM HUB TO SHROUD
C
COMMON NREAD, NWRTT,ITER, IEND, NWRT1, NWRT2, NWRT 3, NWRT4, NWRT5, NWRTE
COMMON/INPUTT/GAM, AR,MSFI, OMEGA, REDFAC, VELTOL, FNEW, DNFH, MBI, MBO,
MM, MHT, NBL, NHUR, NTTP, NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL, NLOSS,
LSFR, LTPL, LAMVT, LROT, LBLAD, LETEAN, ANGROT. IMESH, ISLINE,
ISTATL, IPLOT, ISUPFR, ITSON, TDEBUG, ZOMIN, ZOMBI, ZOMBO, ZOMOUT,
ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT,ZTOUT, RHIN, RTIN,RHOUT,
RTOUT,TITLET (20), ZHUB (50), RHUB (5?), ZTIP(5C), RTIP (50), SFIN(50),
RADIN (50), TIP (50), PRIP(50), LAMIN (50), VTHIN(50), SFOUT(50),
RADOUT (50), PROP (5त), LOSOLTT (50), LAMOUT (50), VTHOUT (5n),
$\operatorname{BETALE}(50), \operatorname{BETATE}(50), \operatorname{ZHST}(52), \operatorname{ZTST}(50), \operatorname{RHST}(5 \mathrm{C}), \operatorname{RTST}(50)$,
$\operatorname{FLFR}(5)), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), Z B L(50,5 \mathrm{C}), \operatorname{RBL}(50,50)$
$\operatorname{THSL}(50,50), \operatorname{TNBL}(50,5 \mathrm{C}), \operatorname{TTBL}(50,50), \operatorname{TH1BL}(50,5 \mathrm{C}), \mathrm{TH} 2 \mathrm{BL}(50,5 n)$
COMMON/CALCCN/MMM1, MHTP1,CP, EXPON,TGROG, PITCH,RLEH, RLET,RTEH, RTET,
$\operatorname{ZLE}(50), \operatorname{RLE}(50), \operatorname{ZTE}(50), \operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLEOM}(1 \cap 1)$.
SLEOM (101), THLEOM (101), ZTEOM(101), RTEOM (101), STEOM (101)
$\operatorname{THTEOM}(1 C 1)$. ILE 101$)$. TTE (101), ZOM $(100,101)$, $\operatorname{ROM}(100,101)$,
SOM (100, 101), $\operatorname{TOM}(100,101), \operatorname{BTH}(10), 101), \operatorname{DTHDS}(100,101)$.
5 DTHDT (100, 101). PLOSS (100, 101), CPHI (100, 101), SPHI (100, 191)
COMMON/VARCOM/A (4, 100, 1O1), UOM (100, 101), K(100,101), RHO (100, 101).
WSUBS (10C, 101), WSUBT (100,121), $\operatorname{WSUBZ}(100,101), \operatorname{WSUBR}(100,101)$
$\operatorname{WSOBM}(100,101), \operatorname{WTH}(100,101), \operatorname{VTH}(100,101), \mathrm{W}(100,1 \cap 1)$.
ALPHA $(100,1 \wedge 1), \operatorname{BETA}(100,101), \operatorname{WWCR}(10 \cap, 101), \operatorname{CURV}(100,101)$,
$\operatorname{WLSURF}(100,101), \operatorname{WTSURF}(10 \mathrm{c}, 101), \operatorname{CAMP}(10 \mathrm{C}, 101), \operatorname{SAMP}(100,101)$,
RHOAV (100, 101), DELRHO(100,101), FT(100.101), DFDM (100, 121).
XIOM (100,101), ZETOM (100,1C1), DLDU(100.101)
COMMON/SLCOM/ILS (50), ITS (50), ZSL (10), 5) , RSL (100.50), MSL (100, 50),
1 GZSL $(100,50)$, WRSL $(100,50)$, WMSL $(102,50)$, WTHSL $(100,50)$,
WZSL $(100,50)$, WRSL $(100,50)$, WMSL $(102,50)$, WTHSL $(100,50)$,
ALPSL $(100,50), \operatorname{BETSL}(100,5 C)$, WSL $(100,50)$, WHCRSL $(100,50)$
ALPSL $(100,50), \operatorname{BETSL}(100,5 C), \operatorname{HSL}(100,50)$, WN
$C U R V S(100,50), W L S S L(100,50), W T S S L(100,50)$
COMMON/ROTATN/ZHROT (50), EHROT (50), ZTROT (50). RTROT (50).
ZLEOMR (1C1), RLEOMR (191), ZTEOMR(1?1), RTEOMR(101).


```
    WTHST(50), ALPST (50), BETST(50),WST(50), WWCRST(50),CURVST(5.?).
    WLSST (50), WTSST(50), PLOST(50), VTHST(50),VST(50), BEABST(5^),
    PST (50),TST (50), PHOST (50),PPST (50),TPST(50), PPPST(50),TPPST(50)
    DIMENSION DALDS(100).TVERT (101), ALVERT(101), DALVER(101).
    ZTEM(101), RTEM(101),OTEM(101), ZSLTEM(50), RSLTEM(50),
    AAA(101), BBB(101),WZFSEX(101),WRFSEX(101), BTFSEX(101).
    DALDT (100, 101), CHOMES (2,100), ALTEM (100), BETEM (10^), CHOK (2)
    DATA CHOMES/20O*' 1/.CHOK/' CH',OKED'/,BLNK/' 1/.NCHOK/S/
    REAL LAMDAF,LAMBDA,MSL,MST,MTFM
C
C--CALCOLATE VELOCITY COMPONENTS AND FLOM ANGLES ON ORTHOGONAL MESH
C
    DEGRAD = 180./3.1415927
    DO 10 J=1,MHTP1
    DO 10 I= 1,MM
    WSUBM(I,J) = SORT(WSUBS (I,J)**2+WSUBT(I,J)**2)
    SAMP(I,J) = MSUBT (I,J)/WSUBM (I,J)
    CAMP(I,J) = WSUBS(I,J)/WSUBM(I,J)
    WSUBZ(I,J)=WSUBS (I,J)*CPHI (I,J)-WSUBT (I,J)*SPHI(I,J)
    WSUBR(I,J) = WSUBT(I,J)*CPHI (I,J) +GSOBS (I,J) *SPHI (I,J)
    ALPHA(I,J) = ATAN2(HSUBR (I,J),WSUBZ (I,J))
    10 BETA(I,J) = ATAN2(HTH(I,J),NSUBM (I,J))
    GO TO 30
C
    ENTRY TOUTPT
C
c--calculate velocity components on mesh, after transonic SOlution
C
    DO 20 J=1,MHTP1
    DO 20 I=1,MM
    NSUBM(I,J) = ■(I,J)*COS(BETA(I,J))
    WTH(I,J)=W(I,J)*SIN(BETA (I,J))
    WSUBZ(I,J) = WSUBM(I,J)*COS (ALPHA(I,J))
    MSUBR(I,J) = MSUBM (I,J)*SIN (ALPHA (I,J))
    20VTH(I,J) = VTH(I,J) +OMEGA*ROM (I,J)
C
C--COMPUTE BLADE SURPACE VELOCITIES
C
    30 CALL BLDVEL
C
C--STORE 'CHOKED' MESSAGE FOR APPROPRIATE VERTICAL ORTHOGONAL
C--MESH LINES
C
    NCHOK = 0
    DO 25 I=1.MM
    IF (UOM(I,MHTP1).GT.C.9999) GO TO 25
    NCHOK = NCHOR +1
    CHOMES(1,I) = CHOR(1)
    CHOMES (2,I) = CHOR (2)
    25 CONTINUE
C
C--CAlculate streamline corvatore and critical velocity ratio on mesh
C
    DO 50 I=1,MM
    DO 40 J=1,MHTP1
    TVERT(J) = TOM(I,J)
    40 ALVERT (J) = ALPHA (I,J)
    CALL SLOPES(TVERT,ALVERT,MHTP1,DALVER)
    DO 50 J=1, MHTP1
    50 DALDT (I,J) = DALVER(J)
```

144

```
            DO 60 J=1,MHTP1
            CALL SLOPES (SOM (1,J),ALPHA (1,J),MM,DALDS)
            DO 60 I=1,MM
            CURV(I,J) = DALDS(I)*CAMP(I,J) +DALDT(I,J)*SAMP(I,J)
            IF (GAM.EQ.C.) GC TO }5
            TPP = TIPP(UOM (I,J))-(2.*OMEGA*LAMDAF (IOM (I,J),I,J)-(OMEGA*
            1ROM(I,J))**2)/2./CP
            IF (TPP.LE.C.) TPP=1.
            WWCR(I,J) =W(I,J)/SQRT(TGROG*TPP)
        60 CONTINDE
    C
    C--CHECK PRINT AND PLOT INDICATORS TO SEE IF OUTPUT CALCDLATTONS
    C--SHOULD BE MADE
C
            IF (IMESH.LE.O) GO TO }3
            IF ((ITER/IMESH)*IMESH. EQ.ITER.OR.ITER.EQ.1) GO TO 3&
            32 IF (ISLINE.LE.O) GO TO 33
            IF ((ITER/ISLINE)*ISLINE.EQ.ITER.OR.ITER.EQ.1) GO TO 3Q
            33 IF (ISTATL.LE.0) GO TO 34
            IF ((ITEF/ISTATL)*ISTATL.EQ.ITER.OR.ITER.EQ.1) GO TO 38
            34 IF (IPLOT.LE.?) GO TO }3
            IF ((ITER/TPLOT)*IPLOT.EQ.ITER.OR.ITER.EQ.1) GO TO 38
    35 IF (ITSON.LE. )) RETURN
            IF ((ITER/ITSON)*ITSON.NE.ITER) RETURN
    38 IF (MBI.EQ.O) GO TO 8O
C
C--CHECK IF UPPER OR LOWER SURFACE IS SUCTION SURFACE
C
            REVERS = 0.0
            IF ((LAMDAF(.5,IIE(1).1)-RVTHTA(.5,ILE(1).1)).GT.r.) , %O TO 80
            REVERS = 1.0
            DO 70 J= 1. MHTP1
            DO 70 I=1,MM
            HDUM = WLSURF(I,J)
            WLSURF(I,J) = HTSURF(I,J)
        70 WTSURF (I,J) = WDUM
C
C--PRINT OUTPUT RON BY ROW FROM HUB TO TTP ON ORTHOGONAL MESH
    80 IF (IMESH.LE.0) GO TO 100
            IF ((ITER/IMESH)*IMESH.NE.ITER.AND.ITER.NE. 1) GO TO 1O?
            WRITE(NWRT1.1000)
            IF (REDFAC.IT.1.0) URITE(NWRT1, 1150) ITER
            IF (REDFAC.EQ.1.0.AND.IEND.LE.C) WRITE(NWRT1.1169) ITFR
            IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.LE.1) WRITE(NGRT1,117?)
            IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.EQ.2) WRITE(NWRT1,11RO)
            DO }90\textrm{J}=1,\textrm{MHTP1
            WRITE(NGRT1,1010) J
            MRITE(NWRT1,1020)
            DO }90\textrm{I}=1.\textrm{MM
            PHI = ATAN2(SPHI (I,J),CPHI (I,J)) *DEGRAD
            ALPHIJ = ALPHA(I,J)*DEGRAD
            BETAIJ = BETA(I,J)*DEGRAD
    90 WRITE(NWRT1,1030) I,J,ZOM(I,J),ROM(I,J), DOM (I,J),HSUBM(I,J),
            1WTH(I,J),W(I,J), HWCR(I,J),ALPHIJ,BETAIJ,PHI,CHOMES (1,I),
            2CHOMES (2,I)
C
C--CALCULATION OP ODTPOT DATA ON STREAMLINES
```

```
C
    10: IF (ISLINE.LE.C) GO TO 110
    IF ((ITER/ISLINE)*ISLINE.EQ.ITER.OR.ITER.EQ.1) GO TO 130
    110 IF (IPLOT.LE.0) GO TO }12
    IF ((ITER/IPLOT)*IPLOT.EQ.ITFR.OR.ITER.EQ.1) GO TO 130
    120 IF (ITSON.I.E.O) GO TO 220
    IF ((ITER/ITSON)*ITSON.NE.ITER) GO TO 220
C
C--CALCILATE STREAMLINE ZSI,RSL COORDINATES FCR PRINT OUT
    13C DO 150 I=1,MM
        DO 140 J=1,MHTP1
        ZTEM(J) = ZOMROT (I,J)
        RTEM(J) = ROMROT (I,J)
    140 UTEM(J) = UOM(I,J)
        CMLL SPLINT (ITEM,RTEM,MHTP1,FLFR,NSL,RSLTEM,AAA,BBB)
        CALL SPLINT (RTEM,ZTEM,MHTP1,RSLTEM,NSL,ZSLTFM,AAA,BBB)
        DO 150 JS=1,NSL
        ZSL(I.JS) = ZSLTEM(JS)
    15C RSL(I,JS) = RSLTEM(JS)
C
C--CALCULATE STREAMLINE MSL COORDINATES FOR PRINT OUT AND PLOTTING
    DO 160 JS=1,NSL
    MSL(1,JS)=0.
    DO 16C IS=2,MM
    16%.MSL(IS,JS)=MSL(IS-1.JS)+SQRT((ZSL(IS,JS)-2SL(IS-1,JS))**2
        1+(RSL(IS,JS)-RSL(IS-1,JS))**2)
C
C--INTERPOLATE TO OBTAIN OUTPIIT DATA ON STREAMLINES
C
        II=1
        JJ = 1
        DO 180 JS=1,NSL
        DO 180 IS=1,MM
        CALL LININT(ZOMROT,ROMROT,HSUBZ,MM,MHTP1,100, 101, ZSL(IS,JS),
        1RSL(IS,JS),WZSL (IS,JS),II,JJ)
            CALL LININT (ZOMROT,ROMROT,WSUBR,MM,MHTP1,100.101,7SL(IS,JS),
            1RSL(IS,JS),WRSI(IS,JS),II,JJ)
            CALL LININT(ZOMROT,ROMROT,WTH,MM,MHTP1,100,101,2SL(IS,JS),
        1RSL(IS,JS),WTHSL(IS,JS),II,JJ)
            CALL LININT(ZOMROT, ROMROT,GHCR,MM,MHTP1,100,101,ZSL(IS,JS),
            1RSL(IS,JS), WHCRSL(IS,JS),II,JJ)
            CALL LININT (ZOMROT,ROMROT,CURV,MM,MHTP1,1CO,101, ZSL(IS.JS),
            1RSL(IS,JS),CURVSL(IS,JS),II,JJ)
            WMSL(IS,JS) = SQRT(MZSL(IS,JS)**2+WRSL(IS,JS)**2)
            ALPSL(IS,JS) = ATAN2(WRSL(IS,JS),WZSL(IS,JS))
            BETSL(IS,JS) = ATAN2(WTHSL(IS,JS),WMSL(IS,JS))
    180 WSL(IS,JS)= SQRT(WMSL(IS,JS)**2+WTHSL(IS,JS)**2)
C
C--CALCULATE ILS AND ITS ARRAYS OF STREAMLINE LOCATIONS INSIDE BLADE
C--LEADING AND TRAILING EDGES
            IF (MBI.EQ.O) GO TO 185
            call Ilete
C
C--INTERPOLATION FOR BLADE SURFACE VELOCITIES ON STREAMLINES
    185 DO 190 JS=1,NSL
        DO 190 IS =1,MM
        HLSSL(IS,JS) = 0.
    190 HTSSL(IS,JS) = 0.
        IF (MBI.EQ.O) GO TO 205
```

146

```
            II = 1
            JJ = 1
            DO 200 JS=1.NSL
            ILSJ = ILS(JS)
            ITSJ = ITS(JS)
            DO 200 IS=ILSJ,ITSJ
            CALL LININT(ZOMROT,ROMROT,HLSORF,MM,MHTP1,1C0,101,ZSL(IS,JS)
            1RSL(IS,JS), HLSSL (IS,JS),II,JJ)
        2OO CALL LININT (ZOMROT,ROMROT,WTSURF,MM,MHTP1,100,101,ZSL(IS,JS),
            1RSL (IS,JS),WTSSL (IS,JS).II,JJ)
    C
    C--PRINT OUTPUT ON STREAMLINES
    C
        205 IF (ISLINE.LE.0) GO TO 220
            IF ((ITER/ISLINE)*ISLINE.NE.ITER.AND.ITER.NE.1) GO TO 220
            HRITE (NWRT2.1040)
            IF (REDFAC.LT.1.0) WRITE (NHRT2,1150) ITER
            IF (REDFAC.EQ.1.O.AND.IEND.LE.0) ORITE(NWRT2.1160) ITER
            IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.LE.1) WRITE(NWRT2,1170)
            IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.EQ.2) WRITE(NWRT2,1180)
            CALL ROTATE(-ANGROT,ZSL,RSL,MM,NSL, 100,50,ZSL,RSL)
            DO 210 JS=1,NSL
            DO 207 IS=1,MM
            ALTEM(IS) = ALPSL(IS,JS)*DEGRAD
    207 BETEM(IS) = BETSL(IS,JS)*DEGRAD
            GRITE (NWRT2,1050) JS,FLFR(JS)
            HRITE(NGRT2,1060)
    210 WRITE(NWRT2.1070) (ZSL(IS,JS),RSL(IS,JS),MSL(TS,JS),WMSL(IS,JS),
            1HTHSL(IS,JS),WSL (IS,JS), HWCRSL(IS,JS), ALTEM (IS), BETEM (IS),
            2CURVSL (IS,JS),WLSSL (IS,JS),WTSSL(IS,JS), CHOMES(1,IS), CHOMES (2,IS).
            3IS=1,MM)
                    CALL ROTATE(ANGROT,ZSL,RSL,MM,NSL, 100,50,ZSL,RSL)
C
C--CALCULATION OF OUTPUT DATA CN HUB-SHROUD STATION LINES
C
    220 IF (ISTATL.LE.O.OR.NOSTAT.EQ.O) GO TO 4 10
            IF ((ITER/ISTATL)*ISTATL.NE.ITER.AND.ITER.NE.1) GO TO 410
            GRITE (NपRT3,1080)
            IF (REDPAC.LT.1.0) जRITE (NHRT3,1150) ITER
            IF (REDFAC.EQ.1.0.AND.IEND.LE.0) WRITE(NWRT3.1160) ITER
            IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.LE.1) WRITE(NGRT3,1170)
C
C--CALCOLATE ZST AND RST ARRAYS
            CALL SPLINT (ZHROT, RHROT,NHUB, ZHST,NOSTAT,RHST,AAA,BBB)
            CALL SPLINT (ZTROT, RTROT,NTIP,ZTST,NOSTAT,RTST,AAA, BBB)
            DO 400 IL=1,NOSTAT
            MARK = 1
            RTEM(1) = RHST(IL)
            RTEM(20) = RTST(IL)
            DELR = (RTEM(20)-RTEM(1))/19.0
            DO 230 J=2,19
    230 RTEM(J)= RTEM (J-1) + DELR
    ZST(1) = 2HST(IL)
    ZST(NSL) = ZTST(IL)
    ZTEM(1) = ZHST(IL)
    ZTEM(20)= ZTST(IL)
    DELZ = (2TEM(20)-ZTEM(1))/19.0
C
```

```
C--CHECK FOR LEADING OR TRAILING EDGE STATION
            IF (MBI.EQ.0) GO TO 240
            DELCH = ABS (ZTEOMR(1)-ZLEOMR(1) + ZTEOMR (MHTP1)-ZLEOMR(MHTPP1))*C.ON5
            IF(ABS(ZST(1)-ZLEOMR(1)).LT.DELCH.AND.ABS (ZST (NSL) -
    1ZLEOMR(MHTP1)).LT.DELCH) MARK=2
            IF(ABS(2ST(1)-ZTEOMR(1)).LT.DELCH.AND.ABS (ZST (NSL) -
            1ZTEONR(MHTP1)).LT.DELCH) MARK=3
            IP (ZST(1).GT. (ZLEOMR(1) +DELCH).AND.ZST(1).LT.(ZTEOMR(1)-
            1DELC(1) MARR=4
            IF (MARK.EQ.2) GO TO 260
            IF (MARR.EQ.3) GO TO 270
C--REGULAR STATION
    240 DO 250 J=2,19
    250 2TEM(J) = ZTEM(J-1) +DELZ
        GO TO 280
C--LEADING EDGE STATION
    260 CALL SPLINT(RLE,ZLE,NBLPL,RTEM, 20,ZTEM,AAA,BBB)
        GO TO 280
C--TRAILING EDGE STATION
    270 CALL SPLINT(RTE,ZTE,NBLPI,RTEM,20,ZTEM,AAA,BBB)
C
C--INTERPOLATE for Stream function
    280 UTEM(1) = 0.
        UTEM(20) = 1.
        II = 1
        JJ = 1
        DO 290 J=2.19
    290 CALL LININT (ZOMROT,ROMROT,UOM,MM,MHTP1,100,101,ZTEM(J),RTEM(J),
        1UTEN(J).II,JJ)
C
C--CALCULATE STATION LINE RST COORDINATES FOR PRINT OUT
            CALL SPLINT(UTEM,RTEM, 20,FLFR,NSL,RST,AAA,BBB)
            DELR = RST (NSL) -RST(1)
            DELZ = 2ST (NSL)-2ST (1)
            NSLM1 = NSL-1
C
C--CALCULATE STATION LINE ZST COORDINATES FOR PRINT OUT
            GO TO (300,320.330,300), MARK
    300 DO 310 JL=2,NSLM1
    310 2ST(JL)= ZST(1)+(RST(JL)-RST(1))/DELR*DELZ
            GO TO 340
    320 CALL SPLINT(RLE,ZLE,NBLPL,RST,NSL,ZST,AAA,BBB)
            GO TO 340
    330 CALL SPLINT(RTE,ZTE,NBLPL,RST,NSL,ZST,AAA,BBE)
C
C--CALCULATE STATION LINE MST COORDINATES FOR PRINT OOT
    340 DO 350 JL=1,NSL
    350 MST(JL) = 0.
        IF (ISLINE.LE.0) GO TO, 370
        IF ((ITER/ISIINE)*ISIINE.NE.ITER.AND.ITER.NE.1) GO TO 370
        II = 1
        JJ=1
        DO 360 JL=1,NSL
    360 CALL LININT(ZSL,BSL,HSL,MM,NSL, 100,50,ZST(JL),RST(JL),MST(JL),
        1II,JJ)
C
C--INTERPOLATE TO OBTAIN OUTPOT DATA ON STATION LINES
C
    370 II = 1
```

```
            JJ = 1
            IF (MARK.NE.2.AND.MARK.NE.3) GO TO 386
    C--SPECIAL CASE OF LEADING OR TRAILING EDGE STATION
    C--EXTRAPOLATE FROM FREE STREAM FOR VELOCITIES AND FLOU ANGLE
            IF (MARK.EQ.3) GO TO 376
            DO 375 J=1,MHTP1
            I = ILE (J) -1
            EXPRAC = (SLEOM(J)-SOM (I,J))/(SOM (I,J)-SOM (I-1,J))
            WZFSEX(J) = WSUBZ(I,J) +EXFRAC* (WSUBZ (I,J)-WSUBZ (I-1,J))
            HRFSEX(J) = WSUER(I,J) +EXFRAC* (GSUBR(I,J)-GSUBR(I-1,J))
            BTPSEX(J) = BETA(I,J) + EXPRAC*(BETA(I,J)-BETA (I-1,J))
            RTEM(J) = RLEOMR(J)
            GO TO 378
    376 DO 377 J=1, MHTP1
            I = ITE (J) +1
            EXFRAC = (SOM (I,J)-STEOM (J))/(SOM(I+1,J)-SOM (I,J))
            WZFSEX(J) = WSUBZ (I,J) +EXFRAC*(HSUBZ (I,J)-HSUBZ (I+1,J))
            MRFSEX(J) = WSUBR(I,J) +EXFRAC*(HSOBR(I,J)-WSUBR(I+1,J))
            BTFSEX(J) = BETA (I,J) +EXPRAC* (BETA (I,J) - BETA(I+1,J))
    377 RTEM(J) = RTEOMR(J)
    378 JLTE = 1
            DO }384\textrm{JL=1,NSL
            DO 380 J=JLTE,MHT
            IF (RST(JL).LE.RTEM (J+1)) GO TO 382
    380 CONTINUE
    382 JLTE = J
            EXFRAC = (RST (JL)-RTEM (J))/(RTEM (J+1)-RTEM(J))
            WZST(JL) = RZFSEX(J) +EXPRAC*(NZFSEX(J+1)-WZFSEX (J))
            WRST(JL) = WRPSEX(J) +EXFRAC*(WRFSEX (J+1)-WRFSEX(J))
            BETST(JL) = BTFSEX (J) +EXFRAC* (BTPSEX (J+1)-BTFSEX(J))
            MMST(JL) = SQRT(WZST(JL)**2+GRST(JL)**2)
            HTHST(JL) = UMST(JL)*TAN(BETST(JL))
            BETST(JL) = BETST(JL)*DEGRAD
            GO TO 390
C--NORMAL CASE OF FREESTREAM STATION, OR STATION HITHIN BLADE
    386 DO 388 JL=1.NSL
            CALL LININT(ZOMROT,ROMROT,WSUBZ,MM, MHTP1, 100.101,ZST(JL),
            1RST(JL),WZST(JL),II,JJ)
            CALL LININT (ZOMROT,ROMROT,WSUBR,MM,MHTP1,100.101, ZST(JL),
            1RST(JL),WRST(JL).II,JJ)
            CALL LININT (ZOMROT,ROMROT,WTH,HH,MHTP1,100,101,ZST(JL).
            1RST(JL), WTHST(JL),II,JJ)
            MMST(JL) = SQRT(MZST(JL)**2+WRST (JL)**2)
    388 BETST(JL) = ATAN2(HTHST(JL),HMST (JL))*DEGRAD
C
C--CALCOLATE OTHER OUTPUT DATA ON STATION IINES
    390 DO 392 JL=1,NSL
            CALL LININT (ZOMROT, ROMROT, CURV,MM,MHTP9,100,101, 2ST(JL).
                            CALL LININT (ZOMROT,ROMROT,PLOSS,MM,MHTP1,100, 101,ZST(JL).
    1RST(JL),PLOST (JL),II,JJ)
    ALPST(JL) = ATAN2(HRST(JL),RZST(JL))*DEGRAD
    WST(JL) = SQRT(WMST(JL)**2+WTHST(JL)**2)
    #LSST(JL) = 0.
    MTSST(JL) = 0.
    IF (MARK.EQ.1) GO TO }39
    CALL LININT (ZOMROT, ROMROT, HLSORF,MM,MHTP1,1C0,101,ZST(JL).
    1RST (JL),WLSST(JL),II,JJ)
    CALL LININT (ZOMROT,ROMROT,WTSORF,MM,MHTP1,100,101,ZST (JL),
```

```
        1RST(JL),WTSST(JL),II,JJ)
    392 CONTINUE
    CALL ROTATE(-ANGROT,ZST,RST,NSL,1,50,1,ZST,RST)
C
C--CALCULATE EXTRA OUTPOT DATA ON STATION LINES
C
    DO 396 JL=1.NSL
    LAMBDA = LAMDAF(FLFR(JL),ILE(1),1)
    OMR = OMEGA*RST(JL)
    VTHST(JL) = UTHST(JL) +OMR
    VSQ = WMST(JL)**2+VTHST(JL)**2
    VST(JL) = SQRT(VSQ)
    BEABST(JL) = ATAN2(VTHST(JL),WMST(JL))*DEGRAD
    IF (GAM.EQ.O.) GO TO 396
    TIPT = TIPF(FLFR(JL))
    RHOIP = RHOIPF(FLFR(JL))*(1.-PLOST (JL))
    TPPST(JL) = TIPT-(2.*OMEGA*LAMBDA-OMR**2)/2./CP
    WHCRST(JL) = WST (JL)/SQRT(TGROG*TPPST(JL))
    RHOPP = RHOIP*(TPPST (JL.)/TIPT)**EXPON
    PPPST(JL) = RHOPP*AR*TPPST(JL)
    TPST(JL) = TIPT+(OMR*VTHST(JL) -OMEGA*LAMBDA)/CP
    RHOP = RHOIP* (TPST (JL)/TIPT)**EXPON
    PPST(JL) = RHOP*AR*TPST (JL)
    TST(JL) = TPST(JL)-VSQ/2./CP
    RHOST(JL) = RHOP*(TST(JL)/TPST(JL))**EXPON
    PST(JL) = RHOST (JL)*AR*TST (JL)
    396 CONTINUE
C
C--PRINT OUTPUT ALONG HUB-SHROUD STATION LINES
C
    IF (NCHOK.GT.O) WRITE(NWRT 3,1085) NCHOK
    IF (MARK.EQ.1) WRITE(NHRT3,1C90) IL
    IF (MARK.EQ.2) WRITE(NWRT3,1100) IL
    IF (MARK.EQ.3) WRITE(NWRT3.1110) IL
    IF (MARK.EQ.4) WRITE(NGRT3,1120) IL
    WRTTE(NGRT 3,1130)
    WRTTE(NGRT3,1140) (RST(JL), ZST(JL),MST (JL),FLFR(JL), DMST(JL),
    1WTHST (JL),WST (JL),WHCRST (JL), ALPST(JL),BETST(JL),CURVST(JL),
    2WLSST(JL), HTSST(JL),JL=1,NSL)
            WRITE(NWRT3.1142)
            WRITE(NWRT3,1144) (RST(JL),ZST(JL),PST(JL),TST(JL),RHOST(JL),
            1VTHST(JL),VST(JL),PPST(JL),TPST (JL), BEABST(JL),PPPST(JL).
            2TPPST(JL),JL=1,NSL)
    400 CONTINOE
C
C--REVERSE UPPER AND LONER SURFACE VELOCITIES. IF NECESSARY
C
    410 IF(REVERS.EQ.O.) GO TO 430
        DO 420 J=1,MHTP1
        DO 420 I=1.MM
        WDUM = WLSURF(I,J)
        MLSURF(I,J) = GTSURF(I,J)
    420 WTSURE(I,J) = NDUM
        REVERS = 0.0
C
C--REMOVE 'CHOKED' MESSAGE, IF NFCESSARY
C
    430 IF (NCHOK.EQ.O) RETURN
    DO 440 I= 1,MM
```

```
            CHOMES(1,I) = BLNK
    440 CHOMES (2,I) = BLNK
            RETURN
C
C--FORMAT STATEMENTS
C
    100C FORMAT (1H1////28X,79(1H*)/28X,79H*** STRFAM FUNCTION, INTRRIOR V
        1ELOCITIES, VELOCITY COMPONENTS, AND ANGLES ***/44X,41HAT ALL MESH
        2 POINTS OF THE ORTHOGONAL MESH/44X,41(1H*))
    101C FORMAT (///42X.39H** HORIZONTAL ORTHOGONAL MESH LINE NO.,
        1I2,3H**//)
    1020 FORMAT (1X, 10HMESH-POINT, 3X,5HAXIAL, 8X,6HRADIAL, 6X, 6HSTREAM,4X,
        16HMERID., 3X,9HREL.TANG.,4X,4HREL., 3X,9HCRIT.VEL, , 3X,6HMERID., 3X,
        28HREL.FLON,3X,4HMESH/1X,9HCOLM ROW,4X,6HCOORD.,7X,6HCOORD., 7X,
        35HFUNC.,5X,4HVEL.,5X,4HVEL, , 7X,4HVEL.,5X,5HPATIO, 3(5X,5HANGLE)/
        42X,8H(I) (J),5X,3H(Z), 10X,3H(R), 10X,3H(U), 5X,4H(WM),5X,5H(WTH),
        57X,3H(H),5X,7H(W/WCR),3X,7H (ALPHA), 3X,6H(BETA), 5X,5H(PHI))
103C FORMAT (1X,I3,2X,I 3, 2X, 2(G12.5,1X),F8.4.3(1X,F9.2), 1X,F9.3.,
        13(3X,F7.2),2A4)
1040 FORMAT (1H1////15X,99(1H*)/15X,99H*** STREAM FUNCTION, TNTERTOR V
        1ELOCITIES, VELOCITY COMPONENTS, ANGLES, AND SURFACE VELOCITIES **
        2*/56x,17HALONG STREAMLINES/56X,17(1H*))
1050 FOKMAT(///36X,2CH** STREAMLINF NTMBER,I 3,23H -- STREAM PUNCTION
    1=,F8.4,3H **//)
106C FORMAT (4X,5HAXIAL, 8X,6HRADIAL,7X,6HMERID.,6X,6HMERID., 2X,
        19HREL.TANG., 2X,4HREL., 2X,9HCRIT.VFL., 2X,6HMERID., 2X,8HREL, FLOW,
        22X,7HSTREAM., 3X,9HSUCT.SUR., 1X,9HPRES.SUR./4X,6HCOORD.,7x,
        36HCOORD.,7X,6HCOORD.,7X,4HVEL.,5X,4HVEL.,5X,4HVEL, , 4X,5HRATIO,
        42(4X,5HANGLE),5X,5HCURV.,6X,4HVEL, , 6X,4HVEL, /5X,3H(Z), 10X,3H(R),
        51CX, 3H(M),9X,4H(WM),4X,5H(WTH),5X,3H(W),4X,7H(W/WCR), 2X,
    67H(ALPHA), 2X,6H(EETA), 3X,9H(1./DIST),4X,4H(WS), EX,4H(WP))
1070 FORMAT ((3)(1X,G12.5),3(1X,F8.2),1X,F7.3.2(2X,F7.2), 2X,G11.4.
    1F8.2,2X,F8.2,2A4))
1080 FORMAT (1H1////15X,99(1H*)/15x,99H*** STREAM FUNCTION, INTERTOR V
    1elocities, velocity components, angles, and surface velocities **
    2*/28X,72HALONG LINES FROM HUB TO SHROUD AT VARIOUS STATIONS TBroug
    3H THE BLADE ROM/28X,72(1H*))
1085 FORMAT (///28X,19HBEWARE. THERE APE,I 3,49H VERTICAL OPTHOGONAL M
    1ESH LINES WHICH ARE CHOKED,/28X,82HLOCATIONS OF THESE LINES ARE GI
    2VEN ABOVE AT THE BEGINNING OF THE TRANSONIC OUTPIT./28X,87HOUTPUT
    3ON ANY STATION LINES LOCATED NEAR THESE CHOKED ORTHOGONAL LINES MA
    4Y BE IN ERROR.)
109C FORMAT (///49X,26H** HUB-SHROUD STATION NO. ,I2,3H **//)
1100 FORMAT ////49X,26 H** HUB-SHROUD STATION NO. ,I2,3H***,16X,
    118H** LEADING EDGE **//)
1110 FORMAT(///49X,26H** HUB-SHRODD STATION NO., I2, 3H **, 15X,
    119H** TRAILING EDGE **//)
1120 FORMAT (////49X,26H** HOB-SHROUD STATION NO, ,I2,3H**,16X,
    118H** WITHIN BLADE **//)
1130 FORMAT (4X,6HRADIAL,7X,5HAXIAL,8X,6HMERID., 4X,6HSTREAM, 3X,
    16HMERID., 2X,9HREL.TANG., 2X,4HREL., 2X,9HCRIT.VEL., 2X,6HMERID., 2X,
    28HREL.FLOH, 2X,7HSTREAM., 3X,9HSOCT.STR., 1X,9HRRES.SUR./4X,
    36HCOORD.,7X,6HCOORD.,7X,6HCOORD.,5X,5HFUNC, 4X,4HVEL.,5X,4HVFL.,
    45X,4HVEL., 4X,5HRATTO, 2(4X,5HANGLE),5X,5HCURV.,6X,4HVEL., 6X,4HVEL./
    55X,3H(R),10X,3H(Z), 1CX,3H(M),8X,3H(U),5X,4H(HM),4X,5H(WTH),5X,
    63H(W),4X,7H(W/WCR), 2X,7H(ALPHA), 2X, 5H(BETA), 3X,9H(1./DIST),4X,
    74H(WS),6X,4H(WP))
1140 FORMAT ((1X,3(G12.5,1X),F6.4,3(1X,F8.2),1X,F7.3.2(2X,F7.2), 2X,
    1G11.4,F8.2,2X,F8.2))
```

1142 FORMAT ($/ 14 \mathrm{X}, 6 \mathrm{HRADIAL}, 7 \mathrm{X}, 5 \mathrm{HAXIAL}, 8 \mathrm{X}, 3$ (6HSTATIC,3X),9HABS,TANG.,2X, 14 HABS., $3 \mathrm{X}, 2(8 \mathrm{HABS}$. TOT., 1 X), 8HABS. FLOW, $2 \mathrm{X}, 2(1 \mathrm{X}, 8 \mathrm{HREL}$. TOT.) / $24 \mathrm{X}, 2$ (6HCOORD., 7 X), $1 \mathrm{X}, 5 \mathrm{HPRES} .4 \mathrm{X}, 5 \mathrm{HTEMP}, 4 \mathrm{X}, 5 \mathrm{HDENS}, 2(5 \mathrm{X}, 4 \mathrm{HVEL}),$. 34X,5HPRES. $4 \mathrm{X}, 5$ HTEMP., $4 \mathrm{X}, 5 \mathrm{HANGLE}, 6 \mathrm{X}, 5 \mathrm{HPRES} .4 \mathrm{X}, 5 \mathrm{HTEMP} . / \mathrm{SX}, 3 \mathrm{H}(\mathrm{R})$ $4,10 \mathrm{X}, 3 \mathrm{H}(\mathrm{Z}), 10 \mathrm{X}, 3 \mathrm{H}(\mathrm{P}), 5 \mathrm{X}, 3 \mathrm{H}(\mathrm{T}), 6 \mathrm{X}, 5 \mathrm{H}(\mathrm{PHO}), 4 \mathrm{X}, 5 \mathrm{H}(\mathrm{VTH}), 5 \mathrm{X}, 3 \mathrm{H}(\mathrm{V}), 5 \mathrm{X}$, $54 \mathrm{H}(\mathrm{PP}), 5 \mathrm{X}, 4 \mathrm{H}(\mathrm{TP}), 4 \mathrm{X}, 6 \mathrm{H}(\mathrm{BETA}), 6 \mathrm{X}, 5 \mathrm{H}(\mathrm{PPP}), 4 \mathrm{X}, 5 \mathrm{H}(\mathrm{TPP}))$
1144 FORMAT ($1 \mathrm{X}, 2(\mathrm{G} 12.5,1 \mathrm{X}), \mathrm{F9} .2,1 \mathrm{X}, \mathrm{F} 7.2,1 \mathrm{X}, \mathrm{F} 10.7,1 \mathrm{X}, 2(\mathrm{FB}, 2,1 \mathrm{X}), \mathrm{FQ} .1$, $11 \mathrm{X}, \mathrm{F} 7.2,1 \mathrm{X}, \mathrm{F7}, 2,3 \mathrm{X}, \mathrm{F} 9,1,1 \mathrm{X}, \mathrm{F7} .2)$)
1150 FORMAT $\left(/ 53 \mathrm{X}, 23\left(1 \mathrm{H}^{*}\right) / 53 \mathrm{X}, 23 \mathrm{H}^{*}\right.$ REDUCED MASSFLOW */53X,23(1H*)/ $153 \mathrm{X}, 18 \mathrm{H}$ (TEERATION NO. I $2,3 \mathrm{H} * / 53 \mathrm{X}, 23(1 \mathrm{H}=)$)
1160 FORMAT (/52X, $25\left(1 \mathrm{H}^{*}\right) / 52 \mathrm{X}, 25 \mathrm{H}^{*}$ FJLL MASSFLOW */52X,25(1H*)/
152X.19H* ITERATION NO. .I2,4H */52X,25(1H*))
1170 FORMAT (/52X, 25(1H*)/52X.25H* FULL MASSFLOW */42X,45(1H*)/ $142 \mathrm{X}, 1 \mathrm{H} *, 12 \mathrm{X}, 19 \mathrm{HTRANSONIC}$ SOLOTION, $12 \mathrm{X}, 1 \mathrm{H*} / 42 \mathrm{X}, 45 \mathrm{H}^{*}$ BY VELOCITY G 2RADIENT APPROXIMATE METHOD $* / 35 \mathrm{X}, 59(1 \mathrm{H} *) / 35 \mathrm{X}, 59 \mathrm{H} *$ ALL VELOCITIES
3 SMALLER THAN CHOKING MASSFLOW SOLUTTON */35X,59(1H*))
1180 FORMAT (/52X, $25\left(1 \mathrm{H}^{*}\right) / 52 \mathrm{X}, 25 \mathrm{H}^{*}$ FILL MASSFLOW */42X,45(1H*)/ $142 \mathrm{X}, 1 \mathrm{H} *, 12 \mathrm{X}, 19$ HTRANSONTC SOLUTION, $12 \mathrm{X}, 1 \mathrm{H} * / 42 \mathrm{X}, 45 \mathrm{H}$ * BY VELOCITY G 2RADIENT APPROXIMATE METHOD */35X,59(1H*)/35X,59H* ALL VELOCTTIES 3 LARGER THAN CHOKING MASSFLOH SOLUTION */35X,59(1H*)) END

SUBROUTINE ELDVEL
C--bldvel calculates blade surface velocities, blade-to-blade C--AVERAGE DENSITY, AND FT
c
COMMON NREAD,NWRIT,ITER, IEND, NHRT1, NHRT2,NWRT3,NWRT4, NWRT5, NHRTG COMMON/INPUTT/GAM, AR,MSFL, OMEGA, REDFAC, VELTOL, FNEW,DNEW, MBI, MBO,

MM, MHT, NBL, NHUB, NTIP, NIN, NOIJT, NBLPL, NPPP, NOSTAT, NSL, NLOSS, LSFR, LTEL, LAMVT,LROT, LBLAD, LETEAN, ANGROT, IMESH, ISLINE, ISTATL, IPLOT, ISUPER,ITSON, TDEBUG, ZOMIN, ZOMRI, ZOMBO, ZOMOUT, ROMIN, ROMBI, ROMBO, ROMODT, ZHIN, ZTIN, ZHOUT, ZTOOT, RHIN, RTIN, RHOUT, RTOUT, TITLEI (20), ZHUB (50), RHUB (50), $\operatorname{ZTTP}(50), \operatorname{RTIP}(50), \operatorname{SFIN}(50)$, RADIN (50), TIP (50), PRIP(50), LAMIN (50), VTHIN(50), SFOUT (50), RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50). BETALE (50), BETATE (50), ZHST (50), ZTST (50), RHST (50), RTST (50), FLFR (50), $\operatorname{PERCRD}(50), \operatorname{PERLOS}(50), \mathrm{ZBL}(50,50), \operatorname{RBL}(50,50)$, $\operatorname{THBL}(50,50), \operatorname{TNBL}(50,50)$, $\operatorname{TTBL}(50,50), \operatorname{TH1BL}(50,50), \operatorname{TH} 2 \mathrm{BL}(50,50)$
COMMON/CALCON/MMM1, MHTP1, CP, EXPON,TGROG, PITCH, RLEH, RLET, RTEH, PTET, ZLE (50), RLE (50), ZTE (50), $\operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLEOM}(101)$.
$2 \operatorname{SLEOM}(101)$, THLEOM (101), $\operatorname{ZTEOM}(101)$. $\operatorname{RTEOM}(101), \operatorname{STEOM}(101)$.
3 THTEOM (101), $\operatorname{ILE}(101), \operatorname{ITE}(101), \operatorname{ZOM}(100,101), \operatorname{ROM}(100,101)$, $\operatorname{SOM}(100,101), \operatorname{TOM}(100,101), \operatorname{BIH}(100,101), \operatorname{DTHDS}(100,101)$,
5 DTHDT (100, 101), $\operatorname{PLOSS}(100,101), \operatorname{CPHI}(100,1 \mathrm{Cl}), \operatorname{SPHI}(100,101)$
 $\operatorname{USUBS}(100,101), \operatorname{HSOBT}(100,101), \operatorname{WSOBZ}(100,101), \operatorname{HSUBR}(100,101)$,
2 WSUBM $(100,101), \operatorname{VTH}(100,101), V T H(100,101), W(100,101)$. $\operatorname{ALPHA}(100,101), \operatorname{BETA}(100,101), \operatorname{WWCR}(100,101), \operatorname{CURV}(100,101)$, MLSURF(100,101), $\operatorname{HTSURF}(10 \mathrm{C}, 101), \operatorname{CAMP}(100,101), \operatorname{SAMP}(100,101)$, RHOAV 100,101$)$, $\operatorname{DELRHO}(100,101), \operatorname{FT}(100,101)$, $\operatorname{DFDM}(100,101)$, $\operatorname{XIOM}(100,101), \operatorname{ZETOM}(100,101), \operatorname{DLDU}(100,101)$
DIMEHSION TVERT(101), $\operatorname{PVERT}(101)$, DFVERT (101), DFDS (100). $\operatorname{PST}(100,101), \operatorname{DFDT}(100,101)$
real lamdaf

```
    fCHang = 0.
```

```
            FMAX = -1. E20
            FMIN = 1.E20
    C
    C---CALCULATE DFDT
    C
            DO 30 I=1,MM
            DO 20 J=1,MHTP1
            TVERT(J) = TOM(I,J)
            FST(I,J) = VTH(I,J)*ROM(I,J)
            FVERT(J) = FST(I,J)
    20 CONTINUE
            CALL SLOPES (TVERT, FVERT, MHTP1,DFVERT)
            DO 30 J=1,MHTP1
            DFDT(I,J) = DFVERT(J)
        30 CONTINUE
    C
    C---CALCOLATE DFDS, THEN DFDM AND BLADE SURFACE VElocities
            DO 50 J=1, MHTP1
            CALL SLOPES (SOM(1,J),FST(1,J),MM,DFDS)
            DO 50 I=1,MM
            DFDM (I,J) = 0.
            IF (I.GE.ILE(J).AND.I.LE.ITE(J)) DFDM(I,J)=-{DFDS(I)*CAMP(I,J) +
            1DFDT(I,J) *SAMP(I,J))*BTH (I,J)*COS (BETA (I,J))
            HLSORF(I,J) =W(I,J)+DFDM(I,J)/2.
            WTSURF(I,J) =W(I,J)-DFDM (I,J)/2.
C
C---CALCULATE BLADE-TO-BLADE AVERAGE DENSITY
C
            IF (GAM.EQ.O.) GC TO 40
            TWLMR = 2,*OMEGA*LAMDAF(TOM (I,J),I,J)-(OMEGA*ROM(I,J))**2
            HSQ = HLSURP(I,J)**2
            TIPIJ = TIPF(UOM (I,J))
            TTIP = 1.-(WSQ+TULMR)/CP/TIPIJ/2.
            IF(TTIP.LT.O.) TTIP = 0.
            RHOIJ = RHOTPF(UOM (I,J))*(1.-PLOSS (I,J))
            RHOL = RHOIJ*TTIP**EXPON
            WSQ = WTSURF(I,J)**2
            TTIP = 1.-(WSQ+TWLMR)/CP/TIPIJ/2.
            IP(TTIP.LT.0.) TTIP = 0.
            RHOT = RHOIJ*TTIP**EXPON
            DELRHO(I,J) = RHCL-RHOT
            RHOAV (I,J) = (RHOL + 4.*RHO(I,J) +RHOT)/6.
C
C---CALCULATE F-SOB-T FOR SUBROUTINE COEF
C
    40 FTT = W(I,J)/BTH(I,J)*DTHDT (I,J)*DFDM (I,J)
            FCH = ABS(FTT-FT(I,J))
            FCHANG = AMAX1 (FCHANG,FCH)
            IF (FCHANG.EQ.FCH) ICH=I
            IF (FCHANG.EQ.PCH) JCH=J
            FMAX = AMAX1(FMAX,FTT)
            FMIN = AMIN1(FMIN,FTT)
            FT(I,J) = FNEH*FTT+(1.-FNEW) *FT(I,J)
    50 CONTINUE
            IF (IEND.LT.1) HRITE(NHRIT,1C40) PCHANG,TCH,JCH,FT(ICH,JCH),
            1FMAX,FMIN
C
```

C---ERINT DEBUG OUTPOT IP REQUESTED
C
IF (IDEBUG.LE.0) RETURN
IF ((ITER/IDEBUG)*IDEBUG.NE.ITER.AND.ITER.NE. 1) RETURN
HRITE (NWRT5.1020)
GRITE (NWRT5, 1000) ((I, J, WSUBS (I, J), WSURT (I, J) ,VTH(I,J), RHO (I, J),
1 RHOAV (I, J), DELRHO (I, J), DLDU (I, J), PLOSS (I, J), $I=1, M M$), J=1, MHTP1)
WRITE (NWRT5,1030)
HRITE (NWRT5, 1010) ((I,J,DTHDS (I, J), FT (I, J), DFDM (I,J), XIOM (I, J).
$12 \operatorname{ETOM}(I, J), \operatorname{CAMP}(I, J), \operatorname{SAMP}(I, J), I=1, M M), J=1, M H T P 1)$ RETURN
C
C--FORMAT STATEMENTS
C
100 FORMAT (2I5,8G15.5)
1010 FORMAT (2I5,7G15.5)
1020 FORMAT (1H1////35X.57(1H*)/35X.57H* CHANGING QUANTITIES ON T 1 HE ORTHOGONAL MESH */35X,57(1H*)// $4 X, 1 H I, 4 X, 1 H J, 5 X$, 25 HWSUBS, 11 X, 5 HWSUBT, $11 \mathrm{X}, 3$ HVTH, 11 X, 3 HRHO, $11 \mathrm{X}, 5$ HRHOAV. $9 \mathrm{X}, 6$ HDELRHO, $310 \mathrm{X}, 4 \mathrm{HDLDU}, 11 \mathrm{X}, 5 \mathrm{HPLOSS}$)
1030 FORMAT (////4X, $1 \mathrm{HI}, 4 \mathrm{X}, 1 \mathrm{HJ}, 5 \mathrm{X}, 5 \mathrm{HDTHDS}, 11 \mathrm{X}, 2 \mathrm{HFT}, 12 \mathrm{X}, 4 \mathrm{HDFDM}, 11 \mathrm{X}$, 14HXIOM, $11 \mathrm{X}, 5 \mathrm{HZETOM}, 10 \mathrm{X}, 4 \mathrm{HCAMP}, 11 \mathrm{X}, 4$ HSAMP)
1040 FORMAT $(15 \mathrm{X}, 22$ HMAXIMUM CHANGE IN FT $=, \mathrm{G} 13.5,15 \mathrm{X}, 6 \mathrm{HAT} \mathrm{I}=, \mathrm{I} 3$, $15 \mathrm{H}, \mathrm{J}=, \mathrm{T} 3,1 \mathrm{H}, 6 \mathrm{~K}, 10 \mathrm{H}$ WHERE $\mathrm{FT}=, \mathrm{G} 13.5 / 5 \mathrm{X}, 22 \mathrm{HMAXIMUM}$ VALUE OF $\mathrm{FT}=$ $2, G 13.5 / 5 \mathrm{X}, 22 \mathrm{HMINIMUM}$ VALUE OF FT $=, \mathrm{G} 13.5$) END

SUBROUTINE ILETE
C
C- - ILete calculates the integer arrays of mesh point locations uhich are C--JUST INSIDE THE LEADING AND TRAILING EDGES OF THE BLADE
C

```
COMMON/INPUTT/GAM,AR,MSFI,OMEGA, REDFAC,VELTOL,FNEW,DNEW,MBI,MBO,
                        MM,MHT,NBL,NHUB,NTIP,NIN,NODT,NBLPL,NPPP, NOSTAT,NSL,NLOSS,
                        LSFR, LTPL, LAMVT,LROT, LBLAD,LETEAN,ANGROT, IMESH,ISLINE,
        ISTATL, IFLOT, ISUPER,ITSON, IDEBUG,ZOMIN,ZOMBI, ZOMBO,ZOMOUT,
        ROMIN,ROMBI, RCMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN, RTIN,RHOUT,
        RTOUT,TITLEI(20), ZHUB(50),RHOB(50),2TIP(50),RTIP(50),SFIN(50),
        RADIN(50),TIP(50), PRIP(5C), LAMIN(50),VTHIN(50),SFOUT(50),
        RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50),
        BETALE(50), BETATE(50),2HST(50), 2TST(50),RHST(50),RTST(50),
        FLPR(50),PERCRD(50), PERLOS (50), ZRI (50,50), RBL (50.50).
        THBL}(50,50),TNBL (50,50),TTBL (50,50),TH1BL (50,50),TH2BL (50,50
            COMMON/CALCON/MMM1,MHTP1,CP,EXPON,TGROG, PITCG,RLEH,RLET,RTEH,RTET,
            ZLE(50), RLE (50), ZTE (50), RTE (50), ZLEOM (101),RLEOM (1C 1),
            SLEOM(101), THLEOM(101), ZTFOM(101), RTEOM(101),STEOM(101).
            THTEOM(101),ILE(101), ITE(1C1), ZOM(100,101), ROM(100,101),
            SOH(100,101), TOM (100.101), BTH (100,101), DTHDS(100.101),
            DTHDT(100,101), PlosS (100,101), CPHI (100,101), SPHI (100,101)
                    COMMON/SLCOM/ILS (50), ITS (50), ZSL (100,50), RSL (100,50),MSL(100,50),
            WZSL (100,50), WRSL (100,50), WMSL (100,50), WTHSL (100,50).
            ALPSL (100,50), BETSL (100,50), पS L (100,50), WWCRSL (100,50),
            CURVSL (100,50),WLSSL (100,50),WTSSL (100,5C)
C--LEADING EDGE
            CALL SPLINT(RLE,ZLE,NBLPL,RLE(1),1,ZSPL,DZDR,TEMP)
            DO 20 J=1,NSL
```

```
    I = 0
    10 I = I +1
        CALL SPLENT (RSI,(I,J),1,ZSPL,DZDR,TEMP)
        IF (ZSPL,GT.ZSL(I,J)) GO TO 1C
    20 ILS(J) = I
c--TRAILING EDGE
    CALL SPLINT(RTS,ZTE,NBLPL,RTE(1),1,ZSPL,DZDR,TEMP)
    DO 40 J=1,NSL
    I = ILS(J)-1
    3C I = I+1
    CALL SPLFNT(RSL(I,J),1,ZSPL,DZDR,TEMP)
    IF (ZSPL.GE.ZSL(I,J)) GO TO 3C
    40 ITS (J) = I-1
        RETURN
        END
```

SUBROUTINE INDEV
C
C--INDEV CALCULATES A CORRECTION TO DTHDS TO ALLOW FOR INCIDENCE AND C--DEVIATION (AFTER BLCCKAGE CCRRECTION)
C
COMMON NREAD,NWRIT,ITER, IEND, NWRT1, NWRT2,NWRT3,NWRT4, NWRT5,NWRT6
COMMON/INPUTT/GAM,AR,MSFL, OMEGA, REDFAC,VELTOL,FNEW, DNEW, MBI,MBO, MM, MHT, NBL, NHUB, NTIP, NIN, NOUT, NRLPL, NPPP, NOSTAT, NSL, NLOSS, LSFR, LTPL, LAMVT, LROT, LBLAD, LETEAN, ANGROT, IMESH, ISLINF, ISTATL, IPLOT, ISUPER, ITSON, IDEBUG, ZOMIN,ZOMBI, ZOMPO, ZOMOUT, ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOIT, ZTOUT, RHIN, RTIN, RHOUT, RTOUT, TITLEI (20), ZHUB (50), RHIB (59), ZTIP(50), RTIP (50), SFIN (50), $\operatorname{RADIN}(50), \operatorname{TIP}(50), \operatorname{PRIP}(50), \operatorname{LAMIN}(50), \operatorname{VTGIN}(50), \operatorname{SFOUT}(50)$, RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (50). BETALE (50), BETATE (50), ZHST (50), $\operatorname{ZTST}(50)$, $\operatorname{RHST}(50), \operatorname{RTST}(50)$. $\operatorname{FLFR}(50), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), 2 \mathrm{BL}(50,50), \operatorname{RBL}(50,50)$. $\operatorname{THBL}(50,50), \operatorname{TNBL}(50,50), \operatorname{TTBL}(50,50), \operatorname{TH1BL}(50,50), \operatorname{TH2BL}(50,50)$ COMMON/CALCON/MMM1, MHTP1, CP, EXPON,TGROG,PITCH,RLEH, RLET, RTEH,RTFT, ZLE (50), $\operatorname{RLE}(50), \operatorname{ZTE}(50), \operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLFOM}(101)$, SLEOM (101), THLEOM (101). $2 \operatorname{TEOM}(101)$. $\operatorname{RTEOM}(101), S T E O M(101)$, THTEOM (101), ILE(101), ITE(101), ZOM (100.101), ROM (100.101). $\operatorname{SOM}(100,101), \operatorname{TOM}(100,101), \operatorname{BI}(100,101), \operatorname{DTHDS}(100,101)$, DTHDT (100, 101$), \operatorname{PLOSS}(100,101), \operatorname{CPHI}(100,1 \mathrm{C} 1), \operatorname{SPHI}(100,101)$
COMMON/VARCOM/A (4, 100, 101), DOM (100, 101), K (100, 101), RHO (100, 101), $\operatorname{WSUBS}(100,101), \operatorname{WSTAT}(100,101), \operatorname{WSUBZ}(100,101), \operatorname{WSUBR}(100,101)$, $\operatorname{WSUBM}(100,101), \operatorname{WTH}(100,101), \nabla \operatorname{TH}(100,101)$, 曰 $(100,101)$. ALPHA $(100,101), \operatorname{BETA}(100,101), \operatorname{HGCR}(100,101), \operatorname{CURV}(109,101)$, $\operatorname{HLSURF}(100,101), \operatorname{HTSURF}(100,101), \operatorname{CAMP}(100,101), \operatorname{SAMP}(100,101)$, RHOAV (100, 101), DELRHO (100, 101), PT (100, 101), DFDM (150, 101). $\operatorname{XIOM}(100,101), 2 \operatorname{ETOM}(100,101), \operatorname{DLDU}(100,101)$ COMMON/ROTATN/ZHROT (50), RHROT (50), ZTROT (50), RTROT (50), ZLEOMR (101), RLEOMR (101), ZTEOMR (101), RTEOMR(101). ZBLROT $(50,5 \mathrm{C})$, $\operatorname{RBLROT}(50,50), \operatorname{ZOMROT}(100,101), \operatorname{ROMROT}(100,101)$ COMMON/INDCOM/NBLPC,NPPC,ZPC (51, 51), RPC (51,51), TTPC (51,51), $\operatorname{THPC}(51,51), \operatorname{DTHDZ}(51,51), \operatorname{DTHDR}(51,51), \operatorname{BTHLE}(101), \operatorname{BTHTE}(101)$,
2 BTBFLE(101), BTBFTE(101)
REAL LAMDAF
5 IPRNT $=0$
IF (IPRNT.EQ.1) RETURN

```
        DEGRAD = 180./3.1495927
        II = 1
        JJ = 1
        IF (IMESH.LE.O) GO TO 10
        IF ((ITER/IMESH)*IMESH.EQ.ITER.OR.ITER.EQ.1) GO TO 30
        10 IF (ISLINE.LE.O) GO TO 20
        IF ((ITER/ISLINE)*ISLINE.EO.ITER.OR.ITER.EQ.1) GO T0 3n
    2C IF (ISTATL.LE.0) GO TO 40
    IF ((ITER/ISTATL)*ISTATL.NE.ITER.AND.ITER.NE.1) GO TO 40
    30 WRITE(NWRT6,10C0)
        IF (REDFAC.LT. 1.0) URITE (NWRTG, 1010) ITER
        IF (REDFAC.EQ.1.0.AND.IEND.LE.0) WRITE(NHRTG.1020) ITFR
        NRITE(NGRT6,1^30)
        IPRNT = 1
C
C--CORRECT DTHDS, AND CALCULATE INCIDENCE AND DEVIATION, ROW BY ROW
C--FROM IUB TO TIP
C
    40 DO 100 J=1,MHTP1
C
C--CALCULATE BLADE MEAN CAMBER ANGLE AT LEADING EDGE
    I = ILE(J) -1
    EXTRAP = SLEOM(J)-SOM(I,J)
    ALPHLE = ALPHA(I,J) +EXTRAP* (ALPH^(I+1,J)-ALPHA (I,J))/(SOM(I+1,J) -
    1SOM(I,J))
    CALL LININT (ZPC,RPC,DTHDZ,NPPC,NBLPC,51,51, ZLEOMR(J),PLEOMR(J),
        1DTDZLE,II,JJ)
            CALL LININT(ZPC,RPC,DTHDR,NPPC,NBLPC,51,51,ZLEOMR(J),RLEOMR(J),
        1DTDRLE,II,JJ)
            TANBBL = RLEOM(J)*(DTDRLE*SIN(ALPHLE) +DTDZLF*COS (ALPHLE))
            IF (ITER.EO.1) BTBFLE(J)=ATAN(TANBRL)
            BTBLLE = ATAN(TANBBL)*DEGRAD
C
C--CALCULATE BIADE FLOW ANGLE AT LEADING EDGE, CORRFCTED FOR BIOCKAGE
    BETAFS = BETA(I,J) +EXTRAP*(BFTA(I,J)-BETA (I-1,J))/(SOM (I,J)-
        1SOM (I-1,J))
            RHOFS = RHO(I,J) +EXTRAP* (RHO (I,J)-RHO(I-1,J))/
        1(SOM (I,J) -SCM (I-1,J))
            RHOBF=RHOAV (I+1,J)-(SOM(I+1,J)-SOM(I,J)-EXTRAP)/
        1(SOM(I+2,J)-SOM (I+1,J))*(RHOAV (I+2,J)-RHOAV (I+1,J))
            TANBBF= TAN(BETAFS)*BTHLE(J)/PITCH*RHOBF/RHOFS
            BETABF = ATAN(TANBEF)
C
C--CALCOLATE DISTANCE FOR DTHDS CORRECTION
            BLDCRD = (RLEOM(J) +RTEOM (J))/2.* (THLEOM (J) -THTEOM (J))
            BLDCRD = SQRT(BLDCRD**2+(STEOM(J)-SLEOM (J))**2)
            SLIDLE = BLDCRD/PITCH/RLEOM(J)
            DISTLE = AMIN1(.5,AMAX1(1./6.,(11.-4.*SLIDLE)/18.))*(STEOM(J)-
        1SLEOM(J))
C
C--CORRECT DTHDS FOR INCIDENCE NEAP THE LEADING EDGF,
C--USING LINEAR CORRECTICN FOR ANGLE
        I = ILE(J)
        50 SDIST = SLEOM (J) +DISTLE-SOM (I,J)
            IF(SDIST.LE.O.) GO TO 60
            TANBIJ = GOM(I,J)*(DTHDS (I,J) *CAMP(I,J) +DTHDT (I,J)*SAMP (I,J))
            BETAIJ = ATAN (TANBIJ)
            BETAIJ = BETAIJ+(BETABF-BTBFLE(J))*SDIST/DISTLE
            TANBIJ = TAN(BETAIJ)
```

```
        DTHDS (I,J) = (TANBIJ/ROM(I,J)-DTHDT(I,J)*SAMP(T,J))/CAMP(T,J)
        I= I+1
        GO TO 50
        60 BTRFLE(J) = EETARF
C
C--CALCULATE INCIDENCE ANGIES
            BLINC = BETABF*DEGRAD-PTBLLE
            UBINC = GETAFS*DEGRAD-BTBLLE
C
C--CALCULATE BLADE MEAN CAMBER ANGLE AT TRAILING EDGE
        I = ITE(J) +1
        EXTRAP = SOM(I,J)-STEOM(J)
        ALPHTE = ALPHA(I,J) +EXTRAP*(ALPHA(I-1,J)-ALPHA(I,J))/(SOM(T,J) -
        1SOM (I-1,J))
            CALL LINTNT (ZPC,RPC,DTHDZ,NPPC,NBLPC,51,51,7TEOMR(J), RTEOMR(J),
        1DTDZTE,II,JJ)
            CALL LININT(ZPC, RPC, DTHDR,NPFC,NPIPE,51.51,ZTROMR(J), RTFOMP(J),
        1DTDRTE,II,JJ)
        TANBBL = RTEOM(J)*(DTDRTE*SIN(ALPHTE) +DTDZTF*COS (ALPUNE))
        IF (ITER.EQ. '1) BTBFTF(J)=ATAN(TANBBL)
        BTBLTE = ATAN(TANRBL)*DFGRAD
C
C--CALCOLATE BLADF fLOW ANGLE AT TGAILING EDGE, CORRECTED FOR blOCKAGE
        BETAFS = EETA(I,J) +EXTRAP* (BETA (I,J)-BETA (I+1,J))/(COM (I+9,J) -
        1SOM(I,J))
            RHOFS = RHO (I,J) +EXTRAP* (RHO (I,J) - RHO(I+1,J))/
            1(SOM(I+1,J)-SOM (I,J))
            RHOBF= RHOAV (I-1,J)+(SOM(I,J)-SOM(I-1,J)-EXTRAP)/
            1 (SOM (I-1,J)-SOM(I-2,J))* (PHOAV (I-1,J)-RHOAV (I-2,J))
            TANBBF= TAN(BETAFS)*BTHTE(J)/DImCH*RHOBF/RHOFS
            BETABF= ATAN (TANBBF)
C
C--CALCULATE DISTANCE FOR DTHDS CORRECTION
            SLIDTE = BLDCRD/PITCH/RTEOM(J)
            DISTTE = AMIN1(.5.AMAX1(1./6..(11.-4.*SIIDNE)/18.))*(STEOM(J)-
        1SLEOM(J))
C
C--CORRECT DTHDS FOR DEVIATION NEAR THE TRAILING FDGE,
C--USING LINEAR CORRECTION FOR ANGLE
        I = ITE (J)
        70. SDIST = SOM(I,J)-STEOM(J)+DISTTF
            IF (SDIST.LE.O.) GO TO 80
            TANBIJ = ROM(I,J)* (DTHDS (I,J)*CAMP(I,J) +DTHDT (I,J)*SAMP(I,J))
            BETAIJ = ATAN(TANBIJ)
            BETAIJ = BETAIJ+(BETABF-BTBFTE(J))*SDIST/DISTTE
            TANBIJ = TAN(BETAIJ)
            DTHDS (I,J)=(TANBIJ/ROM (I,J)-DTHDT (I,J)*SAMP(I,J))/CAMP(I,J)
            I = I-1
            GO TO 70
        80 BTBPTE(J) = BETABF
C
C--CALCULATE DEviATION ANGLES
    BLDEV = BETABF*DEGRAD-BTBLTE
    UBDEV = BETAFS*DEGRAD-BTBLTE
C
C--PRINT INCIDENCE AND DEVIATION ANGLES
    IF (IPRNT.EQ.C) GO TO 100
    IF ((LAMDAF(.5, ILE(1),1)-RVTHTA(.5,ILE(1),1)).GT.0.) GO TO 9)
    BLINC = -BLINC
```

```
            UBINC = -UEINC
                BLDEV = -BLDEV
                UBDEV = -UBLEV
        9( WRITE(NGRTK,1940) J, BLINC,UBINC, BTBLLE, BLDEV,UBDEV, RTBLTE
    100 CONTINUE
        IF (IPRNT.GT.7) WRITE(NWRT5,1^50)
        RETUPN
C
C--FORMAT STATEMENTS
C
    100^ FORMAT (1H1////44X,40(1H*)/4UX,4\capH*** INCIDENCE AND DEVIATION ANG
        1LES ***/49X.30(1H*)//)
    1010 FORMAT (/53X,23(1H*)/53X,23H* REDIJCED MASSFLOW */53X,23(1H*)/
        153X,18H* ITERATION NO., I2.3H */53X,23(1H*))
1020 FORMAT (/52X,25(1H*)/52X,25H* FULL MASSFLOW */52X,25(1H*)/
    152X.19H* ITERATION NO. ,I2.4H */52X,25(1H*)
1030 FORMAT (//24X,10H* MFSH *,8X,9HINCIDENCF,7X,11HBLADE ANGLE,2H *,
        18X,9HDEVIATION,7X,11HBLADE ANGLE, 2H */24X,10H* LINE *, 3X,
        27HBLOCKED, 3X,9HUNBLOCKED,4X,7HAT L.E., 3X,1H*,3X,7HBLOCKED, 3X,
        39HUNBLOCKED,4X,7HAT T.E., 3X, 1H*)
    1040 FORMAT (24X,1H*,2X,13,3X,2(1H*,3(F9.2,2X),3X),1H*)
    1050 FORMAT (1H1)
        END
```

 SUBROUTINE TSONIN
 C
C-TSONIN CALCULATES AND PRINTS OUT DATA AS INPIJT TO THF
C--TSONIC BLADE-TO-RLADE ANALYGIS PROGFAM
C
COMMON NREAD, NWRIT, TTER, IEND,NWRT1, NWPT2, NWPT 3 , NHRT4, NGRT5, NWPT6
COMYON/INEUTT/GAM, AR, MSFI, OMEGA, REDFAC, VEITOL, FNEW, DNEW, MBI, MBO,
MM, MHT, NBL, NHUE, NTIP, NIN, NOUT, NSLPL, NPPP, NOSTAT, NSL, NLOSS.
LSFR, LTPL, LAMVT, LROT, LBLAD, LFTFAN, ANGROT, IMESH, TSLINP.
ISTATL, IFLOT, ISUPEF, ITSON, IDEBUG, ZOMIN, ZCMBI, ZOMBO, ZOMOUT,
ROMIN, ROMBI, RCMBO, ROMCUT, ZHIN, ZTTN, ZHOUT, ZTOUT, RHIN, RTTN, RHOUT,
ETOUT,TITLEI (20), ZHUB (50), RHIB(59), ZTIE(50), RTIP(50), SFIN(50),
RADIN (50), TIP(50), PPIP(50), LAMIN (50), VTHIN(50), SFOTT (50).
RADOUT (5C), PROP (50), LOSOUT (5C), LAMOUT (50), VTHOUT (50),
BETALF (50), BFTATE (50), ZHST (50), ZTST (50), RHST (50), RTST (50) ,
$\operatorname{FLFR}(50), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), \operatorname{ZBL}(50.50), \operatorname{ABL}(50,50)$,
THBL $(50,50), \operatorname{TNBL}(50,50), \operatorname{TTEL}(50,50), \operatorname{TH1BL}(50,50), \operatorname{TH} 2 \mathrm{BL}(50,50)$
COMMON/CALCCN/MMM1, MHTP1, CP, EXPON, TGROG, PITCH,RLER,RLET, RTEH, PTET,
ZLE (50), FLE (50), ZTE (50), KTE (50), ZLFOM (101), RLEOM (101),
SLEOM(101), THLEOM (101), $2 \operatorname{TEOM}(101)$, $\operatorname{RTEOM}(101), \operatorname{STEOM}(101)$,
THTEOM (101).ILE(1~1), ITE(101), ZOM(100.101),ROM(100.101).
$\operatorname{SOM}(1 \sim 3,1 \cap 1), \operatorname{TOM}(100,101), \operatorname{BTH}(100,1,1), \operatorname{DTHDS}(100,101)$.
DTHDT (100, 101), PLOSS (102, 101), CPHI (100, 1C1), SPHI (100, 101)
COMMON/VARCOM/A $(4,10 \cap, 1: 1), \operatorname{IOM}(100,101), K(1 C 0,101), R H O(1 C C, 1 \cap 1)$,
WSUBS (10C, 101), $\operatorname{WSUBT}(100,101), \operatorname{WSUBZ}(10 \mathrm{C}, 101), \operatorname{KSUBR}(100,101)$,
WSURM (100, 101), WTH (1C0, 1C1), VTH(10ヶ, 1)1), W(100,101).
ALPGA (10C, 101), BETA (100, 101), WWCR(10?, 1~1), $\operatorname{CURV}(100,101)$,

$X \operatorname{IOM}(1 \mathrm{~S} 0,1 \mathrm{C} 1), \mathrm{ZETOM}(1 \mathrm{C}, 1 \mathrm{r} 1)$, DLDU(1nn, 101)


```
            2 ALPSL(100,50), BETSL(100,50),WSL(10C,50),WWCRSL(100,50),
            3 CURVSL(1OC,50),WLSSL(100,50),HTSSL(100,50)
            COMMON/INDCOM/NBLPC,NPPC,ZPC (51,51), RPC (51,51),TTPC (51,51),
                THPC(51,51),DTHDZ (51,51),DTHDR(51,51), BTHLE(1^1), PTHTE(1^1),
                BTBFLE(101), BTBFTE(101)
                    COMMON/ROTATN/ZHROT(50), RHROT(50), ZTFOT(50), RTROT (50).
                ZLEOMR(101),RLEOMR(101), ZTEOMR(101), RTEOMR(1C1),
                    2 ZBLPOT (50,50),RBLROT (50,50), ZOMROT(10n,101), ROMBOT(100,1^1)
                    DIMENSION ZMSP1(100), ZMSP2(10C),THSP1(10)),THSP2(100),DTDM1(1N0),
                DTDM2(1C0), D2TDM1 (10N), D2TDM2(10n),CORV1 (100), CURV2(1Cn),
                RADSP1(100), RADSP2(100), ALPHSP(10N), ZMRSP(100), RMSP(10N).
                BESP(100),PLOSSL(100),DBDM(100), D2BDM2(100),DTST(100),
                AAA(109),BBB(100)
            REAL MSFL,MSL,LAMDAF
C
C--PRELIMINARY CALCULATIONS
C
    IF (ITSON.LE.O) RETURN
    IF ((ITER/ITSON) *ITSON.NE.ITER) RETURN
    WRITE(NWRT4,1900)
    IF (REDFAC.LT.1.0) WRITF (NHRT4.1010) ITER
    IF (REDFAC.EQ.1.0.AND.IEND.LE.0) WRITE(NWRT4,1020) ITFR
    IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.LE.1) WRITE(NWRT4,1C3^)
    IF (REDFAC.EQ.1.0.AND.IEND.GE.1.AND.ISUPER.EQ.2) HRITE(NWRT4, 104^)
    ARTEM = AR
    ZMSFL = MSFL/100./REDFAC
    OMTEM = OMEGA/REDFAC
    REDTEM = 1.0
    VELTEM = .01
    MBITS = 21
    MBOTS = 61
    MMTS = 81
    MBBI = 20
    NRSP = MM
    NSLTS = 0
    LRVB=0
    LOSS = 0
    IF (NLOSS.GT.O) LOSS=1
    LWCR = {
    LIPS = 0
    ITMESH = 0
    IISLIN = 5
    IIBSUR = 1
    IIPLOT = 1
    IIDEBG = 0
    DEGRAD = 18C./3.1415927
    BFACTR = 1.0
C
C--CALCULATE AND PRINT OOT TSONIC DATA ALONG EACH OF THE STREAMLTNES
C--ONE STREAMLINE AT A TIME
C
    DO 310 JS=1,NSL
    II = 1
    JJ = 1
    TIPTEM = TIPP(FIFR(JS))
    RHOIP = RHOIPF(PLPR(JS))
    RVTHI = LAMDAP(FLFR(JS),ILE(1),1)/REDFAC
    RVTHO = RVTHTA(FLFR(JS).ILE(1),1)/REDFAC
    IF (GAM.NE.O.) GC TO 5
    ARTEM = 0.
```

TIPTEM $=0$. RHOIP $=A R$

C
C--INTERSECTION of Streamline with blade leading and trailing edges C

5 CALL INRSCT (ZSL (1, JS), RSL(1,JS),MM,ZLE,RLE,NBLPL, 7LESL,RLFSL) CALL INRSCT $(Z S L(1, J S), R S I(1, J S), M M, Z T E, F T F, N B L P L, Z T E S L, R T E S L)$
C-CALCULATE STREAMSHEET LOCATION AND THICKNESS, AND LOSS DISTRIBCTION C

CALL ROTATE(-ANGROT, ZSL $(1, J S), R S L(1, J S), M M, 1,100,1, D T S T, R M S P)$ DO $10 \mathrm{IS}=1$, MM
ZMRSP(IS) $=$ MSL (IS.JS)-MSL (1,JS)
CALL LININT (ZOMROT, ROMPOT, RHOAV, MM, MHTP1, 10r, 101, 2SL(IS,JS), 1RSL(IS,JS), RHOSL,II,JJ)
CALL LININT (ZOMROT, BOMBOT, BTH, MM, MHTP1,10r, 101, ZSL(TS,JS),
1RSL(IS,JS), BTHSL,II,JJ)
CALL LININT (ZOMROT, ROMROT, PLOSS, MM, MHTP1, 10C, 101, ZSL (IS, JS) ,
1RSL (IS,JS), PLOSSL (IS), II,JJ)
CALL LININT (7OMROT, ROMROT, DELRHO, MM, MHTP1, 100, 191, ZSL (IS,JS),
1RSL. (IS,JS), DRHOSL, II,JJ)
CALL LININT (ZOMROT, ROMROT,WLSURF,MM,MHTP9,100.121, ZSL (IS,JS),
1RSL (IS.JS), HLSFSL, IT,JJ)
CALL LININT (ZOMROT, ROMROT, HTSURF, MM, MHTP $1,100,101,2 S L(I S, J S)$, 1RSL (IS.JS), HTSFSL,II,JJ)
ROWMAV $=$ RHOSL*WMSL (IS,JS) +DPHOSL/ $12 . * \operatorname{COS}($ BETSL $(I S, J S)) *$
1 (WLSFSL-WTSFSL)
10 BESP (IS) $=$ ZMSFL/ROWMAV/RMSP(IS)/RTHSL*BFACTR
ZMSFL $=$ ZMSFL*DFACTR

C

C--CALCULATE BLADE SURFACE COORDINATES with RESPECT TO MERIDL ORIGIN C--AT all points on blade where vertical orthogonals pass throitgh C--THE STREAMLINE C

```
    II = 1
    JJ = 1
    NBLPTS = ITS (JS) - ILS (JS) +3
    ILSJ = ILS(JS)
    ITSJ = ImS(JS)
    ZMSP1(1)=0.
    DELM = SQRT((ZSL(ILSJ,JS)-2LFSL)**2 +(RSL(ILSJ,JS)-RLESL)**2)
    CALL LININT(ZPC,RPC,THPC,NPPC,NRLPC,51,51,ZLESL,RLFSL,
    1THLESL,II,JJ)
    ISB = 2
    DO 20 IS=ILSJ,ITSJ
    ZMSP1(ISB) = ZMRSP(IS)-ZMRSP(ILSJ) + DELM
    CALL LININT(ZPC,RPC,THPC,NPPC,NBLPC,51,51,ZSL(IS,JS),
    1RSL(IS,JS),THSI,II,JJ)
    CALL LININT(ZPC,RPC,TTPC,NPPC,NBLPC,51,51,ZSL(IS,JS).
    1RSL (IS,JS),DBL,II,JJ)
        THSP1(ISB) = THSL-THLESL+DBL/2.
        THSP2(ISB) = THSL-THLESL-DBL/2.
    20 ISB = ISB+1
        DELM = SQRT((2TESL-ZSL(ITSJ,JS))**2*(RTESL-RSL(ITSJ,JS))**2)
        ZMSP1(NBLPTS) = ZMSP1(NBLPTS-1) +DELM
        CHORD = ZMSP1 (NBLPTS)
    CALL LININT(ZPC,RPC,THPC,NPPC,NBLPC,51,51,ZTESL,RTESL,
    1THTESL,II,JJ)
    CALL LININT(ZPC,RPC,TTPC,NPPC,NBLPC,51,51,ZLESL,RLFSL,
```

```
    1DBL,II,JJ)
    IF (DBL.LT.CHORD/10\capO.) DBL=CHORD/1000.
        THSP1(1) = DBL/2.
        THSP2(1) = -DBL/2.
        CALL LININT(ZPC,RPC,TTPC,NPPC,NBLPC,51,51, ZTESL,RTESL,
    1DBL,II,JJ)
        IF (DBL.LT.CHORD/1000.) DBL=CHORD/1900.
        THSP1(NBLPTS) = THTESL-THLESI+DBL/2.
        THSP2(NBLPTS) = IHTESL-THLESI-DBL/2.
        DO 25 IS=1,NBLPTS
        25 ZMSP2(IS) = ZMSP1(IS)
C
C--SHIFT STREAMSHEET MERIDIONAL COORDINATES TO ORIGIN AT BLADE
C--LEADING EDGE,
C--AND CALCULATE FIRST AND SECOND DERIVATIVFS OF STREAMSHEET
C
            DELM = ZMRSP(ILSJ)-ZMSP1(2)
            DO 30 IS=1,MM
    30 ZMRSP(IS) = ZMRSP(IS)-DELM
            CALL SPLTNE(ZMRSP,BESP,MM,DBDM,D2GDM2)
C
C--ELIMINATE ANY BLAdE SURFACF points very Close to the
C--LEADING AND TRAILING EDGES
C
    ILSJ1 = ILS(JS)
    ILSJ2 = ILS(JS)
    DELMSP = 0.10*CHORD/FLOAT(NBLPTS-1)
    40 IF ((ZMSP1(2)-ZMSP1(1)).GT.DELMSP) GO TO 60
            DO 50 IS=3,NBLPTS
            ZMSP1(IS-1) = ZMSP1(IS)
            ZMSP2(IS-1) = ZMSP2(IS)
            THSP1(IS-1)= THSP1(IS)
    50 THSP2(IS-1) = THSP2(IS)
            NBLPTS = NBLPTS-1
            ILSJ1 = ILSJ 1 +1
            ILSJ2 = ILSJ2+1
            GO TO 40
    60 IF ((ZMSP1(NBLPTS)-2MSP1(NBLPTS-1)).GT.DELMSP) (%O TO 70
            ZMSP1(NBLPTS-1) = ZMSP1(NBLPTS)
            ZMSP2(NBLPTS-1) = ZMSP2(NBLPTS)
            THSP1(NBLPTS-1) = THSP1(NBLPTS)
            THSP2(NBLPTS-1) = THSP2(NBLPTS)
            NBLPTS = NBLPTS-1
            GO TO 60
C
C--CALCULATE GRADIENTS ON BOTH BLADE SURFACES
C--CALCULATE RADII FROM CENTERLINE, AT LEADING AND TRAILING EDGES
C
    70 CALL SPLINE(ZMSP1,THSP1,NBLPTS,DTDM1,D2TDM1)
        CALL SPLINE(ZMSP2,THSP2,NBLPTS,DTDM2,D2TDM2)
        CALL SPLINT (ZMRSP,RMSP,MM,O..1,RADLE,TEM1,TEM2)
        CALL SPLINT(ZMRSP,RMSP,MM,CHORD,1,RADTE,TEM1,TEM2)
C
C--CALCULATE LEADING EDGE RADIUS, POINTS OF TANGENCY, AND
C--TANGENCY ANGLES
C
        ICOUNT = 0
        DAMP = 1.
        80 BETI1 = ATAN(RADLE*DTDM1(1))
```

```
            BETI2 = ATAN(RADLE*DTDM2(1))
            RI1 = RADLE*(THSP1(1)-THSP2(1))* COS((BETI1+EETI2)/2.)/2.
            90 ZLTAN1 = RI1*(1.-SIN(BETI1))
            ZLTAN2 = RI1*(1.+SIN(BET12))
            CALL SPLINT(ZMSP1,THSP1,NBLPTS,ZLTAN1,1,TLTAN1,DTAN1,TEM1)
            CALL SPLINT(ZMSP2,THSP2,NBLPTS,ZLTAN2,1,TLTAN2,DTAN2,TEM2)
            BETI1 = ATAN(RADLE*DTAN1)
            BETI2 = ATAN(RADLE*DTAN2)
            RI1NEW = RADLE*(TLTAN1-TLTAN2)/(COS(BETI1) +COS(BETI2))
            IF (ABS((RI1NEW-RI1)/RI1).LT..001) GO TO 110
            ICOUNT = ICCUNT+1
            IF (ICOUNT.LF.100) GO TO 100
            WRITE(NWRT4,1200)
            GO TO 110
    100 RI1 = (DAMP*RI1+RI1NEW)/(DAMP+1.)
            IF (RI1.GT.N.) GC TO 90
                    DAMP = DAMP+1.
                    GO TO 80
    110 RI1 = RI1NEW
            RI2 = RI1
C
C--CALCILATE TPAILING EDGE RADIUS, POINMS OE TANGENCY, AND
C--mangency angles
C
    ICOUNT = 0
            DAMP = 1.
    12% BETO1 = ATAN(RADTE*DTDM1 (NBLFTS))
            BETO2 = ATAN(RADTF*DTDM2 (NBLPTS))
            RO1 = RADTE*(THSP1(NBLPTS)-THSP2(NBLPTS))*COS((BETO1+BETO2)/2.)/2.
    13: ZTTAN1 = CHCRD-RC1*(1.+SIN(BFTO1))
            ZTTAN2 = CHCRD-RO1*(1.-SIN(BETO2))
            CALL SPLINT(ZMSP1,THSP1,NBLPTS,ZTTAN1,1,TTTAN1,DTAN1,TEM1)
            CALL SPLINT(ZMSP2,THSP2,NBLPTS,ZTTAN2,1,TTTAN2,DTAN2,TEM2)
            BETO1 = ATAN(RADTE*DTAN1)
            BETO2 = ATAN(RACTE*DTAN2)
            RO1NEN = RADTE* (TTTAN1-TTTTAN2)/(COS(BFTO1) +COS(BETO2))
            IF (ABS((RO1NEH-RO1)/RO1).LT..JN1) GO mo 150
            ICOUNT = ICOUNT+1
            IF (ICOUNT.LE.100) GO TO 140
            WRITE(NWRT4,1219)
            GO TO 159
    140 RO1 = (DAMP*RO1+RO1NEW)/(DAMP +1.)
            IF (RO1.GT.U.) GC TO 130
            DAMP = DAMP+1.
            go TO 120
    150 RO1 = RO1NEW
            RO2 = RO1
C
C--SUBSTITUTE POINTS OF TANGENCY FOR FIRST AND LAST POINTS IN
C--SURFACE COORDINATE ARRAYS
C
ZMSP1(1) = ZLTAN1
ZMSP2(1) = ZLTAN2
ZMSP1(NBLPTS) = 2TTAN1
ZMSP2(NBLPTS) = ZTTAN2
THSP1(1) = TLTAN1
THSP2(1) = TLTAN2
THSP1(NBLPTS) = TTTAN1
THSP2(NBLPTS) = TTTAN2
NSPL1 = NBLPTS
```

```
        NSPL2 = NBLPTS
    C
    C--ELIMINATE SURFACE POINTS BETUEEN BLADE EDGES AND TANGENCY POINTS
    C--ALSO ELIMINATE ANY SURFACE POINTS TOO CLOSE TO TANGENCY POINTS
                DELMSP = 0.19*CHORD/FLOAT(NBLPTS-1)
            160 IF (ZMSP1(2).GT.ZMSP1(1)+DELMSP) GO TO 180
                DO 170 IS=3,NSPL1
                ZMSP1(IS-1)= ZMSP1(IS)
            17C THSP1(IS-1) = THSP1(IS)
                    NSPL1 = NSPL^-1
                    ILSJ1 = ILSJ1+1
                GO TO 160
    180 IF (ZMSP2(2).GT.ZMSP2(1)+DFLMSP) GO TO 200
            DO 19C IS=3.NSPL2
            ZMSP2(IS-1) = ZMSP2(IS)
        190 THSP2(IS-1) = THSP2(IS)
            NSPL2 = NSPL2-1
            TLSJ2 = ILSJ2 +1
            GO TO 180
    200 IF (ZMSP1(NSPL1-1).LT.ZMSP1 (NSPL1)-DELMSP) GO TO 210
        ZMSP1(NSPL1-1) = ZMSP1(NSSL1)
        THSP1(NSPL1-1)= THSP1(NSPL1)
        NSPL1= NSPL1-1
        GO TO 20C
        210 IF (ZMSP2(NSPL2-1).LT.ZMSP2(NSPL2)-DFLMSP) GOTO 220
        ZMSP2(NSPL2-1) = ZMSP2(NSPL2)
        THSP2(NSPL2-1) = THSP2(NSPL2)
        NSPL2 = NSPL2-1
        GO TO 210
C
C--CALCULATE TANGENTIAL COORDINATE.SHIFT FROM MERIDL ORIGIN TO
C--TSONIC ORIGIN, AND SHIFT COORDINATFS
C
    220 DELTH = (TLTAN1*COS(BETI2) +TLTAN2*COS(BETI1))/(COS(RETI1) +
        DO 230 IS=1,NSPI1
    230 THSP1(IS) = THSP1(IS)-DEITH
        DO 240 IS=1.NSPL2
    240 THSP2(IS) = THSP2(IS)-DELTH
C
C--CALCULATE STAGGER AND STACKING COORDINATE
        STGR = (TTTAN1*COS(BETO2) +TTTAN2*COS(BETO1))/(COS(BETO1) +
        THSTAK = THLESL+DELTH
C
C--CALCULATE RADII FROM CENTFRLINE TO BLADF SITFACE POINTS
    CALL SPLINT(ZMRSP,RMSP,MM,ZMSP1,NSPL1,RADSP1,AAA,BBR)
C
C--CALCULATE SlOPES, SECOND DERIVATIVES, AND CURVATURES ON UPPER
C--BLADE SURFACE
C
```

```
    SLOPE1 = TAN(RETI1)/RADSP1(1)
```

 SLOPE1 = TAN(RETI1)/RADSP1(1)
 SLOPEN = TAN(BETO1)/RADSP1 (NSPL1)
 SLOPEN = TAN(BETO1)/RADSP1 (NSPL1)
 CALL SPLISL(ZMSP1,THSP1,NSPL1,SLOPE1,SLOPEN,DTDM1,D2TDM1)
 CALL SPLISL(ZMSP1,THSP1,NSPL1,SLOPE1,SLOPEN,DTDM1,D2TDM1)
 BETI1 = BETI1*DEGRAD
    ```
    BETI1 = BETI1*DEGRAD
```

```
    BETO1 = BETO1*DEGRAD
    TMSL = ZMSP1(1)-ZMRSP(1)
    CALL SPLINT (MSL(1,JS),ALPSL(1,JS),MM,TMSL,1,ALPHSP(1),TEM1,TFM2)
    NSPLM = NSPL1-1
    DO 250 IS=2,NSPLM
    ITEM = ILSJ 1+IS-2
    250 ALPHSP(IS) = ALPSL(ITEM,JS)
    TMSL = ZMSP1(NSPL1)-2MRSP(1)
    CALL SPLINT (MSL(1,JS),ALPSL(1,JS),MM,TMSL,1,ALPHSP(NSPL'1).
1TEM1,TEM2)
    DO 260 IS=1,NSPL1
    260 CURV1(IS) = (RADSP1(IS)*D2TDM1(IS) +SIN(ALPHSP(IS))*DTDM1(IS))/
    1(1.4(RADSP1(IS)*DTDM1 (IS))**2)**1.5
C
C--CALCULATE SLOPES, SECOND DRRIVATIVES, AND CURVATURES ON LOWER
C--bladE SORFACE
C
    SLOPE1 = TAN(BETI2)/RADSP2(1)
    SLOPEN = TAN(BETC2)/RADSE2(NSPL2)
    CALL SPLISL(ZMSP2,THSP2,NSPL2,SLOPE1,SLOPEN,DTDM2,D2TDM2)
    BETI2 = BETI2*DEGRAD
            BETO2 = BETO2*DEGRAD
            TMSL = ZMSP2(1)-ZMRSP(1)
            CALE SPLINT (MSL(1,JS),ALPSL(1,JS),MM,TMSL,1,ALPHSP(1),TEM1,TEM2)
            NSPLM = NSPL2-1
            DO 270 IS=2,NSPLM
            ITEM = ILSJ 2+IS-2
    270 ALPHSP(IS) = ALPSL(ITEM,JS)
            TMSL = ZMSP2(NSPL2)-ZMRSP(1)
            CALL SPLINT(MSL(1,JS),ALPSL(1,JS),MM,TMSI,1,ALPHSP(NSPL2),
            1TEM1,TEM2)
                DO 280 IS=1.NSPI2
    280 CTRV2(IS) = (RADSP2(IS)*D2TDM2(IS)+SIN(ALPHSP(IS))*DTDM2(IS))/
            1(1.+(RADSP2(IS) *DTDM2(IS))**2)**1.5
C
C--PRINT TSONIC DATA
C
    WRITE(NWRT4,1050) JS,FLFR(JS)
    IF (BFACTR.NE.1.0) WRITE(NWRT4.1055)
    |RITE(NWRT4,1060)
    MRITE(NWRT4,1310) GAM,ARTEM,TIPTEM,RHOIP,OMTEM,ZMSFL
    URITE(NWRT4,1070)
    GRITE(NMRT4,1340)
    gRITE(NGRT4,1080)
    URITE(NWRT4,1320) NBL,NSPL1,NSPL2,NRSP
    WRITE (NHRT4,1090)
    WRITE(NGRT4,1330) LRVB,LOSS,LWCR,LIPS
    #RITE (NWRT4,1100)
    WRITE(NGRT4,1310) RVTHI,RVTHO
    GRITE(NORT4.1110)
    URITE(NGRT4,1350) CHORD,STGR,DELTH,THSTAK
    GRITE (NORT4,1120)
    URITE(NGRT4,1360) RI1,BETI4,RO1, BETO1
    MRITE (NHRT4,1130)
    WRITE(NWRT4,1370) (IS,ZMSP1(IS),THSP1(IS),DTDM1(IS),D2TDM1(IS).
    1CURV1(IS), RADSP1(IS),IS=1,NSPL1)
    WRITE(NURT4.1140)
    WRITE (NWRT4,1360) RI2, BETI2,RO2,BETO2
    URITE (NWRT4,1150)
```

```
            WRITE(NWRT4,1370) (IS,2MSP2(IS),THSP2(IS),DTDM2(IS),D2TDM2(IS),
            1CORV2(IS), RADSP2(IS).IS=1,NSPL2)
            WRITE (NWRT4.1160)
                            WRITE(NWRT4,1380) (IS,ZMRSP(IS),RMSP(IS), BESP(IS) ,WWCRSL(IS,JS),
                            1PLOSSL(IS),DBDM(IS),D2BDM2 (IS),IS=1,MM)
                WRITE(NWRT4,1170)
                WRITE(NWRT4.1300)
C
    C--WRITE OUTPUT AGAIN IN CARD IMAGE FORMAT
C
        3OC ICARDS = 0
            NWRT7 = 6
            IF (ICARDS.EQ.O) GO TO 310
            WRITE(NWRT7.1400) JS,FLFR(JS)
            WRITE(NWRT7.1450) GAM,ARTEM,TIPTEM,RHOTP,OMTEM,ZMSFL
            WRITE(NWRT7,1460) REDTEM,VELTEM
            WRITE(NHRT7,1440) MBITS,MBOTS,MMTS,MBBT,NBL,NSPL1,NSPL2,NRSP,NSLTS
            WRITE (NGRT7,1440) LRVB,LCSS,IWCR,LIPS
            WRITE(NWRT7.1460) RVTHI,RVTHO
            WRITE(NWRT7.1470) CHORD,STGR
            GRITE(NHRT7,1480) RI1, BFTI1,F01, BETO4
            WRITE(NHRT7,1420) (ZMSP1(IS),TS=1,NSPI1)
            WRITE(NHRT7.1430) (THSP1(IS),IS=1,NSPI1)
            WRITE(NWRT7,1480) RI2,BETI2,RO2, BETO2
            WRITE(NHRT7,1420) (ZMSP2(IS),IS=1,NSPL2)
            WRITE (NGRT7,1430) (THSP2(IS).IS=1,NSPL2)
            WRITE(NHRT7,1420) (ZMRSP(IS),IS=1,MM)
            WRITE(NHRT7,1420) (RMSP(IS),IS=1,MM)
            WRITE(NWRT7.1430) (BESP(IS),IS=1,MM)
            WHITE (NWRT7,1410) (WWCRSI(IS,JS),IS=1,MM)
            WRITE(NWRT7,1410) (PLOSSL(IS),IS=1,NM)
            RRITE(NWRT7,1440) IIMESH,IISLIN,IIBSUR,IIPLOT, IIDEBG
            IF (NWRTT.EQ.NWRT4) WRITE(NHPT4,130^)
    310 CONTINUE
            RETURN
C
C--FORMAT STATEMENTS
C
    1000 FORMAT (///45x,39(1H*)/45X,39H*** TNPUT DATA POR TSONIC PROGRAM
        1***/50x,29(1H*)//)
    1010 FORMAT (/53X,23(1H*)/53x,23H* REDUCED MASSFLOW */53X,23(1H*)/
        153x,18H* ITERATION NO..I2,3H */53x,23(1H*)/////)
    1020 FORMAT (/52X,25(1H*)/52X,25H* FOLL MASSFLOW */52X,25(1H*)/
        152x,19H* ITERATION NO. .I2,4H */52X,25(1H*)////)
    1030 PORMAT (/52X,25(1H*)/52X, 25 H* FULL MASSFLON*//)*/42X,45(1H*)/
        142X,1H*,12X,19HTRANSONIC SOLUTION,12X,1H*/42X,45H* BY VELOCITYG
        2RADIENT APPROXIMATE METHOD */35X,59(1H*)/35X,59H* ALL VELOCITIES
        3 SMALLER THAN CHOKING MASSFLOW SOLUTION */35X,59(1H*)/////)
1040 PORMAT (/52X,25(1H*)/52X,25H* FDLL MASSFLOW */42X,45(1H*)/
        142X,1H*, 12X,19HTRANSONIC SOLUTION, 12X,1H*/42X,45H* BY VELOCITYG
        2RADIENT APPROXIMATE METHOD */35X,59(1H*)/35X,59H* ALL VELOCITIRS
    3 LARGER THAN CHORING MASSFLOH SOLUTION */35x.59(1H*)////)
1050 FORMAT (2X,76(1H*)/2X,38H* TSONIC INPOT STMSEAMLINE NTMMBER,I S
    1,23H -- STREAM FUNCTION =,F8,4,4H*/2X,110(1H*)/2X,110H* NOTE
    2-- THE ORIGIN FOR MERIDIONAL AND TANGENTIAL COORDINATRS ON THIS B
    3LADE SECTION IS THE TSONIC ORIGIN, */2X,93H* THAT IS, THP FARTHE
    4ST POINT UPSTREAM ON THE LEADING EDGE RADIUS. THE MERIDL COORDIN
    5ATES, 16X,1H*/2X,95H* WHICH HAVE A DIFFERENT ORIGIN, HAVE BEEN SHI
    6FTED BY THE PROGRAM TO GIVE THESE TSONIC INPOTS..14X,1H*/2X,
    7110(1H*)//)
```

```
    1055 FORMAT (2X,116(1H*)/2X,99H* NOTE -- ZMSFL AND THE BESP ARRAY IN
        1 THE FOLLOWING OUTPUT HAVE BOTH BEEN MULTIPLIED BY BFACTR =,G14.7.
    23H */2X,116(1H*)///)
    106C FORMAT (5X,3HGAM,13X,2HAR, 13X,3HTIP,11X,5HRHOTP,1%X,5HOMEGA, 12X,
    15HZMSFL)
    1070 FORMAT (5X,6HREDFAC,8X,5HVELTOL)
    1080 FORMAT (5X,53HMBI MBO MM MBBI NBL NSPL1 NSPL2 NRSP NS
    1L)
    1090 FORMAT (5x, 22HLRVB LOSS LWCR LIPS)
    1100 FORMAT (5X,5HRVMHI, 10X,5HRVTHO,11X,4HFSMI,19X,4HFSMO,11X,4HSSM1.
    111X,4HSSM2)
    1110 FORMAT (5X,5HCHORD, 10X,4HSTGR,42X,5HDELTA, 10X,6HTHSTAK)
    1120 FORMAT (//5X,25HELADF SURFACE 1 *****,15X,3HRT1,12X,5HBETI{.
    110X,3HRO1,11X,5HBETO1)
    113% FORMAT (//5X,5HPOINT,6X,5HZMSP1,1CX,5HTHSP1,6X, 10HDERIVATIVE,3X,
        114H2ND DERIVATIVE, 3X,9HCURVATURE, 8X,6HRADIUS)
    1140 FORMAT (//5x,25HBLADE SURPACE 2 *****,15X,3HRT2,12X,5HBETI2.
        110X,3HRO2,11X,5HPETO2)
    1155 FORMAT (//5X,5HPOINT,6X,5HZMSP2,10X,5HTHSP2,5X, 10HDERIVATIVF,3X,
    114H2ND DERIVATIVE, 3X,9HCURVATURE, 8X,6HRADIUS)
    1160 FOKMAT (//5X,29HSTREAM CHANNFL DATA *****//5X,5HPOINT,6X,
    15HZMRSP,10X,4HRMSP,10X,4HBESP,10X,5HWCWCR,1^X,5HPLOSS,19X,4HDBDM,
    210X,6HD2BDM2)
    117C FORMAT (//5X,36HIMESH ISLINE IESURF IPLOT IDEBUG)
    1200 FORMAT (/2X,62HA LEADING EDGE RADIUS COULD NOT BE OBTAINED IN 1CO
    1ITERATIONS./2X,64HRI1, RI2, BETT1, BETI2, STGR, DELTA, AND THSTAK
    2MAY BE IN ERROR/////)
1210 FORMAT (/2X,63HA TRAILING FDGE RADIJS COULD NOT BF OBTAINED IN 100
    1 ITERATIONS./2X,49HRO1. RO2, BETO1, BETO2, AND STGR MAY BE IN ERRO
    2R./////
130C FORMAT (1H1)
1310 FORMAT (1X,G14.7,7G15.7)
132C FORMAT (27X,I4, 2X,I4,3X,I4,3X,I4)
133C FORMAT (2X,4I6)
1340 FORMAT (19X,F6.4)
135^ FOEMAT (1X,G14.7.1X,G14.7.32X,2G15.7)
1360 FORMAT (40X,4G15.7)
1370 FORMAT ( }3\textrm{X},15,2X,6G15.7
138C FORMAT (3X,I5,2X,5G15.7,8X,2G15.7)
140C FORMAT (5X,17HSTREAMLINE NUMBER.I 3,23H -- STREAM FUNCTION =,
    1F8.4)
1410 FORMAT (8F10.5)
1420 FORMAT (8F10.6)
1430 FORMAT (8F10.7)
144C FORMAT (16I5)
1450 FORMAT (F10.5,2F10.4,F10.7,F10.3.F10.8)
1460 FORMAT (2F10.4)
1470 FORMAT (F10.6,F10.7)
1480 FORMAT (F10.7.F10.4,F10.7,F10.4)
        END
```

 SUBROUTINE SLPLOT
 C
C--SLPLOT PLOTS THE STREAMLINES IN THE HUB-SHROUD FLOW PLANE
C

```
    COMMON NREAD,NWEIT,TTER,IENN,NWRT1,NWRT2,NWFT3.NWPTL,NHRTE,NNETG
    COMMON/INPUTT/GAM,AF,NSFI,OYFGA,REDFAC,VELTOL,FNEN,DNTN,MRI,MPO,
        MM,MHT,NBL,NHUF,NTIP,NIN,NOTT,NBLPL,NPPP,NOSTAT,NST,NT.OSS,
        LSFR,LTPL,LAMVT,LROT,LBLAD,LETEAN,ANGROT,TMESH,TSLINE,
        ISTATL,IPLOT, ISUPFR, ITSON,IDENIGG,ZOMIN, ZCMBI,ZOMRO,ZOMOIT,
        ROMIN,FOMBI, FOMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, SHTV, RTTN, RUOUT,
        RTOUT,TITLEI(2n), 2HIIR(50),FHIP(57), ZTTP(E`), PTTP(5)),SFTN(5`),
        QADIN(50),TIP(57), ГRIP(5, ), LAMIN(50),VTHIN(50),SFOUT(50),
        RADOUT(50), PRCP(5^), LOSOUT(5`), LAMOIT (5C), VTHOUT (5`),
        BETALE(50), RETATE(52), ZHST (5`), ZTST(5,), FHST (5`), RTST(5`),
        FLPR(50), PERCRD(50) , PERLOS(5C), ? #L (50,50), RBT, (5N,5?),
        THBL(50,50), TNBL(50,50), TTBL(5n,5^), THTEL(50,50), NH2BL(50,5r)
    COMMON/SLCOM/ILS(5.),ITS(50),2SI.(10^,5`),RSI.(10n,5`),MSL(1?n,5?),
        WZSL(130,50),WRSL(10r.50),WMSL(100,50),WTHSL(1r0,50),
2 ALPSL(100,50),BETSL(100,5, ),WSL(1Ci,5O),WWCRSL(1(0,50),
3 CURVSL(100,50),WLSSL(100,5n),NTSSL(100,5r)
    COMMON/PLTCOM/ZLRNG,ZRRNG,KBRNG, RTRNG,ZHPLT(1GC),RHELT(1,N),
        ZSPLT(100), RSPLT(10r),ZLPLT(1CO), RLPLT(1(n),ZTELT(10^),
        RTPLT (100)
    DIMENSION TITL1(1^),TITL2(?),TTTL3(3),TITL4(11),TTMI.5(5)
    DATA TITLI/'STRE','AMLI','NE P','LOTS','C1$L','2TN ','MERI','DION'
1.'AL P','LANE'/
    DATA TITL2/'Z D','IREC','TION'/
    DATA TITL3/'R D','IREC','TION'/
    DATA TITL4/'SUBS','ONIC','5CTS','OLUT','IONL','C2IT','ERAT','IONS'
    1,'C1NO',',','XXXX'/
    DATA TITL5/'TRAN','SONI'.'CDC1','SOLU','TION'/
    DATA SYM/'X'/
    IF (IPIOT.LE.N) EFTIIRN
    IF((ITER/IPLOT)*IPLOT.NE.ITEP.AND.ITER.NE.1) RETIIRN
C
C--PLOT THE ITERATION NUMBER
    CALL LRCHSZ(4)
    CALL LRGRID(1,1,C.0,0.0)
    CALL LRCNVT(ITER,1,TITI4 (11),1,4,0)
    IF (IEND.LE.\cap) CALL LRLEGN(TITL4,44, C.4.2,6.0.1.0)
    IF (IEND.GT.D) CALL LRLEGN(TTTL5,2\,n.4.2.5.5,1.0)
C
C--PLOT BLADE GFOMETRY AND STREAMIINES
C
    CALL LPMRGN(1.0.1.0.2.7,1.0)
    CALL LRANGE(ZLRNG,ZRRNG,RBRNG,RTRNG)
    CALL LEGRTD (-1, -1,1.C,1.`)
    CALL LRLEGN(TITL1,40,0,3.5.0.7.0.0)
    CALL LRCHSZ (2)
    CALL LRLEGN(TITL2,12,0,4.5,1.5,0.0.)
    CALl LRLEGN(TITL 3,12,1,7.4,4.5,0.0)
    CALL LRCHSZ (4)
    CALL LFCURV(ZHPLT,RHPLT, INO,2,SYM, 3.n)
    CALL LACURV(ZSPLT,RSPLT, 100,2,5YM,n.0)
    IF (MBI.EQ.O) GO TO 5
    CALL LRCURV(ZLPLT,RLPLT, 100.2.SYM,^.n)
    CALL LRCURV(ZTPLT,RTPLT, 100,2,SYM,0.C)
C--PLOT STREAMLINES
    5 EOP = 0.0
    CALL ROTATE{-ANGROT,ZSI,RSL,MM,NSL,1C0,50,ZSL,RSL)
    DO 10 JS=1,NSL
    IF (JS.EQ.NSL) EOP=1.0
    10 CALL LRCURV (2SL(1,JS),RSL(1,JS),MM,2,SYM,EOP)
    CALL LRCURV(ZSL,RSL,C,1,SYM,1.0)
```

SUDEOUTINE SVPLOT

```
C
C--SvPlot plotS the mean Stream Sufface and blate Stufacr outpur
C--VELOCITIES ALONG ALl STREAMLINES
C
            COMMON NREAD,NWRIT,ITER,IEND,NWRT4,NWPT2,NWFT 3,NWRT4,NWPT5,NWRTE
            COMMON/INPUTT/GAM,AR,MSFI,OMEGA, REDFAC,VELTOL,FNFW,DNFA,MBI,MFO,
            MM,MHT,NBL,NHUB,NTIP, NIN,NOUT, NBLPL,NPPP,NOSTAT,NSL,NLOSS,
            LSFR,LTPL,LAMVT,LROT,LBLAD,LETEAN,ANGROT,IMFSH,TSLINE,
            ISTATL,IPLOT, ISUPER,ITSON,IDEBUG,ZOMIN,ZCMRI,ZOMBO,ZOMODT,
            ROMIN, HOMBI, ROMBO,ROMCUT,ZHIN,ZTIN,ZHOUT, ZTOJT, FHIN, RTIN,RHOJT,
            RTOUT,TITLEI(2%),7HUR(5C), PHIT3(5),ZTIP(5C),PTIP(50),SFIN('),
            RADTN(50),TIP(5)),PRIP(5u),LAMTN(5n),VTHIN(5N),5FOTT(5`),
            RADOUT (50), PROP (5n), LOSODT (5n), LAMOUT (5C),VTHOUT(5a).
            BETALE(50), BETATE(50), ZHST(50), ZTST(50),FHST(5`),RTST(50),
            FLFR(50), PERCRD (50), PERLOS (50), Z3I.(5`.5'), RBL (5),57),
            THBL (50,50),TNBL (50,50),TTEL (50,5r), TH1EI, (50,50),TH2BL (50, 5r)
            COMMON/SLCOM/ILS(50),ITS(50),ZSL(10),50),RSI(107,5%),MSI(12N,5r).
            1 WZSL(10),50),WRSL(10:,50),WMSL(1N%,50),WTHSL(10?,5「),
            2 ALPSL(100,50), BETSI (100,5n),WSL(100,5n), BNCRSL(10`,50).
            3 CURVSL(1G0,50),WLSSL(1)U.5^),WTSSL(10^,55)
            DIMENSION TITL1(12),TITL2(7),TITL3(14),TITL4(15),
            1 TITL5(16),TITLS(6),TITL7(2)
            REAL MSL,LRNG
            DATA TITL1/'MERI','DION','AL A','ND S','TRFA','CBDC','1$G1','RELX'
            1.'TIVE','VEL','OCIT','IES '/
            DATA TITL2/' ST','REAM','LINE',' NO.','XXXX','' ','I= ','YXXX'
            1,'XXXX'/
            DATA TITL3/'MERI','DION','AL P','ELAE','tVE ','VNLO','CITI','FSDC'
            1,'1$R6','FOR ','all ','STRE','AMLT','NFS '/
            DATA TITL4/'SUCT','ION ','SUEF','ACE ','RFLA','TTVF',' V=L','OCTT'
            1,'IES$','C1$R','8FOR',' ALL',' STR','EAMI',''IMFS'/
            DATA TITLS/'PRES','SURE',' SUR','FACE',' GEL','ATTV','E VE','IOCI'
            ','TIES','$C1$','R8FO','R AL','L ST','REAM','LINE','SS 1/
            DATA TITLG/' ME','RIDI','ONAL',' CO','ORDI','NATTI/
            DATA TITLT/'VELO','CITY'/
            DATA SYM/'X'/
            IF (IPLOT.LE.0) RETURN
                            IF ((ITER/IPLOT)*IPLOT.NE.ITER.AND.ITER.NE.1) FETURN
c
C--COMPUTE RANGE OF PLOTS, AND SFT OP FOR PIOTTINE
C
LRNG = MSL (1,1)
RRNG = MSL (1,1)
BRNG = 1COO.
TRNG = 0.
DO 30 JS=1,NSL
LRNG=AMIN1(LRNG,MSL(1,JS))
RRNG = AMAX1(RRNG,MSL(MM,JS))
IF (MBI.EQ.O) GO TO 15
ILSJ = ILS(JS)
```

```
            ITSJ= ITS(JS)
            DO 10 IS=ILSJ,IESJ
            BENG = AMIN1(BLNG,WLSSL(IS,JS))
            BRNS = AMIN1(BRNG.WOSSL(TS,JS))
            TRNG = AMAX1(TENG,NLSSL(IS,JS))
            1: TRNG = AMAX1(TRNG,DTSBL(TG,IC))
            15 DO 2r IS=1,M1
            BRNG = AMIN1(BFNG,WSL(IS,JS))
        2C TRNG = AMAX1(TRNG,TSI(IS,JS))
        30 CONTINUE
            Call LRMRGN(1.r.1.0,2.^,1.5)
            CALL LDANSE(LING,RRNG,RENG,TFNG)
            CALL LRGEIO(1,1,11.8,11.?)
C
C--PLIT VELOCITIES ON EACH STREAMITNO
C
            DO 4E JS=1,NSL
            FOP = . 人
            IF (MBI.EQ.?) EOF=1.0
            CALL LECHSZ(4)
            IF (JS.EQ.1) CALI LRLFGN(TTMI1,4., , 2.5.n.7.0.0)
            CALL LPCHSZ(3)
            CALL LPCNVT(JS,1,TTTL2(5),1,4,:)
            CALL LPCNVT(RLFP(JS), 3,TIML2(A),3,B,4)
            CALI, LRLEGN(TITLC,36,N,2.2,9.5,0.')
            Cnil, LECFGZ(2)
            CAIL LRLEGN(TITLF,24,.,3.4.1.3.`.`)
            CAILL LRLFGN(TITLT,R,1,5;2,4.9,r.,)
            CALL LRCHSZ (4)
            CALL LRCURV (MSL (1,JS),WSL(1,JS),MM, ),SYM,O.r)
            CALL LRCURV (MSL(1,JS),NSL(1,TS),MM,H,SYM, EOP)
            IF (MBI.EQ.O) GO TO 4.
            ILSJ = ILS(JS)
            MBLD = ITS(JS)-ILS(JS)+1
            CALL LRCURV(MSL(ILSJ,NS),WLSSL(ILSJ,IS),MBLE,2,SYM,r.*)
            CALL LRCURV (MSL(ILSJ,JS),WLSSL(ILSJ,JS),MRLN,4,SYY,r.`)
            CALL LRCURV(MSL (ILSJ,TS),WTSSL(TLSJ,JS),MBLD,2,SYM,E.*)
            CALL LRCURV(MSL(ILSJ,JS),WTSSL(ILSJ,TS),MRLD,4, CYM,1,`)
        40 CONTINUE
C
C--PLOT MERIDIONAL VFLOCITIES FOR ALL STREAMLINES
C
    CALL LEGRID(3.3,11.C.11.0)
    CALL LRLEGN(TITL 3.56.0.1.7.0.7.0.0)
    CALL LRCHSZ (2)
    CALL LRLEGN(TITL6,24,0,3.4,1.3,6,0)
            CALL LRLFGN(TITL7,8,1,0.2,4.9.i).`)
            CALL LRCHSZ(4)
            EOP = O.O
            DO 50 TS = 1, NST
            IF (JS.EQ.NSL) EOP=1.7
    5C CALL LECURV(MSL(1,JS),WSL(1,JS),MM,2,SYM,EOP)
            CALL LRCHSZ (O)
            IF (MBT.EQ.O) RETURN
C
C--PlOT SUCTION SURFACE VELOCITIES fOR ALl STREAMLTNES
C
CALL LFCHSZ (4)
CALL LRLEGN(TITL4,5C,0,1,2,0.7.0.0)
CALL LRCHSZ(2)
```



```
            CALL IFLFGN(*ITLT,3,1,?.2,4.O,N.*)
            CAIL LECl!SZ(4)
            EOP = r.O
            DO E: \S=1,NSL
            IF (JS.EO.NSL) TOF=1.r
            ILSJ = TLS(JS)
            MBLD = ITS(JS)-ILS(JS) +1
    E: CAII, LFCJPV(MST.(ILSJ,JS),MLSSL(TLSJ,JS),MDLT, 2,SYM,EOP)
\square
C-FLOT PRESSUEE EUGFACT VELOCTTTES FOR ALL GTREAMITNES
C
    COLL LHLEGN(TITL5,54,*.1.2,0.7.^.C)
    Ga!? LTCHSZ(?)
```



```
            GALi, LPEEGN(myTL7,9,1,%.2,4.9,*.7)
            GNI! LPCHSZ(4)
            FOP = r.r
            DO 70 JS=1,NSL
            TF (JS.EQ.NSL) EOP=1..
            IEST = TLS(NS)
            MBLD = ITS (JS) - ILS (JS) +1
    7- CALI LKCJRV(MSL(ILSJ,JS),WTSSL(ILSJ,JS),MBLD,2,SYM,EOP)
            CMLL LECUFV (ZSL, FSL, ©,?,SYM,1.`)
                    CMLL LRCHSZ(0)
                    RETIJRN
                    END
```

 STRPOUTINE TVZLCY
 c
C--tvelcy Calctilates tel full massflow, táanjontc solution
C--IISIN's VFIOCITY GRAUIENT FQUATIONS
C
COMMON NRTAD, NWRIT, ITRR, IEND,NWRT1, VWRT2, NGET 3, NWPT4, NWRTF, NWETG
COMMON/INPUTT/GAM,AR,MSFL, DMEGA, REDFAC, VELTOL,FNEW, DNEN,MBI,MPO,
YM, MHT, NLL, NHTHE, NTTP, NIN, NOIT, NBLPL, NPPP, NOSTAT, NSL, NLOSS,
LSFF, LTPL, LAMVT, LROT,LRLAD,LETEAN, ANGROT, IMESH, ISLINE,
ISTATL, IFLOT, TSUPFF, ITSON, IDEBIJG, ZOMIN, ZOMBI, ZOMBO, ZOMOTT,
ROMIN, ROMBI, ROMBO, ROMOUT, THTN, ZTIN, ZHOUT, ZTOUT, RHIN, RTJN, RHOUT,
RTOUT, TITLEI (2C), ZHUR (5C), RIITE(57), ZTIP(EO), RTID (5?), SFTN(50),
$\operatorname{TADIN}(5 \mathrm{C}), \operatorname{TIP}(5 \mathrm{C}), \operatorname{PPTP}(5 \geqslant), \operatorname{IAMIN}(5 \mathrm{c}), \operatorname{VTHIN}(5 \mathrm{C}), \operatorname{SFOUT}(50)$.
KADOUM (5C), PRCP (5°), TCSOUT (5C), LAMOITT (5C), VTHOUT (5^{n}),
BETALE (50), BETATE (5,), 7HST (5n), $\operatorname{ZTST}(50)$, FHST (50), RTST(50),
$\operatorname{FLFR}\left(5^{7}\right), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), 28 \mathrm{~L}\left(5^{n}, 50\right), \operatorname{RRL}(57,50)$.
THBL (50, 50), TNBL (50, 5n), TTBL (5r, 50), TH1BL (50, 50), TH2日I. (5n, 50)
COMMON/CALCON/MMM1, MHTP1, CP, FXPON,TGPOG,PITCH,RLEH, RLET, RTEH, PTET,
ZLE (5C), RLE (5C), ZTE (5C), RTE(5C), ZLEOM (101), RLEOM (1八1)
$\operatorname{SLEOM}(151), \operatorname{THLEOM}(101), \operatorname{ZTFOM}(1) 1), \operatorname{RTEOM}(101), \operatorname{STEOM}(101)$,
THTEOM (101), ILE(1C1), ITE(101), ZOM (100.101), FOM (100, 101).
SOM (100, 101), TOM (100, 101), RTH (100, 101), $\operatorname{DTHDS}(10,101)$,
DTHDT (1C. 101$), \operatorname{PLOSS}(100,1 \sim 1), \operatorname{CPHI}(10 n, 101), \operatorname{SPHI}(109,101)$
COMMON/VARCCM/A (4, 1CO, 1C1), UOM (1OO, 1C1), K(1C0,1C1),RHO(100, 1の1).

WSUBM (1cr, 1c1), ATH (1~r, 1C1), VTH (100, 1n1), W(10n, 1C1).


```
                WLSURF(100,101),WTSITPE(1Cr,101),CAMP(10n,101), SAMP(100.101),
                R RHOAV (10C,1C1), DELFHO(102,101), FT(100,101), DFDM(100,101),
    K XIOM(10U,101), ZETOM(100,1^1), OLDU(100,101)
    DIMENSION DNMDS(100), DWTDS(10n),TVERT(1C1),
    1. WMVERT(101),WTVERT(1:1),TWLMP(1?1), CPTIP(101),RCARB(101).
        DWMVER(1C1), DWTVER(1^1),ATVEL(101), BTVEL(101),CTVEL(1^1).
        DTVEL(101), ETVEL(1)1),FTVEL(101), LAMBDA(1C1),LAMBDO(1^1),
        TIPT(101), RHOIP(101), UNEW(121), DWMDM(1CC, 101), DWTDM(10^,101),
        DWMDT (100,101), DWMDT(10r,101)
        REAL MSFL,LAMBDA,LAMBDO,IAMOUT,LAMTN,LAMDAF,MAXFLO,MINFLO
    LOGTCAL REPEAT
C
C--RESTORP FTLL MASS FLON VALUES, AND RETNITIALIZE LAMDAP AND RVTHTA
C
    IEND = IEND+1
    JZ = 1
    IF (ISUPER.EQ.2) JZ=2
    IF (ISIJER.EQ.2) GO TO 55
    GRITE(NWEIT,1^40)
    OMEGA = OMEGA/REDEAC
    MSFT = MSFL/REDFAC
    DO 10 J = 1,NIN
    LAMIN(J) = LAMIN(J)/RFDFAC
    1O VTHIN(J) = VTHIN(J)/REDFAC
        DO 20 J =1,NOUT
        LAMOUT(J) = LAMOUT(J)/REDFAC
    2S VTHODT(J) = VTHOUT(J)/REDFAC
        Call LamNTT
        IF (MBT.NR.C) CALL RVTNIT
C
c--CAlcillate partial,s with RESpect to T OF wSUbM AND WTH
C
    DO 40 I=1,MM
    DO 3C J=1,MHTP1
    DFDM(I,J) = DFDM (I,J)/REDFAC
    TVERT(J) = TOM(I,J)
    WMVERT(J) = WSUBM(I,J)
        30 WTVERT(J) = WTH(I,J)
            CALL SLOPES (TVERT,WMVERT,MHTP1,DRMVER)
            CALL SLOPES (TVERT,HTVERT,MHTP1,DWTVER)
            DO 40 J=1,MHTP1
            DWMDT(I,J) = DWMVER(J)
        4@ DWTDT(I,J) = DRTVER(J)
C
C--CALCULATE PARTIALS WITH RESPECT TO S OF WSJBM AND WTH, AND THEN
C--CALCULATE PARTIALS WITH RESPECT TO M OF WSUBM AND WTH
C
    DO 50 J=1,MHTP1
    CALL SLOPES (SOM (1,J),WSDBM (1,J),MM, DMMDS)
    CALL SLOPES (SOM(1,J),WTH(1,J),MM,DWTDS)
    DO 50 I=1,MM
    DWMDM(I,J) = (DMMDS(I)*CAMP (I,J) +DWMDT(I,J)*SAMP(I,J))/REDFAC
    5C DHTDM(I,J) = (DWTDS(I)*CAMP(I,J) +DWTDT (I,J)*SAMP(I,J))/REDFAC
    RTOLER = 1. E-4
    MEAN = MHT/2+1
    55 CHLIM = MSFI*FLOAT (NBL)
    UNEN(1) = 0.
C
C--INITIALIZE VARIABLES FOR LOOP ON VERTICAL MESH LINES
```

```
C
    LINC = 0
        ICOUNT = 0
        IREVRS = 0
        ITEMIN = MM
        ITEMP = MM
        IMAX = 0
        INCR=1
        I = 0
C
C--SCIVE VElocity GRADIENT EQUATION ON FACH VERTICAL MESH LINE
C
C--bFGINNING OF LCOP ON VERTICAL MESH LINES
    60I= I+INCR
        IF (I.GT.MM) GO TO 290
        WHUB = W(I,1)/RECFAC
        DELMAX = W(I,MEAN)/20./REDFAC
        WMAX = WHIEE
        WMIN = WHUB
        MAXFLO = -1.E1C
        MINFLO = 1.E10
        NADD = 0
        NSUB=0
        NREP = 0
        NCOUNT = 0
C
C--CAlCUlate coefficients a, B, and D for the velocity gradient eqitation
C--INITIAIIZE COEFFICIENT C TO ZERO
C
    DO 80 J=1,MHTP1
    LAMBDA(J) = LAMDAF(UOM(I,J),I,J)
    IF (MBI,NE.0) LAMBDO(J) = RVTHTA(TOM(T,J),I,J)
    TIPT(J) = TIPF(DOM(I,J))
    RHOIP(J)= RHOIPF(IJOM(I,J))*(1.-PLOSS(I,J))
    BTVEL (J) = 0.
    CTVEL(J) = 0.
    DTVEL(J) = 0.
    IF(I.LT.ILE(J).OR.I.GT.ITE(J)) GO TO 70
    SAL = SIN (ALPHA(I,J))
            SBETA = SIN(BETA(I,J))
            CBETA = COS(BETA (I,J))
            ATVEL(J) = CBETA**2*CAMP(I,J)*CURV (I,J) - SBETA**2*CPHT (I,J)/
            1ROM (I,J) +DTHDT (I,J) *SAL*CBETA*SBETA
            BTVEL(J) = CBETA*SAMP(I,J)*DWMDM (I,J) -2.*OMEGA*SBEMA*CPHI (I,J)
            1+ROM(I,J)*DTHDT(I,J)*CBETA* (DHTDM(I,J) + 2.*OMEGA*SAL)
            GO TO 72
        70 ATVEL(J) = CamP(I,J)*CURV (I,J)
            DTVEL(J) = DMMDM(I,J)*SAMP(I,J)
C
C--CORRECT FLOG aNGLES AT LEADING AND TRAILING EDGES, ANALOGOUS to INDEV
C
    72 IF (INCR.LT.0) GO TO 75
        IF (I.EQ.ILE(J)) CALL LINDV(J,LINC,ICOUNT)
        IF (LINC.NE.1) GO TO 80
        IMAX = I
        IREVRS = 1
        ICOUNT = 0
        GO TO 80
    75 IF (I.EQ.ITE(J)) CALL TINDV(ITEMP,J,ICOUNT)
```

```
                ITEMIN = MINO(ITEMIN,ITEMP)
            30 CONTINIE
            IF (LINC.EQ.1) INCR=-1
    C
    C--CALCULATE C COEFFICIFNT FOR THE VELOCITY GRADIENT FQUATION AND OTHER
    C--CONSTANTS FOR CHECKING CONmINUITY - - BEGIN OUTER ITERATION PROCEDURE
        90 DO 120 J=1,MHTP1
            OMR2 = OMEGA*ROM (I,J)**2
            THLMR(J) = 2.*OMEGA*LAMBDA(J)-OMEGA*OMR2
            CPTIP(J) = 2.*CP*TIPT(J)
            IF(I.GE.ILE(J)) GO TO 100
            WHIRL = LAMEDA(J)
            GO TO 110
        100 IF(I.LE.ITE(J)) GO TO 120
            WHIRL = LAMBDO(J)
        110 CTVFL(J) = -(WHIRL-OMR2)/ROM(I,J) **2*(CORV(T,J)*(WHIRL-OMR2)*
            1CAMP(I,J) +(WHIRL+OMR2)/RCM(I,J)*CPHI (I,J))
        12C PCARB(J)=CAMP(I,J)*ROM(I,J)*BTH(I,J)
    C
    C--CALCULATE COEFFICIENTS E AND F FOR THE VELOCITY GRADIENT EQUATION
        TPP = TIPT(1)-TWLMR(1)/2./CP
        IF(TPP.LT.G.) GO TO 300
        PRPL= RHOIP(1)*AR*TIPT(1)*(TPP/TIRT(1))**(GAM*EXPON)
            DTIP = TIPI(J)-TIPT(J-1)
            DLAM = LAMBDA(J)-LAMBDA (J-1)
            TPPN=TIPT(J)-TWLMR(J)/2./CP
            IF (TPPN.LT.O.) GO TO 300
            PRELN = RHOIP(J)*AR*TIPT(J)*(TPPN/TTTPT(J))**(GAM*EXPON)
            DTPP = TPPN-TPP
            DPREL = PRELN-PREL
            ETVEL(J-1) = CP*DTIP-OMEGA*DLAM-CP*DTPP*AR/(PRELN+PREL)*(TPPN+TPP)
            FTVEL(J-1) = DTPP/(TPPN+TPP)-AR/CP*DPREL/(PPELN+PREL)
    130 PREL = PRELN
C
C--OBTAIN NUMERICAL SOLJTION TO THE VELOCITY GRADIENT EOUATION
C--FOR AN ESTIMATED VAIDE OF W AT THE HUB
C
    REPEAT = .PALSE.
C
C--RESTART OF INNER ITERATION EROCFDURE
C
C--CONTINUATION OF INNER ITERATION PROCEDURE
C--BEGIN VELOCITY GRADIENT SOLUTION AT !IJB
    150 W(I,1) = WHOB
            NCOUNT = NCOUNT+1
C
c--calcolate rva at the hub
    WSQ = WHUB**2
    TTIP = 1.-(WSQ+TWLMR(1))/CPTIP(1)
    IF (TTIP.LT.O.) GO TO 220
    RHO(I,1)= RHOIP (1)*TTIP**EXPON
    IF (I.GE.ILE(1).AND.I.LE.ITE(1)) GO TO 160
```

```
C--RVA OUTSIDE OF THE ELADE
    WHIRL = LAMBDA(1)
    IF (I.GT.ITE(1)) WHIRL = LAMBDO(1)
    SBETA = (WHIRL/ROM (I, 1) -CMFGA*ROM (I, 1))/WHUR
    IF(ABS(SBETA).GT.1.) GO TO 21C
    BETA(I,1) = ARSIN(SBETA)
    CBETA = COS(BETA (I,1))
    RVA = RHO (I,1)*HHOB*CBETA*RCARB(1)
    GO TO 170
C--RVA INSIDE OF THF BLADE
    1弓C WLSRF= WHUB+DFDM(I,1)/2.
    WSQ = WLSRF**2
    TTIP = 1.-(WSQ +TWLMR(1))/CPTTP(1)
    IF (TTIP.LT.O.) TTIP=O.
    BHOL = RHOIP(1)*TTIP**EXPON
    WTSRF = UHOB-DFDM (I, 1)/2.
    WSQ = WTSRF**2
    TTIP=1.-(WSQ+TMLMR(1))/CPTIP(1)
    IF (TTIP.LT.0.) TTIP=0.
    RHOT = RHOIP(1)*TTIP**EXPON
    RHOWAV = (RHOL*WLSRF+4.*RHO(T,1)*WHUB+RHOT*GTSRF)/6.
    CBETA = Cos(BETA([,1))
    RVA = RHOWAV*CBETA*RCARE(1)
C
c--continue velocity gradient SOLution up vertical mesh LINE grom hub
C--TO SHROUD
C
    17\Omega DO 200 J=1,MHT
            DELTA = TOM (I,J+1)-TOM(I,J)
            WAS =W(I,J) +(ATVEL(J)*H(I,J) + BTVEL(J) +CTVEL(J)/G(I,J) +CBETA*
            1DTVFL(J))*DELTA+ETVEL(J)/W(I,J)+FTVEL(J)*W(I,J)
C
C--CALCOLATE RVAS AT POSITION J+1 ON VERTICAL MESH LINE
    IF (I.GE.TLE(J+1).AND.I.LE.ITE(J+1)) GO TO 180
C--RVAS OUTSIDE OF THE BLADE
    WHIRL = LAMBDA(J+1)
    IF (I.GT.ITE(J+1)) WHIRL = LAMBDO(J+1)
    HTHETA = (HHIRL/ROM(I,J+1)-OMEGA*ROM(I,J+1))
    SBETA = WTHETA/HAS
    IF(ABS(SBETA).GT.1.) GO TO 210
    BETA(I,J+1)=ARSIN(SBETA)
    18C. CBETA = COS(BETA(I,J+1))
    WASS = W(I,J) + (ATVEL (J+1)*WAS+BTVEL (J+1) +CTVEL (J+1)/HAS+CBETA*
            1DTVEL(J+1))*DELTA+ETVFL (J)/WAS+FTVEL (J)*WAS
            W(I,J+1)=(WAS+WASS)/2.
            WSQ = W(I,N+1)**2
            TTIP = 1.-{WSQ+TWLMR (J+1))/CPTIP(J+1)
            IF(TTIP.LT.O.) GC TO 220
            RHO(I,J+1)= RHOIP (J+1)*TTIP**EXPON
            IF(I.GE.ILE (J+1).AND.I.LE.ITE(I+1)) GO TO 190
            SBETA= WTHETA/W(I,J+1)
            IF(ABS(SBETA).GT.1.) GO TO 210
            BETA(I,J+1)=ARSIN(SBETA)
            CBETA = COS (BETA(I,J+1))
            RVAS = RHO(I,J+1)*W(I,J+1)*CEETA*RCARR(J+1)
            GO TO }19
C--RVAS INSIDE OF THE BLADE
    190 WLSRF = W(I,J+1) +DFDM(I,J+1)/2.
            WSQ = WLSRF**2
            TTIP=1.-(HSQ+TWLMR (J+1))/CPTIP(J+1)
```

```
    IF (TTIP.LT.O.) TTIP=0.
    RHOL = RHOIP(J+1)*TTIP**EXPON
    WTSRF=W(I,J+1)-DFDM(I,J+1)/2.
    WSQ = WTSRF**2
    TTIP = 1.-(WSQ+TWLMP(J+1))/CPTIP(J+1)
    IF (TTIP.LT.O.) ITIP=0.
    RHOT = RHOIP(J+1)*TTIP**FXPON
    RHOWAV = (RHOL*WLSRF+4.*RHO(I,J+1)*W(I,J+1) + RHOT*WTSRF)/60
    CBETA = COS (BETA (I,J+1))
    RVAS = RHOWAV*CBETA*RCARE(J+1)
C
C--INCREMENT THE MASSFLOW
    195 UNEN(J+1) = (RVA+RVAS)*DELTA/2.+UNEV(J)
    200 हVA = RVAS
C
C--Store MaX AND MIN \nablaALUES FOR WHTb AND INTEGRATED MASSFLOW
C
        MAXPLO = AMAX1(UNFW(MHTP1),MAXPLO)
        MINFLO = AMIN1(UNEW(MHTP1),MINFLO)
        WMAX = AMAX\(WHOB,WMAX)
        WMIN = AMIN^(WHUB;HMIN)
C
C--CHECK CONTINUITY AND ESTIMATE NEW VALJE POR W AT THE HUB
C
        IF(IND.GE.6.AND.ABS(MSFL-TNEL (MHTP1)).LE.MSFL*RTOLER) GO TO 250
        CALL CONTIN(WHOB,UNEH(MHTP1).IND,JZ,MSFL,DELMAX)
        IF(IND.LT.10) GO TO 150
C
C--END OF INNER ITERATION PROCEDURE
C
C--IND=10 INDICATES CHOKED FLOW
    IF(IND.EQ.10) GO TO 250
C--IND=11 INDICATES NO SOLUTION FOUND IN 100 ITERATIONS
    go TO 230
C
C--CHANGE WHUB FOR RESTART. \nablaELOCITIES TOO SMALL, SBETA.GT.1.0
C
    210 HHUB = WHUB+.45*DELMAX
        NADD = NADD+1
        IF(NCOONT.LT. 1000) GO TO 140
        GO TO 230
C
C--CHANGE WHUB FOR RESTART. VELOCITIES TOO BIG. TEMPERATURE NEGATTVE
C
    220 WHUB = WHUB-. 45*DELMAX
            NSUB = NSUB+1
            IF(NCOUNT.LT.1000) GO TO 140
C
C--NO SOLOTION CAN BE FOUND. PRINT MESH OUTPUT ONLY, AND
C--OMIT STREAMLINE AND STATION LINE OUTPUT
C
    230 IMESH = 1
        ISLINE = 0
        ISTATL = 0
        DO 240 J=1, MHTP1
    240 UOM(I,J) = UOM (I,J)/MSFL
            GO TO 275
C
C--SOLOTION OBTAINED -- CHECK ACCURACY OF UOM
```

```
C
    250 NREP = NREP+1
        DO 260 J=2,MHTP1
        UTEMP = UNEW(J)/MSFL
        IF (ABS (UTEMP-UOM(I,J)).GT.RTOLER) REPEAT = .TRUE.
    260 UOM(I,J) = UTEMP
C
C--UPDATE PLOSS, TIPT, RHOIP, LAMBDA, AND LAMBDO
C
    CALL LOSSTV(I)
    DO 265 J=2,MHTP1
    UTEMP = UOM (I,T)
    TIPT(J) = TIPF(ITTEMP)
    RHOIP(J) = RHOIPE(UTEMP)*(1.-PLOSS(I,J))
    LAMBDA(J) = LAMDAF(UTEMP,I,J)
    265 IF (MBI.NE.C) LAMBDO(J) = RVTHTA(UTEMP,I,J)
C
C--SET WHUB, AND CHECK IP ANOTHER OUTER ITERATION IS NECESSARY
C
    WHOB = W(I,1)
    IF(REPEAT.AND.NCOUNT.LT.1000) GO TO }9
C
C--END OF OUTER ITERATION PROCEDURE
C
    IF(IND.NE.10) GO TO 270
    CHFL = OOM(I,MHTP1)*MSFL*FLOAT(NBL)
    CHLIM = AMIN1(CHLIM,CHFL)
    HRITE(NHRIT, 1000) I,CHFL
    270 IF (.NOT.REPEAT) GO TO 280
C
C--PRINT ERROR MESSAGES IF A SATISFACTORY SOLUTION CANNOT BE OBTAINFD
C
    275 WRITE(NWRIT,1010) I
        IF (IND.EQ.11) WRITE(NWRIT, 1050)
        IF (NCOUNT.GE.1000) WRITE(NWRIT, 1060)
        HRITE(NWRIT, 1070) MAXFLO,MINFLO,WMAX,WMIN
        NRES = NADD+NSUB+NREP
        IF (NRES.GT.0) HRITE(NURIT, 1080) NRES,NADD,NSUB,NREP
        WRITE(NWRIT,1C90)
C
C--CHECK IF ALL vERTICAL MESH LINES HAVE BEEN DONE
C
    280 IP (INCR.GT.J) GO TO 60
        IF (IREVRS.EQ. 1) I=MM+1
        IREVRS = 0
        IF (I.GT.ITEMIN) GO TO 60
        IF (I.GT.IMAX+1) GO TO 60
        IP (ICOUNT.LT.MRTP1) GO TO 60
C--END OF LOOP ON VERTICAL MESH LINES
    290 CONTINUE
C
C--fiNISHED VELOCITY GRADIENT SOLUTION ON EACG VERTICAL MESH LINE
C--CHECK CHOKE LIMIT
C
    OMSFL = MSFL*FLOAT(NBL)
    CHFRMS = CHLIM/OMSPL
    IF (CHLIM,GT.(0.9999*OMSFL)) RETURN
    GRITE(NHRIT.1030) CHFRMS,OMSFL,CHLIM
    BETURN
300 WRITE(NWRIT,1020)
```

C--FORMAT STATEMENTS
C
1000 FORMAT (1HL, $10 \mathrm{X}, 68 \mathrm{HMSFL}$ EXCEEDS CHOKING MASS FLOW FOR VERTICAL ORT
1 HOGONAL MESH LINE $I=, 13 / 12 X, 19$ HCHOKING MASS FLOW $=$, $G 15.6)$
1010 FORMAT (1HL, $10 X, 85 H A$ VELOCITY GRADIENT SOLUTION CANNOT BE OBTAINED
1 FOR VERTICAL ORTHOGONAL MESH LINE I $=$ I $3 / 12 \mathrm{X}, 56 \mathrm{HANY}$ SUBSEQUENT OU
2TPOT POR THAT MESH LINE MAY BE IN ERROR)
1020 FORMAT (1HL, $10 X, 60$ HTHE UPSTREAM INPUT WHIRL OR TANGENTIAL VELOCITY
1 IS TOO LARGE)
1030 FORMAT ($1 \mathrm{HL}, 10 \mathrm{X}, 19 \mathrm{HCHOKING}$ MASSFLOW IS, F9.5. 22 H OF THE INPUT MASSP
1LOW/12X, 16 HINPUT MASSFLOW $=, G 13,5 / 12 \mathrm{X}, 26 \mathrm{HMINIMOM}$ CHOKING MASSFLOW
$2=, \mathrm{G} 13.5$)
1040 FORMAT ($1 \mathrm{H} 1 / / 52 \mathrm{X}, 25\left(1 \mathrm{H}^{*}\right) / 52 \mathrm{X}, 25 \mathrm{~B}^{*}$ FULL MASSFLOW $* / 42 \mathrm{X}$,
$145(1 \mathrm{H} *) / 42 \mathrm{X}, 1 \mathrm{H} *, 12 \mathrm{X}, 19 \mathrm{HTRANSONIC}$ SOLUTION, $12 \mathrm{X}, 1 \mathrm{H} * / 42 \mathrm{X}, 45 \mathrm{H} *$ BY VE
2LOCITY GRADIENT APPROXIMATE METHOD */42X,45(1H*)/////)
1050 FORMAT (10X,51HCONTIN COULD NOT FIND A SOLOTION IN 1CO ITERATIONS.
1)
1060 FORMAT (10X, 8 1HITERATION PROCEDTIRE HAD TO BE RESTARTED TO AVOID NE
1GATIVE TEMPERATURE OR VELOCITY/12x, 87HMAGNITUDE LESS THAN TANGENTI
2AL VELOCITY, OR AFTER ADJUSTMENT OF STAGNATION TEMPERATDRE, /12X, 29
3HSTAGNATION DENSITY, OR WHIRL. $110 \mathrm{X}, 84$ HRESTART OF ITERATION PROCEDT
4RE (LOOP TO STATEMENT 9C) WAS ABORTED AFTER 100 O OR MORE/12X,41HTO
5TAL ITERATIONS (LOOP TO STATEMENT 150).)
1070 FORMAT (1HL, $10 \mathrm{X}, 63 \mathrm{HTHE}$ MAXIMOM MASSFLOW FOR MHICH A SOLDTION COOLD
1 BE OBTAINED WAS,G16.7/10X, 63HTHE MINIMUM MASSFLOW FOR WHICH A SOL
2 UTION COULD BE OBTAINED GAS.G16.7/10X, 76 HTHF MAXIMOM VALUE OF W AT
3 THE HUB FOR WHICH A SOLUTION COULD BE OBTAINED WAS, G16.7/10X,76HT
4 HE MINIMUM VALUE OF W AT THE HUB FOR WHICH A SOLOTION COULD BE OBT
5AINED WAS,G16.7)
1080 FORMAT (1HL, $10 \mathrm{X}, 37 \mathrm{HTHE}$ ITERATION PROCEDORE WAS RESTARTED, I5, 6H TIM
1 ES/ $12 \mathrm{X}, 18 \mathrm{HWHOB}$ WAS INCREASED, I4, 6H TIMES/12X, 18 HWHIJB WAS DECREASED
$2, I 4,6 H$ TIMES/12X,53HBOUNDARY VALUES (TIPBDY, RHOIP, LAMBDA) WERE A
3DJUSTED, (4, 6H TIMES)
1090 FORMAT (/10X, 120(1H*))
END
SUBROUTINE LINDV(JARG,LINC, ICOUNT)
C
C--LINDV AND TINDV CORRECT THE BETA FLOW ANGLES INTO THE
C--LEADING AND TRAILING EDGES RESPECTIVELY
C
COMMON NREAD, NWRIT,ITER, IEND,NWRT1, NWRT2, NWRT3, NGRT4,NWRT5,NHRT6
COMMON/INPUTT/GAM, AR, MSFL, OMEGA, REDFAC, VELTOL, FNER, DNEW, MBI, MBO,
MM, MHT, NBL, NHOB, NTIP, NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL, NLOSS,
LSPR, LTPL, LAMVT,LROT, LBLAD, LETEAN, ANGROT, IMESH, ISLINE,
ISTATL, IPLOT, ISUPER,ITSON, IDEBUG, ZCMIN, ZOMBI, ZOMBO, ZOMOOT,
ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHIN, RTIN, RHOUT,
RTOUT, TITLEI (20), ZHUB (50), $\operatorname{RHUB}(50), \operatorname{ZTIP}(50), \operatorname{RTIP}(50), \operatorname{SFIN}(50)$,
RADIN (50), TIP (50), PRIP (50), LAMIN (50), VTHIN (50), SFOUT (50),
RADOUT (50), PROP (5C), LOSOUT (50), LAMOUT (50), VTHOUT (50).
BETALE (50), BETATE (50), ZHST (50), ZTST (50), RHST (50), RTST(50).
FLPR(50), PERCRD (50), PERLOS (50). ZBL (50.50), RBL (5). 50).
$\operatorname{THBL}(50,50), \operatorname{TNBL}(50,50), \operatorname{TTBL}(50,50), \operatorname{TH} 1 \mathrm{BL}(50,5 \mathrm{C}), \mathrm{TH} 2 \mathrm{BL}(50,50)$

```
    COMMON/CALCCN/MMM1,MHTP1,CP,EXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
    1 ZLE(50),RLE(50),ZTE(50),RTF(50), ZLFOM(101),RLEOM(101),
    2 SLEOM(1C1),THLEOM(101),ZTEOM(101), RTEOM(101),STEOM(101),
        THTEOM(101),ILE(101), ITE(101). 20M(100,101), ROM(10n,101).
        SOM(100,101), TOM(1C0.101), RTH (100,101), DTKDS (100,101),
        DTHDT(10C,101), PLOSS(100, 101), CPHI (100,101), SPHI (100,101)
    COMMON/VARCOM/A (4,100,1C1),UOM(100,101),K(100,101),RHO(100,101),
    1 WSTIBS (100,101),WSTIBT (100,101),WSUBZ(100,101),WSUBR(100, 101),
    2 WSUBM(100,1C1), WTH(100,101), VTH(100,101),W(10n,1C1),
    3 ALPHA (100,101), BETA (100,101), WWCR(100,101), CURV(100.101).
    4 NLSURF(100,101), WTSURF(100,101), CAMP(100,1n1), SAMP(100, 101),
    5 RHOAV (100,101),DELRHO(100,101),FT(100,101), DFDM(100.101),
        XIOM (100,101), ZETOM(100,10 1), DLDO(100,101)
    COMMON/ROTATN/ZHROT(50), RHROT(50). ZTROT(50), RTROT (50).
    1 ZLEOMR(101), RLEOMR(101), ZTEOMR(101), RTfomR(101),
    2 ZBLROT (50,50), RBLROT (50,50), ZOMROT (100, 101),ROMROT (1C5, 101)
    COMMON/INDCOM/NBIPC,NPPC,ZPC(51,51), RPC(51,51),TTPC(51,51),
    1 THPC(51,51),DTHDZ (51,51), DTHDR(51,51), BTHLE(101), BTHTE(101),
2 BTBFLE(101),BTBFTE(101)
    DIMENSION BLINC(101), TBINC(101), BTBLLE(101), BLDEV(101),UBDEV(101),
    1 BTBLTE(101)
    REAL lamDAF
C
C--LINDV CORRECTS THE BETA FLON ANGLFS INTO THE LEADING EDGE
C
        II = 1
        JJ = 1
        J = JARG
        ICOIINT = ICOINT+1
        DEGRAD = 180./3.1415927
C
C--Calculate blade mean camber angle at leading edge
        I = ILE(J)-1
        ALPHLE = ALPHA(T,J) + (SLECM (J) -SOM (I,J))* (ALPHA (I +1,J) - ALPHA (I,J)) / -
        1(SOM(I+1,J)-SOM (I,J))
    CALI LININT(ZPC,RPC,DTHDZ,NPPC,NBLPC,51,51,7LEOMR(J),RLEOMR(J), -
    1DTDZLE,II,JJ)
    CALL LININT(ZPC,RPC,DTHDR,NPPC,NBLPC,51,51,ZLEOMR(J),RLEOMR(J), -
    1DTDRLE,II,JJ)
    TANBBL = RLEOM(J)* (DTDRLE*SIN(ALPHLE) +DTDZLE*COS(ALPHLE))
        BTBLLE(J) = ATAN(TANBBL)*DEGFAD
C
C--CALCDLATE ELADE FLOM ANGLE AT LEADING EDGE, CORRECTfD for blockage
    EXFRAC = (SLFOM(J) -SOM (I,J))/(SOM(I,J) -SOM (I-1,J))
    BETAFS = BETA (I,J) +EXFRAC* (BETA (I,J)-BETA (I-1,J))
    RHOFS = RHO(I,J) +EXFRAC* (RHO (I,J)-RHO(I-1,J))
    WFS = W(I,J) +EXFRAC* (W(I,J)-W(I-1,J))
    ULE = UOM(I,J) +EXFRAC* (UOM (I,J) - IJOM (I-1,J))
    TWLMR = 2.*OMEGA*LAMDAF(ULE,TLE(J),J)-(OMFGA*RLEOM(J))**2
    TIPRIM = TIPF(ULE)
    CPTIP = 2.*CP*TIPRIM
    RHOIP = RHOIPF(ULE)
    CONST1 = TAN(BETAFS)/RHOFS*BTHLE(J)/RITCH
    CONST2 = (RHOFS*PITCH*WFS/BTHLE(J))**2/(1.+(TAN(BETAFS))**2)
    BHOBFN = RHOFS
    TPF = TIPRIM-THLMR/2./CP
    WTHETA = WFS*SIN(BETAFS)
    WMSON = SQRT(2.*GAM*AR*TPP/(GAM+1.)-(GAM-1.)/(GAM+1.)*WTHETA**2)
    IF(WFS*COS(EETAFS).GT,WMSON) GO TO 14
```

```
    1: RHOBF = RHOBFN
    TANBBF= CONST1*RHOBF
    WSQBF = CONST2/RHOBF**2*(1. +TANBBF**2)
    TBFTIP = 1.-(WSQBF+TWLMR)/CPTIP
    IF(TBFTIP.LT.).) GO TO 16
    RHOBFN = RHOIP*TBFTIP**EXPON
    IF (ABS (RHOBFN-RHOBF)/RHOBFN.GT..COO1) GO TO 10
    GO TO 18
    14 RHOBF= RHOBFN
    TBFTIP = (RHOBF/RHOIP)**(1./EXPON)
    WSQBF = (1.-TBFTIE)*CPTIE-TGLMR
    KHSOBF=CONST2/(WSQBF-CONST2*CONST1**2)
    IF(RHSQBF.LT.O.) GO TO 16
    RHOBFN = SQRT (RHSQRF)
    IF(ABS (RHOBFN-RHOBF)/RHOBFN.GT..DOO1) GO TO 14
    WRITE(NWHIT,1050) J
    GO TO 18
    16 RHOBFN = RHOFS
    WRITE(NWRIT,1070) J
    18 TANBEF = CONST1*RHOBPN
    BETABF= ATAN(TANBBF)
c
C--CALCILLATE DISTANCE FOR BETA CORRECTION
    BLDCRD = (RLEOM(J) +RTEOM(J))/2.*(THTEOM(J)-THLEOM(J))
    BLDCRD = SQRT(BLDCRD**2+(STEOM(J)-SLEOM(J))**2)
    SLIDLE = BLDCRD/PITCH/RLEOM (J)
    DISTLE = AMIN1(.5,AMAX1(1./6..(11.-4.*SLIDLE)/18.))*(STEOM(J) -
    1SLEOM(J))
C
C--CORRECT BETA FOR INCIDENCE NEAR THE LEADING EDGE,
c--USING LINEAR CORRECTION FOR ANGLE
            I = ILE(J)
        20 SDIST = SLECM (J) +DISTLE-SOM (I,J)
            IF (SDIST.LE.O.) GO TO 30
            BETA (I,J) = BETA(I,J) +(BETABF-BTBFLE(J))*SDIST/DISTLE
            I = I+1
            GO TO 20
C
C--CAlCUlATE INCIDENCE ANGLES
    30 BLINC(J) = BETABF*DEGRAD-BTBLLE (J)
            UBINC(J) = BETAFS*DEGRAD-BTBLLE(J)
            IF (ICOUNT.EQ.MHTP1) LINC=1
            RETURN
C
C--TINDV CORRECTS THE BETA FLOW ANGLES INTO THE TPAILING EDGE
    ENTRY TINDV(IARG,JARG,ICCONT)
    J = JARG
    ICOUNT = ICOONT+1
C
c--Calculate blade mean camber angle at trailing fodge
    I = ITE(J) +1
    ALPHTE = ALPHA(I,J) + (STEOM (J)-SOM(I,J))* (ALPHA (I,J) - ALPHA (I-1,J))/ -
    1(SOM (I,J) -SCM (I-1,J))
    CALL LININT(ZPC,RPC,DTHDZ,NPPC,NBLPC,51,51,ZTEOMR(J),RTEOMR(J), -
    1DTDZTE.II,JJ)
    CALL LININT(ZPC,RPC,DTHDR,NPPC,NBLPC,51,51,ZTEOMR(J),RTEOMR(J), -
    1DTDRTE,II,JJ)
    TANBBL = RTEOM (J)*(DTDRTE*SIN(ALPHTE) +DTDZTE*COS(ALPHTE))
```

```
    BTBLTE(J) = ATAN(TANBBL)*DEGRAD
C
C--CALCULATE blade flom angle at trailing edge, corrected for blockagf
    EXPRAC = (SOM (I,J)-STEOM(J))/(SOM(I+1,J)-SOM (I,J))
    BETAFS = BETA(I,J) +EXFRAC*(BETA (I,J)-BETA (I+1,J))
    RHOFS = RHO (I,J) +EXFRAC* (RHO (I,J)-RHO (I +1,J))
    WFS =W(I,J)+EXFRAC*(W(I,J)-W(I+1,J))
    UTE = UOM (I,J) +EXFRAC* (UCM (I,J) - UOM (I+1,J))
    PLOSTE = PLOSS (I,J) +EXFRAC* (PLOSS (I,J)-PLOSS (I+1,J))
    THLMR = 2.*OMEGA*LAMDAF(UTE,ITE(J),J)-(CMEGA*RTEOM(J))**2
    TIPRIM = TIPF (UTE)
    CPTIP = 2.*CP*TIPRIM
    RHOIP = RHOIPF(OTE)*(1.-FLOSTE)
    CONST1 = TAN(BETAPS)/RHOFS*BTHTE(J)/PITCH
    CONST2 = (RHOFS*PITCH*WFS/BTHTE(J))**2/(1.+(TAN(BETAFS))**2)
    RHOBFN = RHOPS
    TPP = TIPRIM-TWLMR/2./CP
    #THETA = WFS*SIN(BETAFS)
    MMSON = SQRT(2.*GAM*AR*TPP/(GAM+1.) - (GAM-1.)/(GAM+1.)*WTHETA**2)
    IF(#FS*COS(BETAFS).GT.WMSON) GO TO 44
        4O RHOBF = RHOBFN
            TANBBE = CONST1*RHOBF
            WSQBF=CONST2/RHOBF**2*(1.+TANBBF**2)
            TBFTIP = 1.-(NSQBF+THLMR)/CPTIP
            IF(TBPTIP.LT.O.) GO TO 46
            RHOBFN = RHOIP*TBPTIP**EXPON
            IF (ABS (RHOBFN-RHOBF)/RHOBFN.GT..NON1) GO TO 40
            GO TO 48
    44 RHOBF = RHOBFN
            TBFTIP = (RHOBF/RHOIP)**(1./EXPON)
            HSQBF = (1.-TBFTIP)*CPTIE-THLMR
            RHSQBF = CONST2/(WSQBF-CONST2*CONST1**2)
            IF(RHSQBF.LT.O.) GO TO }4
            RHOBFN = SQRT (RHSQBF)
            IF(ABS(RHOBFN-RHOBF)/RHOBFN.GT..DON1) GO TO 44
            WRITE(NGRIT.1080) J
            GO TO 48
    46 RHOBFN = RHOPS
            ORITE(NGRIT,1090) J
    48 TANBBF = CONST1*RHOBFN
            BETABF = ATAN(TANBBF)
C
C--CALCULATE DISTANCE POR BETA CORRECTION
    BLDCRD = (RLEOM(J) + RTEOM(J))/2.* (THTEOM(J) -THLEOM(J))
    BLDCRD = SQRT(BLDCRD**2+(STEOM(J)-SLEOM (J))**2)
    SLIDTE = BLDCRD/PITCH/RTEOH (J)
    DISTTE = AMIN1(.5.ABAX1(1./6..(11.-4.*SLIDTE)/18.))*(STEOM(J)-
        1SLEOM(J))
C
C--CORRECT BETA FOR DEVIATION NEAR THE TRAILING EDGE,
C--USING LIMEAR CORRECTION FOR ANGLE
    I = ITE (J)
    50 SDIST = SOM(I,J)-STEOM(J)+DISTTE
    IP (SDIST.LE.O.) GO TO 60
    BETA(I,J)= BETA(I,J)+(BETABP-BTBPTE(J))*SDIST/DISTTE
    I = I-1
    GO TO 50
C
C--CALCULATE DEVIATION ANGLES
```

```
    60 BLDEV(J) = BETARF*DEGRAD-BTBLTE(J)
    OBDEV (J) = EETAFS*DEGRAD-BTBLTE (J)
    IARG = I +1
    RETORN
C
C--PINDV PRINTS THE INCIDENCE AND DEVIATION ANGLES
C
    ENTRY PINDV
    IF ((LAMDAF(.5.IIE(1),1)-RVTHTA(.5,ILE(1),1)).GT.0.) go TO 80
    DO 70 J=1,MHTP1
    BLINC(J) = -BLINC(J)
    UBINC(J) = -UBINC(J)
    BLDEV(J) = -BLDEV(J)
    70 UBDEV (J) = -UBDEV(J)
        80 URITE(NWRT6,1000)
            IF (ISUPER.LE.1) WRITE(NHRT6,1010)
            IF (ISUPER.EQ.2) WRITE (NWRTG.1020)
            WRITE(NWRT6,1030)
            WRITE(NHRT6,1040) (J,BLINC (J),[BBINC(.I),BTBLLE(J),BLDEV(J),
            १UBDEV(J),BTBLTE(J),J=1,MHTP1)
                    GRITE(NWRT6,1050)
            RETURN
C
C--FORMAT STATEMENTS
C
    1000 FORMAT (1H1////44X.40(1H*)/44X,40H*** INCIDENCE AND DEVIATION ANG
            1LES ***/ 49X,30(1H*)//)
    1010 FORMAT (/52X,25(1H*)/52X,25H* FULL MASSPLON */42X,45(1H*)/
            142X,1H*,12X,19HTRANSONIC SOLUTION,12X,1H*/42X,45H* BY VELOCITY G
            2RADIENT APPROXIMATE METHOD */35X,59(1H*)/35X,59H* ALL VELOCITIES
            3 SMALLER THAN CHOKING MASSFLOH SOLUTION */35X,59(1H*))
1020 FORMAT (/52X,25(1H*)/52X,25H* FULL MASSFLOW */42X,45(1H*)/
            142X,1H*,12X,19HTRANSONIC SOLUTION, 12X,1H*/42X,45H* BY VELOCTTY G
            2RADIENT APPROXIMATE METHOD */35X,59(1H*)/35X,59H* ALL VELOCTTIES
            3 LARGER THAN CHOKING MASSFLOW SOLUTION */35X.59(1H*))
1030 FORMAT (//24X,10H* MESH *,9X,9HINCIDENCE,7X,11HBLADE ANGLE,2H*,
            18X,9HDEVIATION,7X,11HBLADE ANGLE, 2H */24X, 10H* LTNE *, 3X,
            27HBLOCKED,3X,9HUNBLOCKED,4X,7HAT L.E.,3X,1H*,3X,7HBLOCKED,3X.
            39HUNBLOCKED,4X,7HAT T.E., 3X,1H*)
1040 FORMAT ((24X, 1H*, 2X, I3, 3X,2(1H*,3(P9, 2, 2X), 3X), 1H*))
1050 FORMAT (1H1)
1060 FORMAT (45HLSUPERSONIC CORRECTION - LEADING EDGE FOR J =,I 3)
1070 FORMAT (45HLNO DENSITY CORRECTION - LEADING EDGE FOR J =,I 3)
1080 FORMAT (46HLSOPERSONIC CORRECTION - TRAILING EDGE FOR J =.I3)
1090 FORMAT (46HLNO DENSITY CORRECTION - TRAILING EDGE FOR J =,I3)
                END
```

 PUNCTION LAMDAF (SF, I, J)
 C
C--LAMDAF CALCULATES PREWHIRL, LAMBDA, AS A FUNCTION OP STREAM
C--FUNCTION OPSTREAM OF THE BLADE
C
COMMON NREAD,NWRIT, ITER, IEND, NHRT1, NWRT2, NHRT 3,NHRT4, NURT5, NHRT6
COMMON/INPUTT/GAM,AR,MSFL, OMEGA, REDFAC, VELTOL,FNEW, DNEN,MBI,MBO,
1 MM, MHT,NBL,NHUB,NTIP,NIN,NOUT,NBLPL,NPPP, NOSTAT,NSL,NLOSS,
2 LSFR.LTPL,LAMVT,LROT, LBLAD,LETEAN,ANGROT, IMESH, ISLINE,

```
            ISTATL,IPLOT, ISUPER,ITSON,IDEBUG,ZOMIN,ZOMBI,ZOMBO,ZOMOUT,
            ROMIN, ROMBI,ROMBO, ROMOUT, ZHIN,ZTIN,ZHOUT, ZTOUT, RHIN, RTIN,RHOUT,
            RTOUT,TITLEI(2n), ZHUB(52), RHUB(53), ZTIP(50), RTIP(50),SFIN(50),
            RADIN(50),TIP(50), PRIP(50),LAMTN (50), पTHIN(50), SPOOT(50),
            RADOUT(50), PRCP(5C),LOSOUT(5^), LAMOTT(50), VTHOUT (5N),
                        BETALE (50), BETATP (50), ZHST (50), ZTST (50), RHST (50), RTST(50).
                        FLFR(50),PERCRD(50),PERLOS(50),2BL (50,50),RBL (50,50).
                            THRL (50,50),TNBL (50,50),TTBL (50,50),TH1BL (50,50),TH2BL (50,50)
COMMON/CALCON/MMM1,MHTP1,CP, EXPON,TGROG, DITCH,RLEH,RLET,RTEH,RTET,
    ZLE(50),RLE(50), ZTF(50),RTE(50), ZLFOM(101),RLEOM(101).
    SLEOM(101), THLEOM(101), ZTEOM(121), RTEOM(101),STEOM(101).
    THTEOM(101).ILE(101), ITE(1C1),7.OM(100,101), ROM(10C,101).
    SOM(100,101). TOM (100,101), RTH(100,101), DTHDS (100,101).
    DTHDT (100,101), PLOSS(100,1C1), CPHI (100,10 1), SPHI(1C0,101)
    COMMON/VARCOM/A (4,10C,101),UOM(1^C,101),K(100,101), RHO(100,101).
        WSUBS (100.101), WSURT (100,101), WSTMBZ(100,101), WSUBR(100,101),
        WSUBM(1C0,101),NTH(100.101),VNH(10C.101),W(100.101).
        ALPHA (100,101), BETA (100,101), WKCR(100,101),CURV(100,101),
        WLSURF(100,101), WTSURF(100,101), CAMP(100,101), SAMP(100,101).
        RHOAV (100,101), DELRHO(100,101), FT(100,101),DFDM(10),101),
        KIOM(100,1^1), ZETOM(100.1^1), DLDO(100,101)
    COMMON/ROTATN/ZHROT (5N), RHROT (50), ZTROT (50), RTROT (50),
        ZLEOMR(101), RLEOMP(101), ZTEOMR(1)1), RTEOMR(101),
        ZBLROT (50,50), RBLROT (50,50), ZOMROT (100,10 1), ROMROT (100, 101)
    DIMENSION SLOPE(50), EM(5C),AAA(50),BBB(50),FILOM(101),UILOM(101)
    REAL LAMDAF,LAMIN
    KK = 2
    IF(ABS(SF-SEIN(1)).GT.TOLER) GO TO 10
    LAMDAF= LAMIN(1)
    IF (I.LT.ILE(J)) DLDO(I,J)=SLOPE(1)
    RETURN
10 TF(SF-SFIN(1)) 20,20,30
20 LAMDAF = LAMIN(1) + (SF-SFIN(1))*SLOPE(1)
    IF (I.LT.ILE(J)) DLDU(I,J)=SLOPE(1)
    RETURN
30 IF(ABS (SF-SFIN (KK)).GT.TOLER) GO TO 4O
    LAMDAF = LAMIN(KK)
    IF (I.LT.ILE(J)) DLDU(I,J)=SLOPE(KK)
    RETURN
40 IF(SF-SFIN(RK)) 70,70,50
50 KK=KK+1
    IF(KK-NIN) 30,30,60
60 LAMDAF= LAMIN(NIN) +(SF-SFIN(NIN))*SLOPE (NIN)
    IF (I.LT.ILE(J)) DLDO(I,J)=SLOPF(NIN)
    RETORN
70 SK= SFIN(KK)-SFIN (KR-1)
    LAMDAF= EM (KK-1)*(SFIN(KK)-SF)**3/6./SK+EM(KK)*(SP-SFIN(KK-1))**3
1/6./SK+(LAMIN (KK)/SK-EM (KK)*SK/6.)*(SF-SFIN(KK-1)) +(LAMIN(RK-1)
2/SK-EM(KK-1)*SK/5.)* (SFIN(KK)-SF)
    IF {I.LT.ILE(J)) DLDU(I,J) = - EM (KK-1)*(SFIN(KK)-SF)**2/2./SK*
1 EM (KK)* (SFIN (KK-1)-SF)**2/2./SK+(LAMIN(KK)-LAMIN(RK-1))/SK-
2 (EM (KK)-EM (KK-1))*SK/6.
    RETURN
    ENTRY LAMNIT(NNN)
    IF (ITER.EQ.0) GO TO 100
    IF (LSFR.EQ.O.AND.LAMVT.EQ.O) GO TO 100
    II = MBI
    JJ = 1
```

```
            CAN = COS(ANGROT)
            SAN = SIN(ANGROT)
            ZHINRO = ZHIN*CAN+RHIN*SAN
            RHINRO= RHIN*CAN-ZHIN*SAN
            ZTINRO= ZTIN*CAN+RTIN*SAN
            RTINRO = RTIN*CAN-ZTIN*SAN
            DO &O KK=1,MH2P1
            DIST = FLOAT(KK-1)/FLOAT(MHT)
            RILOM(KK) = RHIN+DIST*(RTTN-RHIN)
            ZIPOT = ZHINRO+DIST* (ZTINRO-ZHINRO)
            RIROT = RHINRO+DIST* (RTINRO-FHINRO)
        80 CALL LININT (ZOMROT,ROMROT,TOM,MM,MHTP1,10@,1N1,ZIROT,RIROT,
            1UILOM(KK),IT,JJ)
            IF (LSFR.EQ.O) CALL SPLINT(UILOM,RILCM,MHTP1,SFIN,NIN,PADIN,AAA,
            1BBB)
                    IF (LSFR.EQ.1) CALL SPLINT(RILOM,UILOM,MHTP1,RADIN,NIN,SFTN,AAA,
            1BBB)
                    IF (LSFP.EQ.1.OR.LAMVT.EQ.C) GO TO 10Q
                    DO 9C KK=1,NIN
    90 LAMIN(KK)= RADIN(KK)*VTHIN(KK)
100 CALL SPLINE(SFTN,LAMIN,NIN,SIOPF,EM)
            TOLER = ABS (SFIN(NIN)-SFIN(1))/FLOAT(NIN)*1.E-6
            RETURN
            END
```

 FUNCTION RVTHTA(SF,I,J)
 C
C--Rvthta calculates f * v-theta as a functton of stream finction
C--DONNSTREAM OF THE BIADE
C
COMMON NREAD, NWRIT, ITER, IEND, NGKT1, NWRT 2 , NWKT 3 , NWRT 4 , NWRT5, NGRT6
COMMON/INPITT/GAM,AR, MSFL, OMFGA, REDFAC, VFLTOL, FNEH, DNEW, MBI,MBO,
MM, MHT, NBL, NHUB, NTIP, NIN, NOUT, NBLPL, NPPP, NOSTAT, NSL, NLOSS,
LSFR, LTPL, LAMVT,LROT, LBLAD,LFTEAN, ANGROT, IMESH, ISLINE,
ISTATL, I FLOT, ISUPER, ITSON, IDEBUG, ZOMIN, ZCMBI, ZOMRO, ZOMOIIT,
ROMIN, ROMBI, ROMBO, ROMOUT, ZHIN, ZTIN, ZHOUT, ZTOUT, RHTN, RTIN, PHOUT,
RTOUT, TITLEI (20), ZHUB (50), RHUB (50), $\operatorname{ZTIP}(50), \operatorname{RTIP}(50), \operatorname{SFIN}(50)$,
RADIN (50), TIP (50), PRTP (50), LAMIN (5C), VTHIN (50), SFOUT (50).
RADOUT (50), PROP (50), LOSOUT (50), LAMOUT (50), VTHOUT (5?).
BETALE (50), BETATE (50), ZHST (50), ZTST (50), KHST (50), RTST (50),
$\operatorname{PLFR}(50), \operatorname{PERCRD}(50), \operatorname{PERLOS}(50), \mathrm{ZBL}(50,50), \operatorname{RBL}(50.50)$.
$\operatorname{THBL}(50,50), \operatorname{TNBL}(50,50), \operatorname{TTEL}(50,50), \operatorname{TH1BL}(50,50), \operatorname{TH} 2 \mathrm{BL}(50,50)$
COMMON/CALCON/MMM1, MHTP1, CP, EXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
$\operatorname{ZLE}(50), \operatorname{RLE}(50), \operatorname{ZTE}(50), \operatorname{RTE}(50), \operatorname{ZLEOM}(101), \operatorname{RLEOM}(1 \cap 1)$.
SLFOM (121), THLEOM (101). $\operatorname{ZTEOM}(101), \operatorname{ATEOM}(101), \operatorname{STEOM}(101)$.
THTEOM (101), ILE(101), ITE (101), $20 \mathrm{M}(100,101)$, $\operatorname{ROM}(100,101)$,
$\operatorname{SOM}(100,101), \operatorname{TOM}(1) 0,101), \operatorname{BTH}(100,101), \operatorname{DTHDS}(100,101)$,
DTHDT (100, 101), PLOSS (100,101), CPHI (100,101), SPHI (100, 101)
COMMON/VARCOM/A $(4,100,1 C 1), U O M(100,101), K(100,101)$, RHO $(100,101)$,
$\operatorname{WSUBS}(100,101), \operatorname{WSUBT}(100,101), \operatorname{WSUBZ}(100,101), \operatorname{WSUBR}(100,101)$,
WSUBM $(100,101), \operatorname{HTH}(100,121), V T H(100,101), W(100,101)$.
ALPHA $(100,101), \operatorname{BETA}(100,101)$, WWCR $(100,101), \operatorname{CURV}(100,101)$,
$\operatorname{WLSURF}(100,101), \operatorname{WTSURF}(100,191), \operatorname{CAMP}(100,101), \operatorname{SAMP}(100,101)$,
$\operatorname{RHOAV}(100,101), \operatorname{DELRHO}(100,101), \operatorname{FT}(100,101), \operatorname{DFDM}(100,101)$,
$\operatorname{XIOM}(100,101), \operatorname{ZETOM}(100,101), \operatorname{DLDU(100,101)}$
COMMON/ROTATN/ZHROT (50), RHROT (50). ZTROT (50). RTROT (50) ,

```
    1 2LEOMR(101),RLEOMR(101), 2TFOMR(1)1), RTEOMR(101),
    2 ZBLROT (50,50), RBLROT (50,5n), ZOMROT(100,1[1),ROMROT (100, 101)
        DIMENSION SLOPE(5?),EM(50),AAA(50),BRE(50),ROLOM(171),UOLOM(1r1)
        REAL LAMOUT
        KK = 2
        IF(ABS(SF-SFOIJT(1)).GT.TOLER) GO TO 1%
        RVTHTA = LAMOUT(1)
        IF (I.GT.ITE(J)) DLDY(I,J)=SLOPE(1)
        RETURN
    10 IF(SF-SFOUT(1)) 2C,2n,30
    20 RVTHTA = LAMOUT(1)+(SF-SFOUT(1)) *SLOPE(1)
        IF (I.GT.ITE(J)) DLDIJ(I,J)=SLOPE(1)
        RETURN
    30 IF(ABS(SF-SFOUT(KK)).GT.TOLER) GO TO 40
    RVTHTA = LAMOUT(KR)
    IF (I.GT.ITE(J)) DLDT(I,J)=SLOPE(KK)
    RETURN
4C IF(SF-SFOUT (KK)) 70,70,50
50 KK=KK+1
    IF(KK-NOUT) 30,30.6C
6C RVTHTA = LAMOUT(NOHT) + (SF-SFOUT (NOUT)) *SLOPE (NOHT)
    IF (I.GT.ITE(J)) DLDU(I,J)=SLOPF (NOUT)
    RETURN
70 SK = SFOUT (KK)-SFOIIT (KK-1)
    RVTHTA = EM (KK-1)* (SFOUT (KK)-SF)**3/6./SK+EM(KK)*(SF-SFOUT (KR-1))
    1 **3/6./SK+(LAMOUT (KK)/SK-EM (KK)*SK/G.)*(SF-SFOIIT (KK-1)) +
    2 (LAMOUT(KK-1)/SK-EM (KK-1)*SK/6.)*(SFOIJT(KK)-SF)
    IF (I.GT.ITE(J)) DIDU(I,J) = -FM (KK-1)* (SFOUT (KK) -SF)**2/2./SK +
    1EM(KK)* (SFOUT (KK-1)-SF)**2/2./5K+(LAMOUT (KK)-LAMOUT (KK-1))
    2 /SK-(EM(KK)-EM(KK-1))*SK/6.
        RETURN
        ENTRY RVTNIT(NNN)
    IF(ITER.EQ.i) GO TO 100
    IF (LSFR.EQ.O.AND.LAMVT.EQ.C) GO TO 100
    II = MBO
    JJ = 1
    CAN = COS(ANGROT)
    SAN = SIN (ANGROT)
    ZHOPO = ZHOUT*CAN+RHOUT*SAN
    RHORO = RHOUT*CAN-ZHOUT*SAN
    ZTORO = ZTOUT*CAN+RTOUT*SAN
    RTORO = RTOUT*CAN-ZTOUT*SAN
    DO }80\textrm{KK}=1\mathrm{ , MHTP1
    DIST = FLOAT (KK-1)/FLOAT (MHT)
    ROLOM(KK) = RHOUT+DIST* (RTOUT-RHOUT)
    ZOROT = ZHORO+DIST*(ZTORC-ZHORO)
    ROROT = PHORO +DIST* (RTORO-RHORO)
80 CALL LININT(ZOMROT, ROMROT,UOM,MM,MHTP1, 100, '01, 2OROT,ROROT,
    1UOL.OM(KK).II,JJ)
    IF (LSFR.EQ.O) CALL SPLINT(UOLOM, ROLOM,MHTP1,SFOUT,NOUT,RADOOT,
    1AAA,BBB)
    IF (LSFR.EQ.1) CALL SPLINT(ROLOM, DOLOM,MHTP1,RADOUT,NOUT,SFOOT,
    1AAA,BBB)
        IP (LSFR.EQ.1.OR.LAMVT.EQ.O) GO TO 1GO
        DO 9C KK=1, NOOT
90 LAMOUT (KK) = RADOUT(KK)*VTHOUT (KK)
1CO CALL SPLINE (SFOUT, LAMOUT,NOUT,SLOPE,EM)
    TOLER = ABS (SFOUT (NOUT) -SFOUT (1))/FLOAT (NOUT)*1.E-5
    RFTURN
    END
```

```
    FINCTION TIPF(SF)
C
C--TIPF CALCULATES UPSTRFAM ABSOLUTE TOTAL TPMPERATURE
C--AS A FIINCTION OF STREAM FINCTION
C
    COMMON/INPUTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL,FNEG,DNFM,MRT,MBO,
    MM, MHT,NPL,NHUB,NTTP,NIN,NOUT,NBLPL,NPPP,NOSTAT, NSL,NLOSS,
    LSFP, LTPL,LAMVT,LROT,LBLAD,LETEAN,ANGROT, TMESH,ISLINF.,
    ISTATI,IFLOT,ISUPFR,ITSON,IDERUG,ZOMTN,ZOMBI, ZOMRO, ZOMOUT,
    ROMIN,ROMBI,ROMBO, ROMOUT,ZHIN, ZTIN,ZHOUT,ZTOUT,RHTN,RTIN,RHOUT,
    RTUUT, IITLEI(20), ZHJB(5C),RHTB(5^),7TIP(50),RTIP(50),SFIN(50),
    RADIN(50).TIP(5^),FRIP(50),LAMIN(5C),VTHIN(50),SFOUT(5?).
    RADOUT (50), PROP (50), LOSOUT (50), LAMOOT(50), VTHOUT (50),
    BETALE (50), BETATE (50), ZHST (50), ZTST (50), RHST(50), RTST(50),
    FLFR(5)),PFRCRD(5`),PERLOS(50),ZBL(50,50),RBI. (5),50),
```



```
    COMMON/CALCCN/MMM1,MHTP1,CP, EXPON,TGROG,PITCH,RLEH,RLET,RTEH,RTET,
        ZLE(50),RLE(50), ZTE(50),RTE(50), ZLEOM(101), RLEOM(101),
        SLEOM(1`1), THLEOM(101), ZTEOM(101), RTECM(101),STEOM(101),
        THTEOM(101), ILE(101), ITE(1C1), ZOM(100,1C1),ROM (100,101).,
        SOM(1C0,101), TOM(100,101), BTH(100,101), DTHDS (10n,101).
    DOHDT(10C,1\cap1),PLOSS(1CC,101),CPHI(100,1C1),SPHI(10^,1^1)
    DIMFNSION SLOPE(50), EM(50)
    K = 2
    IF(ABS(SF-SFIN(1)).GT.TOLER) GO TO 10
    TIPF= TIP(1)
    RETIRN
    10 TF(SF-SFIN(1)) 20,20,30
    20 TIPP = TIP(1) +(SF-SFIN(1))*SLOPF(1)
    RETTIRN
    30 IF(ABS(SF-SFIN(K)).GT.TOLER) GO TO 40
    TIPF= TIP(K)
    RETURN
40 IF(SF-SFIN(K)) 70.7C.50
50 K=K+1
    IF(K-NIN) 30,3C.60
60 TIPF= TIP(NIN) + (SF-SFIN (NIN))*SLOPE(NIN)
    RETURN
70 SK = SFIN (K)-SFIN (K-1)
TIPF= EM (K-1)* (SFIN(K)-SF)**3/6./SK+EM(K)*(SF-SFIN(K-1))**3/
1 6./SK+(TIP (K)/SK-EM(K)*SK/6.)*(SF-SFIN(K-1))+(TIP(K-1))
2 SK-EM (K-1)*SK/6.)*(SFIN(K)-SF)
FETURN
ENTRY TIPNIT(NNN)
CALL SPLINE(SFIN,TIP,NIN,SLOPE,EM)
TOLER=ABS(SFIN(NIN)-SFIN(1))/FLOAT(NIN)*1.E-6
RETURN
END
FUNCTION RHOIPF(SP)
C
C--RHOIPF CALCULATES UPSTREAM ABSOLUTE TOTAL DENSITY
C--AS A FUNCTION OF STREAM FUNCTION
C
COMMON/INPJTT/GAM,AR,MSFL,OMEGA, REDFAC,VELTOL, FNEW, DNEW,MBI,MBO,
```

```
    MM, MHT,NEL,NHUB,NTIP,NIN,NOUT,NRLPL,NPPP,NOSTAT,NSL,NLOSS,
    LSFP, LTPL, LAMVT, LROT, LBLAD,LETEAN,ANGROT, TMESY, ISLTNE,
        ISTATL, IFLOT, ISTJPFR, ITSON, IDEBUG, 7,OMTN, ZCMRI, ZOMLO, 7OMOUT,
        ROMIN,ROMBI,FCMBO, ROMOUT, ZHTN,ZTIN,THOHT, ZTOUT, RHIN,STTN, FHOПT,
        RTOUT,TITI.FI(20), ZHU[(50), PHUR(5N), ZTIP(50), RTTP(5?),SFTN(5%),
        RADIN(5)),TIP(50), PRIP(5C),LAMIN(50),VTHIN(5r), SFOITT(50),
        RADOUT (50), PROP (50), LOSOUT (5, ), LAMOUT (50), VTHOUT (5^).
        BETALE(5C), BETATE(50), ZHST(50), 2TST(50), PHST(5^), RTST(5^),
        FLFR(50), PERCRD(5`), PERLOS (5C), ZEL(5A,5N), RRL(5^,5%),
        THBL (50,50), TNEL(50,50), TTEL(5n,5n), TH1BL(50,5r), TH2BL(50,5r)
        COMMON/CALCON/MMM1,MHTP1,CP,EXPON,TGROG, PITCH, RLEH,FLET, PTEH,RTET,
        ZLE(5^),RLE(5C),ZTE(5C),RTE(57), ZLEOM(101),RI,EOM(1~1),
        SLEOM(1^1), THLEOM(101),7,TFOM(1^1), RTEOM(1\cap1),STEOM(1^1),
        THTFOM(101), IIE(101), ITE (1C1), ZOM(100,101), FOM(1CO,101),
        SOM(100,101), TOM(120,101), BTH(100,1r1), DTHDS(1CN,1^1),
        DTHDT(1CO,101), PLCSS(10r,1^1), CPHI(10n,101), SPHI(100,101)
            DIMFNSION SLOPE(5n), EM(50), BHOIP(50)
            K=2
            TE(ABS(SF-SFIN(1)).GT.TOLER) GO TO 10
            RHOIPF = RHOIP(1)
            RETITRN
    1r. IF(SF-SFIN(1)) 20,20,3)
    20 FHOIPF=RHOTP(1)+(SF-SFIN(1))*SLOPE(1)
    RETURN
    3C IF(ABS(SF-SFIN(K)),GT,TOLER) GO TO 4?
    RHOTPF = RHOIP(K)
    RETURN
4C IF(SF-SFIN(K)) 70.70.50
5% K=K+1
    IF(K-NIN) 30.30.6C
    60.FHOTPF=RHOIP(NTN)+(SF-SFIN(NIN))*SLOPE(NIN)
    RET|RN
7C SK=SFIN(K)-SFIN(K-1)
    RHOIPF=EM(K-1)*(SFIN(K)-SE)**3/6./SK+EM(K)*(SF-SFIN(K-1))**7)
    1 6./SK+(RHOIP (K)/SK-EM(K)*SK/6.)*(SF-SFIN(K-1)) +(RHOTP(K-1)/
    2 SK-EM (K-1)*SK/6.)* (SFIN (K)-SF)
        RETURN
        ENTRY RHINIT(NNN)
    DO 4O J=1,NIN
9C FHOIP(J) = PRIE(J)/AR/TIE(J)
    CALL SPLINE(SFIN,RHOIN,NTN,SLOPD,EM)
    TOLTR=ABS(SFIN(NIN)-SFIN(1))/FLOAT(NIN)*1.E-6
    RETURN
    END
    SURTOUTINE CONTIN(XEST,YCALC,TND,JT,YGIV,XDEL)
C
C--CONTIN CALCULATES AN ESTIMATE OF THE RFLATIVE FLOW VFLOCITY
C--FOR IJSE TN THE VELOCITY GRADIENT EQUATION
C
    DIMENSION X(3),Y(?)
    NCALL = NCALL+1
    IF (IND.NE.1.AND.NCALL.GT.1OC) GO TO 15O
    GO TO (1C,30,4C,50,6%,110,150), IND
C--FIRST CALL
```

```
    10 NCALL = 9
        XORIG = XEST
        IF (YCALC.GT.YGIV.AND.JZ.EQ.1) GOTO 20
        IND = 2
        Y(1) = YCALC
        X(1) = 0.
        XEST = XEST+XDEL
        RETURN
    2C IND = 3
        Y(3) = YCALC
        X(3) = 0.
        XEST = XEST-XDEL
        RETORN
C--SECOND CALL
    3C IND = 4
        Y(2) = YCALC
        X(2) = XEST-XORIG
        XEST = XEST+XDEL
        RETURN
    40 IND = 5
        Y(2) = YCALC
        X(2) = XEST-XORIG
        XEST = XEST-XDEL
        RETURN
C--THIRD OR LATER CALL - FIND SUBSONIC OR SUPERSONIC SOLUTION
    5C Y(3) = YCALC
        X(3) = XEST-XORIG
        GO TO 70
    60 Y(1) = YCALC
    X(1) = XEST-XORIG
    70 IF (YGIV.LT.AMIN1(Y(1),Y(2),Y(3))) GOTO (120.130).JZ
    80 IND = 6
        CALL PABC(X,Y,APA,BPB,CPC)
        DISCR = BPB**2-4.*APA*(CPC-YGIV)
        IF (DISCR.LT.O.) GO TO 140
        IF (ABS (400.*APA*(CPC-YGIV)).LE.BPB**2) GO TO 90
        XEST = -BPB-SIGN(SQRT(DISCR),AP)
        IF (JZ.EQ.1.AND.APA.GT.O..AND.Y(3).GT.Y(1)) XEST = - BPB+
        1SQRT(DISCR)
            IF (JZ.EQ.2.AND.APA.LT.O.) XEST = -BPB-SQRT(DISCR)
            XEST = XEST/2./APA
            GO TO 100
        90 IF (JZ.EQ.2.AND.BPB.GT.0.) GO TO 130
            ACB2 = APA/BPB*(CPC-YGIV)/BPB
            IF (ABS (ACB2).LE.1.E-8) ACB2=0.
            XEST = -(CPC-YGIV)/BPB* (1.*ACB2+2.*ACB2**2)
    100 IF (XEST.GT.X(3)) GO TO 130
        IF (XEST.LT.X(1)) GO TO 120
        XEST = XEST+XORIG
        RETTJRN
C--FOURTH OR LATER CALL - NOT CHOKED
    110 IF(XEST-XORIG.GT,X(3)) GO TO 13n
        IF(XEST-XORIG.LT.X(1)) GO TO 120
        Y(2) = YCALC
        X(2) = XEST-XORIG
        GO TO 70
C--THIRD OR LATER CALL - SOLUTION EXISTS,
C--BUT RIGHT OR LEFT SHIFT REQUIRED
    12C IND = 5
```

```
C--LEPT SHIFT
        XEST = X(1)-XDEL+XORIG
        XOSHFT = XEST-XORIG
        XORIG = XEST
        Y(3) = Y(2)
        X(3) = X(2)-XOSHFT
        Y(2) = Y(1)
        X(2) = X(1)-XOSHFT
        RETURN
    13C IND = 4
C--RIGHT SHIFT
        XEST = X(3)+XDEL+YORIG
        XOSHFT = XEST-XORIG
        XORIG = XEST
        Y(1) = Y(2)
        X(1) = X(2)-XOSHFT
        Y(2) = Y(3)
        X(2) = X(3)-XOSHFT
        RETURN
C--THIRD OR LATER CALL - APPEARS TO BE CHOKED
    140 XEST = -BPB/2./APA
        IND = 7
        IP (XEST.LT.X(1)) GO TO 120
        IF(XEST.GT.X(3)) GO TO 130
        XEST = XEST+XORIG
        RETURN
C--FOURTH OR LATER CALL - PROBABLY CHOKED
    150 IF (YCALC.GE.YGIV) GO TO 110
        IND = 10
        RETURN
C--NO SOLOTION FOUND IN 10C ITERATIONS
    160 IND = 11
        RETURN
        END
    SUBROUTINE PABC(X,Y,A,B,C)
C--PABC CALCOLATES COEPFICIENTS A,B,C OF THE PARABOLA
C--Y=A*X**2+B*X+C, PASSING THROUGH THE GIVEN X,Y POINTS
C
    DIMENSION X(3),Y(3)
    C1 = X(3)-X(1)
    C2 = (Y(2)-Y(1))/(X(2)-X(1))
    A=(C1*C2-Y(3)+Y(1))/C1/(X(2)-X(3))
    B = C2-(X(1)+X(2))*A
    C=Y(1)-X(1)*B-X(1)**2*A
    RETURN
    END
```

 SUBROUTINE INRSCT (XCURV1, YCURV1,N1, XCURV2,YCURV2, N2,XCROSS, YCROSS)
 C--INRSCT CALCOLATES THE COORDINATES (XCROSS, YCROSS) OF THE POINT
188

```
C-OF INTERSECTION OF THO SPLINE CURVES, YCURVI=F(XCURV1) AND
C--XCURV2=G(YCURV2), LYING ON A PLANE
C
    COMMON NREAD,NWRIT
    DIMENSION XCORV1(N1),YCURV1(N1), XCJRV2(N2),YCURV2(N2)
    NCOUNT = 0
    TOLER = (ABS(XCURV1(N1)-XCURV1(1))+ARS(YCURV2(N2)-YCOPV2(1)))/1.E5
    XTEMP = XCDRV1(1)
    YTEMP = YCURV1(1)
    XCROSS = (XCORV1(1)+ XCURV1(N1))/2.
C--COMPUTE INTERSECTION POINT AND SLOPE ON CURVE 1
    10 X1 = XCROSS
    CALL SPLINT(XCURV1,YCURV1,N1,X1,1,Y1,S1,TEMP)
C--COMPUTE INTERSECTION POINT AND SLOPE ON CURVE 2
    Y2 = Y1
    CALL SPLINT(YCURV2,XCURV2,N2,Y2,1,X2,S2,TEMP)
C--COMPIJTE COORDINATES OF POINT WHERE TWO SLOPES INTERSFCT
    S152= S1*S2
    XCROSS = x2+S1S2*(X2-X1)/(1.-S1S2)
    YCROSS = Y1+S1 * (X2-X1)/(1.-S1S2)
C--COMPUTE DISTANCE AWAY FROM PREVIOUS SLOPE INTERSECTION POTNT
            DIST = SQRT((YCROSS-YTEMP)**2+(XCROSS-XTEMP)**2)
            IF (DIST.LT.TOLER) RETURN
            NCOUNT = NCOINT+1
            IF (NCOUNT.GT.20) GO TO 20
            XTEMP = XCROSS
            YTEMP = YCROSS
            GO TO 10
        20 WRITE(NWRIT,10CO) TOLER,DIST
            RETURN
100C FORMAT (6X,46HINRSCT HAS FAILED TO CONVERGE IN 20 ITERATIONS/
            110X,11HTOLERANCE =,G14.6/10x,47HDISTANCF BETHEFN I.AST TWO INTERSEC
            2TION POINTS =,G14.6)
            END
    SUBROUTINE LININT(X,Y,Z,NX,NY,NDIMX,NDIMY,XO,YC,ZO,I,J)
C
C--LININT LOCATES THE POINT (XO,YO) IN A 2-D MESH WITH
C--COORDINATES STORED IN THE X AND Y ARHAYS. THEN THE VALDE OF Z? MT
C--(XO,YO) IS INTERPOLATED FROM THE Z ARRAY VALJES CORRESPONDING
C--TO THE X AND Y ARRAYS
C
    COMMON NREAD,NQRIT
    DIMENSION X(NDIMX,NDIMY),Y(NDIMX,NDIMY),Z(NDIMX,NDIMY)
    DIMENSION EXTRAP(2)
    INTEGER ABOVE,RIGHT
C--FIND I,J SUCH THAT (XO,YO) IS IN COLOMN I FROM THE LEFT AND IN RON J
C--FROM THE BOTTOM
    IF{NX.LT.2.OR.NY.LT.2) STOP
    IP(I.LE.O) I = 1
    IF(I.GE.NX) I = NX-1
    IF(J.LE.O) J = 1
    IP(J.GE.NY) J = NY-1
    ICOUNT = 0
    ICNTMX = 2*(NX+NY)
```

```
    10 ABOVE=-1
        RIGHT = -1
    IF(YC.GE.Y(I,J) +(X\cap-X(I,J))/(X(I+1,J)-X(I,J))*(Y(T+1,J)-Y(I,J)))
    1 ABOVE = ABOVE+1
    IF(YC.GT.Y(I,J+1)+(X^-X(T,J+1))/(X(I+1,J+1)-X(I,J+1))*
    1(Y(I+1,J+1)-Y(I,J+1))) ABOVF=ABOVE+1
    IF(XO.GE,X(I,J) +(YC-Y(I,J))/(Y(I,J+1)-Y(I,J))*(X(T,J+1)-X(I,J)))
    1 RIGHT = RIGHT+1
    IF(X0.GT.X(I+1,J)+(Y\cap-Y(I+1,J))/(Y(I+1,J+1)-Y(I+1,J))*
    1(X(I+1,J+1)-X(I+1,J))) RIGHT = RIGHT+1
    IN = I +RIGHT
    JN = J+ABOVE
    IF(IN.LT.1.OR.IN.GE.NX) RIGHT = O
    IF(JN.LT.1.OR.JN.GE.NY) ABOVE = ?
    IF(ABOVE**2 +RIGHT**2.EQ.D) GO TO 2)
    I = I +RIGHT
    J = J+ABOVE
    ICOUNT = ICCUNT+1
    IF(ICOUNT.GT. ICNTMX) GO TO 11!
    go TO 10
    2C IJEX = 1
C-- SET EXTRAP TO INDICATE EXTGAPOLATION
    EXTRAP(1) = %.
    EXTRAP(2) = 0.
    IF(IN.IT.1) EXTRAP(2) = -1.
    IF(IN.GE.NX) EXTRAP(2)=1.
    IP(JN.LT.1) EXTRAP(1) = -1.
    IF(JN.GE.NY) EXTRAP(1)=1.
c--CALCilate constants to calculate fy
    Y13 = Y(I,J)-Y(I,J+1)
    X{3=X(I,J)-X(I,J+1)
    Y42 = Y(I+1,J + 1)-Y(I+1,J)
    X42 = X(I+1,J+1)-X(I+1,J)
    Y01 = Y0-Y (I,J)
    X01 = X0-X (I,J)
    Y02 = YO-Y(I+1,J)
    X02 = X0-X (I+1,J)
    Y21=Y(I+1,J)-Y(I,J)
    X21=X(I+1,J)-X(I,J)
C--CALCULATE COPFFICIENTS OF OUADRATIC EQDATION FOR FRACTIONAL DISTANCE
C--IN QUADRILATERAL
    30 QA = Y13*X42-X13*Y42
    QB}=\textrm{X13*YO2-Y13*X02+Y01*X42-X01*Y42
    QC=YO1*X21-X01*Y21
    DISCR = QB**2-4.*QA*QC
    IF(DISCR.LT.O.) GO TO }11
C--CHECK TO SEE IF QUADRATIC EQUATION IS CLOSE TO LINEAR
    IF(ABS(4.*QA*QC).LE.QB**2*.01) GO TO 80
    FA = -QB/2./QA
    FB=SQRT(DISCR)/2./QA
    F1 = FA+FB
    F2 = FA-FB
C--CHECK TO DETERMINE WHETHER F1 OR P2 IS THE PROPER SOLUTION
    CASE = -1.
    IF(EXTRAP(IJEX)) 40,50.60
C--EXTRAPOLATION BELON OR TO LEFT (FF LESS THAN 0.)
    40 IP(P1.LT..01) CASE = CASE+1.
        IF(F2.IT..01) CASE = CASE+2.
        IP(CASE.LT.1.5) GO TO 70
```

```
    CASE = CASE-1.
    IF(F2.LT.F1) CASE = CASE-1.
    GO TO 70
C--NO EXTRAPOLATICN
    50 IF(ABS(F1-.5).LT..51) CASE = CASE+1.
    IF(ABS(F2-.5).LT..51) CASE = CASE+2.
    go TO 70
C--EXTRAPOLATION ABOVE OR TO RIGHT (FF GREATER THAN 1.)
    60 IF(F1.GT..99) CASE = CASE+1.
    IF(F2.GT..99) CASE = CASE+2.
    IF(CASE.LT.1.5) GO TO 72
    CASE = CASE-१.
    IF(E1.LT.F2) CASE = CASE-1.
    70 IF(ABS(CASE-.5).GT.. 5) GO TO 110
    FF = (1.-CASE)*F1+CASE*F2
    GO ro 90
C--IF QUADRATIC EQUATION IS NEAR LINEAR, USE BINOMIAL EXPANSION FOR FF
    8r. ACB2 = QA/QB*QC/QB
    IF(ABS (ACB2).LT.1.E-8) ACB2 = 0.
    FF=-QC/QB*(1.+ACB2+2,*ACB2**2)
    90 IF(IJEX.EQ.2) GO TO 100
    IJEX = IJEX+1
    FY = FF
C--INTERCHANGE CORNER POINTS TO GET FX
    Y13 = Y (I,J)-Y (I+1,J)
    X13=X(I,J)-X(I+1,J)
    Y42 = Y(I+1,J +1)-Y(I,J+1)
    X42 = X(I+1,J+1)-X(I,J+1)
    Y?2 = Y0-Y(I,J+1)
    XO2 = X O-X (I,J+1)
    Y21=Y(I,J+1)-Y(I,J)
    X21 = X (I,J+1)-X (I,J)
    go TO 30
C--CALCIJLATE INTERPOLATED VALUE
    10^ FX = FF
        ZO=Z (I,J)*(1.-FX)*(1,-FY) +2 (I+1,J)*FX*(1.-FY)+2(I,J+1)*(1.-FX)
            1 *FY+2(I+1,J +1)*FX*FY
            RETURN
C-- PRINT ERROR MESSAGE IF THERE IS A PROBLEM IN OBTAINING A SOLUTION
    110 20 = 0.
            WRITE(NWRIT, 10CO) I,J
            RETURN
1000 FORMAT(38H1LININT CANNOT FIND INTERPOLATED VALUE/4H I =,I6,4H J =,
            END
```

 SUBROUTINE ROTATE (ANGROT, X, Y, NX, NY, NDIMX, NDIMY, XROT, YROT)
 DIMENSION X (NDIMX,NDIMY), Y(NDIMX,NDIMY), XROT (NDIMX,NDIMY),
 1 YROT (NDIMX,NDIMY)
 CAN \(=\operatorname{COS}(\) ANGROT)
 SAN \(=\) SIN (ANGROT)
 DO \(10 \mathrm{~J}=1, \mathrm{NY}\)
 DO \(10 \mathrm{I}=1, \mathrm{NX}\)
 TEMP \(=X(I, J) * C A N+Y(I, J) * S A N\)
 YROT \((I, J)=Y(I, J) * C A N-X(I, J) * S A N\)
 \(10 \operatorname{XROT}(I, J)=T E M P\)
 RETJRN
END

```
    SUBROUTINE SPLINE (X,Y,N,SLOPE,EM)
C
C--SPLINE CALCULATES FIRST AND SECOND DERIVATIVES AT SPLINE POTNTS
C--END CONDITION - SECOND DERIVATIVES AT END POINTS ARE
C--SDR1 AND SDRN TIMES SECOND DERIVATIVES AT ADJACENT POINTS
C
    COMMON NREAD,NGRIT
    DIMENSION X(N),Y(N),SLOPE(N),EM(N)
            DIMENSION G(101),SB(101)
            IERR = 0
            SDR1 = .5
            SDRN = . 5
            C = X(2)-X(1)
            IF (C.EQ.O.) GO TO 50
            SB(1) = -SDR1
            G(1) = 0.
            NO = N-1
            IF (NO.LE.O) GO TO 6C
            IF (NO.EQ.1) GO TO 20
            DO 10 I=2,NO
            A = C
            C=x(I+1)-X(I)
            IF (A*C.EQ.O.) GO TO 50
            IF (A*C.LT.0.) IERR = 1
            H=2.*(A+C)-A*SB(I-1)
            SB(I) = C/W
            F=(Y(I+1)-Y(I))/C-(Y(I)-Y(I-1))/A
    10G(I)=(6.*F-A*G(I-1))/W
    20 EM(N) = SDRN*G(N-1)/(1.+SDRN*SB(N-1))
            DO 30 I=2,N
            K=N+1-I
        30 EM(K) = G(K)-SB(K)*EM(K+1)
            SLOPE(1) = (X(1)-X(2))/6.*(2.*EM(1) +EM(2))+(Y(2)-Y(1))/(X(2)-X(1))
            DO 40 I=2,N
    40 SLOPE(I) = (X(I)-X(I-1))/6.*(2.*EM(I)+EM(I-1))+(Y(I)-Y(I-1))/
    1(X(I) - X (I-1))
            IF (IERR.EQ.0) RETORN
    50 GRITE(NHRIT,1000)
    URITE(NGRIT,1020) N,(X(I),Y(I),I=1,N)
            IF (IERR.EQ.O) STOP
            WRITE (NHRIT,1030)
            RETURN
        60 MRITE (NGRIT, 1010)
            GRITE(NMRIT, 1020) N, (X(I),Y(I),I=1,N)
            STOR
1000 FORMAT (1H1,10X,44HSPLINE ERROR -- ONE OF THREE POSSIBLE CAUSES/
    117x,51H1. ADJACENT X POINTS ARE DUPLICATES OF EACH OTHER./
    217X,38H2. SOME X POINTS ARE OUT OP SEQUENCE./
    317X,32H3. SOME X POINTS ARE UNDEFINED.)
1010 FORMAT (1H1,10X,62HSPLINE ERROR -- NUMBER OF SPLINE POINTS GIVEN I
    1S LESS THAN THO)
1020 FORMAT (//17X, 18HNTIMBER OP POINTS =.I4//17X,8HX ARRAY,6X,8HY ARR
```

```
    1AY/(17X,2G13.5))
    1030 FORMAT (1H1)
        END
```

```
    SUBROOTINE SPLINT (X,Y,N,Z,MAX,YINT,DYDX,D2YDX2)
    C--SPLINT CALCULATES INTRRPOLATED POINTS AND DERIVATIVES
    C--FOR A SPLINE CURVE
    C--END CONDITION - SECOND DERIVATIVES AT END POINTS ARE
    C--SDR! AND SDRN TIMES SECOND DERIVATIVES AT ADJACENT POINTS
            COMMON NREAD,NGRIT
            DIMENSION X (N),Y(N),Z (MAX),YINT(MAX),DYDX(MAX),D2YDX2(MAX)
            DIMENSION G(101),SB(101).EM (101)
            IERR = 0
            SDRY = . 5
            SDRN = . 5
            TOLER= ABS(X(N)-X(1))/FLOAT(N)*1.E-5
            C = X(2)-X(1)
            IF (C.EQ.O.) GO TO 130
            SB(1) = -SDR1
            G(1) = 0.
            NO = N-1
            IF (NO.LE.O) GO TO 140
            IF (NO.EQ.1) GO TO 20
            DO 10 I=2,NO
            A = C
            C=X(I+ I)-X(I)
            IF (A*C.EQ.O.) GO TO 130
            IF (A*C.LT.0.) IERR=1
            H=2.*(A+C)-A*SB(I-1)
            SB(I) = C/H
            F=(Y(I+1)-Y(I))/C-(Y(I)-Y(I-1))/A
    10G(I) = (6.*F-A*G(I-1))/W
    20 EM(N)=SDRN*G(N-1)/(1.+SDRN*SB(N-1))
            DO 30 I=2,N
            K=N+1-I
    30 EM(K) = G(K)-SB(K)*EM(K+1)
            IF (MAX.LE.O) RETURN
    ENTRY SPLENT (Z,MAX,YINT,DYDX,D2YDX2)
    DO 120 I=1,MAX
    K=2
    IF (ABS(Z(I)-X(1)).LT.TOLER) GO TO 40
    IF (Z(I).GT.2.0*X(1)-X(2)) GO TO 50
    GO TO 80
    40 YINT(I) = I(1)
    SK = X (K)-X (K-1)
    GO TO 110
    50 IF (ABS(Z(I)-X(R)).LT.TOLER) GO TO 60
    IF (Z(I).GT.X(K)) GO TO 70
    GO TO 100
60 YINT(I) = Y(K)
    SK = X (K) -X (K-1)
    GO TO 110
```

```
70 IF (K.GE.N) GO TO 90
    \(K=K+1\)
    GO TO 50
8 C \(52=x(2)-X(1)\)
    \(Y 0=E M(1) * S 2 * * 2+2 . * Y(1)-Y(2)\)
    \(\operatorname{DYDX}(I)=(Y(2)-Y(1)) / S 2-7 . * E M(1) / 6 . * S 2\)
    \(\mathrm{YIN}{ }^{-\pi}(\mathrm{I})=\mathrm{YO}+\mathrm{DYDX}(\mathrm{I}) *(\mathrm{Z}(\mathrm{I})-\mathrm{X}(1)+\mathrm{S} 2)\)
    \(\mathrm{D} 2 \mathrm{YDX} 2(\mathrm{I})=0\).
    GO TO 120
90 IF (2 (I).LT.2.*X(N)-X(N-1)) GO TO 100
    \(S N=X(N)-X(N-1)\)
    YNP\{ \(=E M(N) * S N * * 2+2 . * Y(N)-Y(N-1)\)
    \(D Y D X(I)=(Y(N)-Y(N-1)) / S N+7 . * E M(N) / 6 . * S N\)
    \(\mathrm{YINT}(I)=Y N P 1+D Y D X(I) *(Z(I)-X(N)-S N)\)
    D2YDX2(I) \(=0\).
    GO TO 12C
\(10 C S K=X(K)-X(K-1) \quad X(K)-Z(I)) * * 3 / 6 . / S K+E M(K) *(Z(I)-X(K-1)) * * 3 / 6\).
    \(\operatorname{YINT}(I)=E M(K-1) *(X(K)-Z(I)) * * 3 /(Z)-X(K-1))+(Y(K-1) / S K-E M(K-1)\)
    \(1 / S K+(Y(K) / S K-E M(K) * S K / E) *.(Z(I)-X(K-1))+(Y(K-1) / S K-E M(K-1)\)
    \(2 * S K / 6.) *(X(K)-Z(I))+2(I)) * * 2 / 2.0 / S K+E M(K) *(X(K-1)-Z(I)) * * 2 / 2\).
\(110 \operatorname{DYDX}(\mathrm{I})=-E M(K-1) *(X(K)-Z(I)) * * 2 / 2.0 / S K 1) * S K / 6\).
    D \(2 \mathrm{YDX} 2(\mathrm{I})=\mathrm{EM}(\mathrm{K})-(\mathrm{X}(\mathrm{K})-2(\mathrm{I})) / \mathrm{SK} *(\mathrm{EH}(\mathrm{K})-\mathrm{EM}(\mathrm{K}-1))\)
120 CONTINUE
        IF (IERR.EQ.0) RETURN
130 HRITE (NWRIT, 1000)
        WRITE (NWRIT, 1020) \(N\), (X (I), Y(I), \(I=1, N)\)
        IF (IERR.EQ.O) STOP
        URITE(NGRIT.1930)
        RETURN
140 WRITE (NWRIT, 1010)
        WRITE (NWRIT, 1 J20) \(N,(X(I), Y(I), I=1, N)\)
        STOP 4410 X 4 HSPLINT ERPOR -- ONE OP THREE POSSIBLE CAUSES/
```



```
    117X,51H1. ADJACENT X POINTS ARE DISPLICATESCE.
    217X, 38H2. SOME X POINTS ARE OUNEENSED.)
    317X, 32H3. SOME X POINTS ARE ONOR SPLINE POINTS GIVEN I
101C FORMAT (1H1, 10X,62HSPLINT ERROR -- NOMBER OF SPLINE POINT
    15 LESS THAN TMO)
1020 FORMAT (//17X, 18HNUMBER OF POINTS \(=, 14 / / 17 \mathrm{X}, 8 \mathrm{HX}\) ARRAY, \(6 \mathrm{X}, 8 \mathrm{HY}\) ARR
    1AY/(17X,2G13.51)
1030 FORMAT (1H1)
        END
```

 SUBROOTINE SLOPES (X,Y,N, SLOPE)
 C--SLOPES CALCULATES PIRST DERIVATIVES, SLOPE, OF THE PONCTION, Y,
C--WITH RESPECT TO X, USING A PARABOLIC PIT THROUGH EACH SET OF
C--THREE ADJACENT POINTS ON THE CURVE
C
DIMENSION X(N),Y(N),SLOPE(N)
$\mathrm{N} 1=\mathrm{N}-1$
$\mathrm{N} 2=\mathrm{N}-2$
IF (N1.LT.2) GO TO 20
C--MID POINTS

```
            DO 1C I=2,N1
            X X2 = X (I+1)-X(I)
            X2X1 = X(I) -X (I-1)
            X 3 X1 = X(I+1)-X(I-1)
            Y YY2 = Y(I+1)-Y(I)
            Y2Y1=Y(I)-Y(I-1)
        10 SLOPE(I) = (X2X1**2*Y2Y 2+X3X2**2*Y2Y1)/(X3X2*X2X1*X3X1)
    C--FIRST POINT
            x3\times2 = X(3)-x(2)
            X2 X1 = X(2)-X(1)
            X3X1 = X(3)-X(1)
            Y YY1 = Y(3)-Y(1)
            Y2Y1 = Y(2)-Y(1)
            SLOPE(1) = (X3X1**2*Y2Y1-X2X1**2*Y 3Y1)/(X3X2*X2X1*X3X1)
C--LAST POTNT
            X3\times2= X(N)-X(N1)
            X2\times1=X(N1)-X(N2)
            X3X1 = X(N)-X(N2)
            Y3Y2 = Y(N) -Y(N1)
            Y3Y1 = Y(N)-Y(N2)
            SLOPE(N)=(X3X1**2*Y3Y2-X3X2**2*Y3Y1)/(X3\times2*X2X1*X3X1)
C--THO POINT FUNCTION
    20 SLOPE (1) = (Y(2)-Y(1))/(X(2)-X(1))
                SLOPE(2) = SLOPE(1)
                RETURN
            END
```

```
            SJBROUTINE SPLISI(X,Y,N,Y1P,YNP,SLOPE,EM)
```

 SJBROUTINE SPLISI(X,Y,N,Y1P,YNP,SLOPE,EM)
 C--SPLISL CALCULATES FTRST AND SECOND DERIVATIUES
C--SPLISL CALCULATES FTRST AND SECOND DERIVATIUES
C--END CONDITION - FIRST DERIVATV SECOND DERIVATIVES AT SPLINE POINTS
C--END CONDITION - FIRST DERIVATV SECOND DERIVATIVES AT SPLINE POINTS
C
C
CCMMON NREAD,NHRIT
CCMMON NREAD,NHRIT
DIMENSION X(N),Y(N),SLOPE(N),EM(N)
DIMENSION X(N),Y(N),SLOPE(N),EM(N)
DIMENSION G(101),SB(101)
DIMENSION G(101),SB(101)
IERR = C
IERR = C
C = X(2)-X(1)
C = X(2)-X(1)
IF (C.EQ.O.) GO TO }5
IF (C.EQ.O.) GO TO }5
SB(1) =.5
SB(1) =.5
F=(Y(2)-Y(1))/C-Y1P
F=(Y(2)-Y(1))/C-Y1P
G(1) = 3.*F/C
G(1) = 3.*F/C
NO =N-1
NO =N-1
IF (NO.LE.O) GO TO }6
IF (NO.LE.O) GO TO }6
IF (NO.EQ.1) GO TO 20
IF (NO.EQ.1) GO TO 20
DO 10 I=2,NO
DO 10 I=2,NO
A = C
A = C
C= X(I+1)-X(I)
C= X(I+1)-X(I)
IF (A*C.EQ.O.) GO TO 50
IF (A*C.EQ.O.) GO TO 50
IF (A*C.LT.O.) IERR = 1
IF (A*C.LT.O.) IERR = 1
W = 2.* (A+C)-A*SB (I-1)
W = 2.* (A+C)-A*SB (I-1)
SB(I) = C/W
SB(I) = C/W
F=(Y(I+1)-Y(I))/C-(Y(I)-Y(I-1))/A
F=(Y(I+1)-Y(I))/C-(Y(I)-Y(I-1))/A
10G(I)=(6.*F-A*G(I-1))/W
10G(I)=(6.*F-A*G(I-1))/W
20W=C*(2,-SB(N-1))
20W=C*(2,-SB(N-1))
F=YNP-(Y(N)-Y(N-1))/C

```
            F=YNP-(Y(N)-Y(N-1))/C
```

```
        EM(N)=(6.*P-C*G(N-1))/W
        DO 30 I=2,N
        K=N+1-I
        30 EM(K) = G(K)-SE(K)*EM (K+1)
        SLOPE(1) = Y1P
        DU)}40\quadI=2,N
        4* SLOPE(I)=(X(I)-X(I-1))/6.*(2.*EM(I)+EM(I-1))+(Y(I)-Y(I-1))/
    1(X(I)-X(I-1))
        SLOPE(N) = YNP
        IF (IERR.EQ.0) FETJRN
    5C WRITE(NHRIT,1000)
    HRITE (NHRIT,1)20) N,(X(I),Y(I),I=1,N)
    IF (IERR.EQ.O) STOP
    WRITE(NTRIT,1030)
    RETORN
    60 HRITE(NWRIT,1^10)
    WRITE(NGRIT,1920) N,(X(I),Y(I),I=?,N)
    STOP
1000 FORMAT {1H1,10X,44HSPLISL ERROR -- ONE OF THREE POSSIBLE CAUSFS/
    117X,51H1. ADJACENT X POINTS ARE DOPLICATES OF EACH OTHFR./
    217X,38&2. SOME X POINTS ARE OUT OF SEQUENCE./
    317X, 32H3. SOMF X POTNTS ARE UNDEFINED.)
1O10 FORMAT (1H{, 10x,62HSPLISL ERPOR -- NOMBER OF SPLINE POINTS GIVEN I
    1S LESS THAN TWO)
102% FORMAT (//17X, 18HNUMBER OF POINTS =,I4//17X, SHX ARRAY,6X,8HY ARR
    1AY/(17X,2G13.5))
1030 FORMAT (1H1)
        END
```

 SUERODTINE SPINSI (X,Y,N, Y1P, YNP, Z, MAX,YINT, DYDX, D2YDK?)
 C
C--SPINSL CALCOLATES INTERPOLATED POINTS AND DERIVATIVES
C--FOR A SPLINF CURVE
C--END CONDITION - FIRST DERIVATIVES SPECTFIED AT END POINTS
C
COMMON NREAD,NWRIT
DIMENSION X(N),Y(N), Z(MAX), YINT (MAX), DYDX(MAX), D2YDX2 (MAX)
DIMPNSION G(1)1), SB(101),EM(101)
IERR $=0$
TOLER $=A B S(X(N)-X(1)) / F L C A T(N) * 1 . E-5$
$C=X(2)-X(1)$
IF (C.EQ.O.) GO TO 130
$S B(1)=5$
$F=(Y(2)-Y(1)) / C-Y 1 P$
$G(1)=3 . * F / C$
NO $=N-1$
IF (NO.LE.O) GO TO 14 C
IF (NO.EQ.1) GO TO 20
DO $10 \mathrm{I}=2$, NO
$A=C$
$C=X(I+1)-X(I)$
IF (A*C.EQ.O.) GO TO 130
IF (A*C.LT.O.) IERR $=1$
$H=2 . *(A+C)-A * S B(I-1)$
$S B(I)=C / W$

```
            F=(Y(I+1)-Y(I))/C-(Y(I)-Y(I-1))/A
    10 G(I) = (6.**F-A*G(I-1))/W
    2:W=C*(2.-SB(N-1))
        F=YNP-(Y(N)-Y(N-1))/C
        EM(N)=(5.*F-C*G(N-1))/N
        DO 30 I=2,N
        K=N+1-I
        3C EM(K) = G(K)-SB(K)*EM(K+1)
    IF (MAX.LE.J) SETURN
C
    ENTRY SPENSL (Z,MAX,YINT,DYDX,D2YDX2)
    DO 12) I=1,MAX
    K=2
    IF (ABS(Z(I)-X(1)).LT.TOLER) GO TO 40
    IF(Z(I).GT.X(1)) GO TO 50
    GO TO 80
    40 YINT(I) = Y(1)
    SK = X(K)-X(K-1)
    GO TO 110
    50 IF (ABS(Z(I)-X(K)).LT.TOLER) GO TO 5^
    IF (Z(I).GT.X(K)) GO TO 70
    GO TO 100
    6^ YINT(I) = Y(K)
    SK = X(K)-X (K-1)
    GO TO 110
    70 IF (K.GE.N) GO TO 90
    K=K+1
    GO TO 50
    8C DYDX {I) = Y1P
    YINT(I) = Y(1) +Y1P*(Z(I) -X(1))
    D2YDX2(I) = 0.
    GO TO 120
    90 DYDX(I) = YNP
    YINT(I) = Y(N) +YNP*(Z(I) -X(N))
    D2YDX2(I) = 0.
    GO TO 120
100 SK = X (K)-X (K-1)
    YINT(I) = EM(K-1)*(X(K)-Z(I))**3/6./SK +EM(K)*(Z(I)-X(K-1))**3/6.
    1/SK+(Y(K)/SK -EM(K)*SK /6.)*(Z(I)-X (K-1))+(Y(K-1)/SK - EM (K-1)
    2 *SK/6.)*(X(K)-Z(I))
110 DYDX(I) =-EM(K-1)*(X(K)-Z(I))**2/2.0/SK +EM(K)*(X(K-1)-2(I))**2/2.
    1 /SK+(Y(K)-Y(K-1))/SK - (EM(K)-EM(K-1))*SK/5.
    D2YDX2(I) = EM (K)-(X (K)-Z (I))/SK* (EM (K)-EM (K-1))
120 CONTINOE
    IF (IERR.EQ.0) RETURN
130 WRITE(NGRIT, 1000)
    #RITE(NQRIT,1020) N,(X(I).Y(I).,I=1,N)
    IF (IERR.EQ.O) STOP
    WRITE (NHRIT.1030)
    RETORN
140 HRITE(NWRIT, 1010)
    #RITE(NGRIT, 1020) N,(X(I),Y(I),I=1,N)
    STOP
1000 FORMAT (1H1,10X,44HSPINSL ERROR -- ONE OF THREE POSSIBLE CAUSES)
    117x,51H1. ADJACENT Y POINTS ARE DOPLICATES OF EACH OTHER./
    217X, 38H2. SOME X POINTS ARE OUT OP SEQOENCE./
    317x, 32H3. SOME x POINTS ARE ONDEFINED.)
1010 FORMAT (1H1,10X,62HSPINSL ERROR -- NOMBER OF SPLINE POINTS GIVEN I
    1S LESS THAN THO
1020 FORMAT (//17X,18HNUMBER OP POINTS =,I4//17X,8HX ARRAY,6X,8HY ARR
```

1AY/(17X,2G13.5))

1030 PORMAT (1H1)

 END

| 0.8 | | 0.9 | | | 0.235 | | 0.314 | 0.470 | 0.490 | 7.584 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | | 0.080 | | | | | | | | |
| 0.693 | | 0.822 | | | | | | | | |
| 20 | 20 | 20 | 5 | 1 | 20 | 0 | | | | |

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, March 22, 1977, 505-04.

APPENDIX A

FINITE-DIFFERENCE FORM OF STREAM-FUNCTION EQUATION

The stream-function equation was derived as equation (B17) of part I (ref. 6):

$$
\begin{align*}
\frac{\partial^{2} \mathbf{u}}{\partial s^{2}}+\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial u}{\partial s}\left(\frac{\sin \varphi}{\mathrm{r}}+\frac{1}{\mathrm{~B}} \frac{\partial \mathrm{~B}}{\partial \mathrm{~s}}+\frac{1}{\rho} \frac{\partial \rho}{\partial \mathrm{~s}}-\frac{\partial \varphi}{\partial \mathrm{t}}\right) & -\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\left(\frac{\cos \varphi}{\mathrm{r}}+\frac{1}{\mathrm{~B}} \frac{\partial \mathrm{~B}}{\partial \mathrm{t}}+\frac{1}{\rho} \frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial \varphi}{\partial \mathrm{s}}\right) \\
& +\frac{\mathrm{rB} \rho}{\mathrm{wW}}\left[\frac{\mathrm{~W}_{\theta}}{\mathrm{r}} \frac{\partial\left(\mathrm{rV}_{\theta}\right)}{\partial \mathrm{t}}+\xi \mathrm{W}^{2}+\zeta+\mathrm{F}_{\mathrm{t}}\right]=0 \tag{A1}
\end{align*}
$$

where

$$
\begin{gather*}
\xi=\frac{1}{2}\left(\frac{\mathrm{R}}{\mathrm{c}_{\mathrm{p}} \mathrm{p}^{\prime \prime}} \frac{\partial \mathrm{p}^{\prime \prime}}{\partial \mathrm{t}}-\frac{1}{\mathrm{~T}^{\prime \prime}} \frac{\partial \mathrm{T}^{\prime \prime}}{\partial \mathrm{t}}\right) \tag{A2}\\
\zeta=\omega^{2} \mathrm{r} \cos \varphi-\frac{\mathrm{RT}{ }^{\prime \prime}}{\mathrm{p}^{\prime \prime}} \frac{\partial \mathrm{p}^{\prime \prime}}{\partial \mathrm{t}} \tag{A3}\\
\mathrm{~F}_{\mathrm{t}}=\frac{\partial \theta}{\partial \mathrm{t}} \frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \theta} \tag{A4}
\end{gather*}
$$

Equation (A4) was derived as equation (B5) of part I.
The s and t are the distances along the orthogonal mesh generated by the program. At each point of this mesh where the value of the stream function is unknown, a finitedifference approximation of equation (A1) can be written. Adjacent to the boundary, the boundary conditions are included. If there are n unknown values, n nonlinear equations are obtained in n unknowns. The equations are nonlinear since the coefficients involve the density, which depends on the solution, and since the final term depends on the solution in a nonlinear manner. The equations may be solved by an iterative procedure, with two levels of iteration. The inner iteration solves a linearized equation, and the outer iteration makes corrections to the linearized equation so that the solution converges to the solution of the original nonlinear equation.

A typical mesh point with the numbering used to indicate neighboring mesh points is shown in figure 24. The value of the stream function or the other variables at 0 is de-

Figure 24. - Notation for adjacent mesh points and mesh spaces.
noted by using the subscript 0 , and similarly for the neighboring points. It can be shown that equation (A1) can be approximated by

$$
\begin{align*}
{\left[\frac{2 u_{1}}{h_{1}\left(h_{1}+h_{2}\right)}+\frac{2 u_{2}}{h_{2}\left(h_{1}+h_{2}\right)}-\frac{2 u_{0}}{h_{1} h_{2}}\right] } & +\left[\frac{2 u_{3}}{h_{3}\left(h_{3}+h_{4}\right)}+\frac{2 u_{4}}{h_{4}\left(h_{3}+h_{4}\right)}-\frac{2 u_{0}}{h_{3} h_{4}}\right] \\
& -\frac{u_{4}-u_{3}}{h_{3}+h_{4}}\left[\frac{\sin \varphi_{0}}{r_{0}}+\frac{1}{B_{0}}\left(\frac{B_{4}-B_{3}}{h_{3}+h_{4}}\right)+\frac{1}{\rho_{0}}\left(\frac{\rho_{4}-\rho_{3}}{h_{3}+h_{4}}\right)-\left(\frac{\partial \varphi}{\partial t}\right)_{0}\right] \\
& -\frac{u_{2}-u_{1}}{h_{1}+h_{2}}\left[\frac{\cos \varphi_{0}}{r_{0}}+\frac{1}{B_{0}}\left(\frac{B_{2}-B_{1}}{h_{1}+h_{2}}\right)+\frac{1}{\rho_{0}}\left(\frac{\rho_{2}-\rho_{1}}{h_{1}+h_{2}}\right)+\left(\frac{\partial \varphi}{\partial s}\right)_{0}\right] \\
& +\frac{r_{0} B_{0} \rho_{0}}{w_{0}\left(W_{s}\right)_{0}}\left\{\frac{\left(W_{\theta}\right)_{0}}{r_{0}}\left[\frac{\partial\left(r V_{\theta}\right)}{\partial t}\right]_{0}+\xi_{0} W_{0}^{2}+\xi_{0}+\left(F_{t}\right)_{0}\right\}=0 \tag{A5}
\end{align*}
$$

where $\partial\left(\mathrm{rV}_{\theta}\right) / \partial \mathrm{t}$ is calculated by different methods upstream, downstream, and within the blade row. Upstream and downstream of the blade, equations (B21) and (B22) of part I are used. Within the blade row, a finite-difference approximation is used with values of V_{θ} from the previous iteration. The final result to be used in equation (A5) is

In setting up the equations for solution, the coefficients of the u_{i} in equation (A5) must be calculated. This was done by expressing equation (A5) as

$$
\begin{equation*}
u_{0}=\sum_{i=1}^{4} a_{i} u_{i}+k_{0} \tag{A7}
\end{equation*}
$$

where the coefficients are calculated as follows:

$$
\left.\begin{array}{c}
a_{0}=\frac{2}{h_{1} h_{2}}+\frac{2}{h_{3} h_{4}} \\
c_{1}=h_{1}+h_{2} \\
c_{2}=h_{3}+h_{4} \\
\left(\frac{\partial \varphi}{\partial s}\right)_{0}=\left\{\begin{array}{lll}
\frac{\sin \varphi_{4}-\sin \varphi_{3}}{c_{2} \cos \varphi_{0}} & \text { if }\left|\cos \varphi_{0}\right| \geq \frac{\sqrt{2}}{2} \\
\frac{\cos \varphi_{3}-\cos \varphi_{4}}{c_{2} \sin \varphi_{0}} & \text { if } & \left|\cos \varphi_{0}\right|<\frac{\sqrt{2}}{2}
\end{array}\right\} \tag{A8}
\end{array}\right\}
$$

$$
\begin{align*}
& \left(\frac{\partial \varphi}{\partial t}\right)_{0}= \begin{cases}\frac{\sin \varphi_{2}-\sin \varphi_{1}}{\mathrm{c}_{1} \cos \varphi_{0}} & \text { if }\left|\cos \varphi_{0}\right| \geq \frac{\sqrt{2}}{2} \\
\frac{\cos \varphi_{1}-\cos \varphi_{2}}{\mathrm{c}_{1} \sin \varphi_{0}} & \text { if }\left|\cos \varphi_{0}\right|<\frac{\sqrt{2}}{2}\end{cases} \\
& \mathrm{d}_{1}=\frac{\frac{\mathrm{B}_{2}-\mathrm{B}_{1}}{\mathrm{~B}_{0}}+\frac{\rho_{2}-\rho_{1}}{\rho_{0}}}{\mathrm{c}_{1}}+\frac{\cos \varphi_{0}}{\mathrm{r}_{0}}+\left(\frac{\partial \varphi}{\partial \mathrm{s}}\right)_{0} \tag{A8}\\
& \mathrm{~d}_{2}=\frac{\frac{\mathrm{B}_{4}-\mathrm{B}_{3}}{\mathrm{~B}_{0}}+\frac{\rho_{4}-\rho_{3}}{\rho_{0}}}{\mathrm{c}_{2}}+\frac{\sin \varphi_{0}}{\mathrm{r}_{0}}-\left(\frac{\partial \varphi}{\partial \mathrm{t}}\right)_{0} \\
& a_{1}=\frac{\left(\frac{2}{h_{1}}+d_{1}\right)}{a_{0} c_{1}} \\
& \mathrm{a}_{2}=\frac{\left(\frac{2}{\mathrm{~h}_{2}}-\mathrm{d}_{1}\right)}{\mathrm{a}_{0} \mathrm{c}_{1}} \\
& a_{3}=\frac{\left(\frac{2}{h_{3}}+d_{2}\right)}{a_{0} c_{2}} \\
& a_{4}=\frac{\left(\frac{2}{h_{4}}-d_{2}\right)}{a_{0} c_{2}}
\end{align*}
$$

$$
k_{0}=\left\{\begin{array}{l}
\frac{r_{0} B_{0} \rho_{0}}{a_{0} w\left(W_{s}\right)_{0}}\left[\frac{\left(W_{\theta}\right)_{0} B_{0} \rho_{0}\left(W_{s}\right)}{w}\left(\frac{d \lambda}{d u}\right)_{0}+\xi_{0} W_{0}^{2}+\zeta_{0}\right] \quad \text { upstream } \tag{A9}\\
\left.\frac{r_{0} B_{0} \rho_{0}}{a_{0} w\left(W_{s}\right)}\left\{\frac{\left(W_{\theta}\right)_{0}\left[\frac{r_{2}\left(V_{\theta}\right)}{r_{0}-r_{1}\left(V_{\theta}\right)_{1}}\right.}{r_{1}}\right]+\xi_{0} W_{0}^{2}+\zeta_{0}+\left(F_{t}\right)_{0}\right\} \quad \text { within blade row } \\
\frac{r_{0} B_{0} \rho_{0}}{a_{0} w\left(W_{s}\right)}\left\{\frac{\left(W_{\theta}\right)_{0} B_{0} \rho_{0}\left(W_{s}\right)_{0}}{w}\left[\frac{d\left(r V_{\theta}\right)_{0}}{d u}\right]_{0}+\xi_{0} W_{0}^{2}+\zeta_{0}\right\} \quad \text { downstream }
\end{array}\right.
$$

Equation (A8) is written in the form corresponding to the calculation of the coefficients in subroutine COEF. The constant k_{0} is calculated from equation (A9) in subroutine COEF. The quantities ξ and ζ are calculated in subroutine NEWRHO from equations (A2) and (A3). The quantity F_{t} is calculated in subroutine BLDVEL when the blade surface velocities are calculated. The quantities $d \lambda / d u$ and $d\left(r V_{\theta}\right)_{o} / d u$ are calculated by subroutines LAMDAF and RVTHTA when they are called by NEWRHO to calculate λ or $\left(\mathrm{rV}_{\theta}\right)_{\mathrm{o}}$.

Equation (A8) is used at all interior points of the mesh region. Along the boundaries, the boundary conditions give different coefficients. The stream function is known to be 0.0 at the hub and 1.0 at the shroud. At the upstream and downstream boundaries, the boundary condition is that the normal derivative of the stream function is zero. The finite difference expression for this is

$$
\begin{gathered}
u_{0}=u_{4} \quad \text { on the upstream boundary } \\
u_{0}=u_{3} \quad \text { on the downstream boundary }
\end{gathered}
$$

Since the coefficients for these equations do not depend on the solution, they are specified in subroutine INIT.

APPENDIX B

MATCHING UPSTREAM AND DOWNSTREAM FLOW CONDITIONS

TO STREAM-FUNCTION SOLUTION

The work done by each blade row is determined by the change in whirl along streamlines. That is,

$$
\begin{equation*}
\mathrm{H}_{\mathrm{o}}-\mathrm{H}_{\mathrm{i}}=\omega\left[\left(\mathrm{rV}_{\theta}\right)_{0}-\lambda\right] \tag{B1}
\end{equation*}
$$

In this program, whirl can vary as desired from hub to tip, but for each streamline the work done is determined by equation (B1). Also, the equation relating velocity W to temperature and density requires knowledge of upstream total temperature and whirl for that particular streamline. For this reason, it is most desirable to express upstream and downstream conditions as a function of stream function rather than radius. However, if experimental data are being used, measurements are obtained as a function of position or radius. In this case the stream function is not known, but the distribution by radius can be used for input to the program. Then by estimation and iteration the correct distribution by stream function will be obtained.

If whirl is given as a function of stream function as input (i. e., LSFR = LAMVT $=0$), no changes need be made after the first initialization. If tangential velocity V_{θ} is given as input (LAMVT $=1$), certain subroutines must be reinitialized in every iteration. There are two possibilities: one that V_{θ} is given as a function of stream function ($L S F R=0$), and the second that V_{θ} is given as a function of radius ($L S F R=1$). In either case, what is needed is the relation between stream function and radius along the input lines. This relation is determined by the stream-function solution obtained by SOR. In each iteration, then, reinitialization calls are made by LOSSOM if LAMVT $=1$. If LSFR $=0$, SFIN and SFOUT are given as input, and RADIN and RADOUT are corrected by the initialization calls to LAMNIT and RVTNIT. If LSFR $=1$, RADIN and RADOUT are given as input, and SFIN and SFOUT are corrected by the same calls. In either case, SPLINT calls are made to readjust the spline-fit coefficients for all four subroutines - LAMDAF, RVTHTA, TIPF, and RHOIPF.

APPENDEX C

CALCULATION OF PARTIAL DERIVATIVES OF THETA ON ORTHOGONAL MESH

In the THETOM subroutine, $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ are calculated at the orthogonal mesh points that lie between the leading and trailing edges of the blade. The information needed to make this calculation exists as $\theta(z, r)$ on the input blade sections. The THETOM procedure is designed so that an accurate calculation is maintained in the transition from input blade mesh to orthogonal mesh.

The orthogonal mesh on a typical blade is illustrated in figure 25. Note that some of the t mesh lines cross the leading and trailing edges of the blade. To alleviate the problem of calculating θ-gradients on this mesh, they are first obtained on an alternate mesh, shown in figures 26 and 27, of s^{\prime} - and t^{\prime}-coordinates. Then, by interpolation, $\partial \theta / \partial s$ and $\partial \theta / \partial t$ are obtained at the desired orthogonal mesh points.

There are several reasons why it is convenient to use an alternate mesh to calculate $\partial \theta / \partial s$ and $\partial \theta / \partial t$. First, there are usually not sufficient input planes or points

Figure 25. - Orthogonal finite-difference mesh on solution region.

Figure 26. - Semi-alternate mesh with 5 -percent-chord hubshroud lines.
to permit an accurate direct calculation of $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ using the input bladesection points alone. Second, corresponding points on adjacent input blade planes are not required to fall on smooth curves from hub to shroud. Finally, the angle φ is known only on the orthogonal mesh, and not at input points, so that $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ cannot be obtained directly at the input points and then interpolated to the orthogonal mesh. Therefore, a fine-grid alternate mesh is used on which $\partial \theta / \partial \mathrm{z}$ and $\partial \theta / \partial \mathrm{r}$ are calculated. These are then interpolated to the required orthogonal mesh points and transformed to $\partial \theta / \partial s$ and $\partial \theta / \partial t$. Note that it is more accurate to calculate partial derivatives first and then interpolate and transform the partials to the s - and t directions, than it would be to interpolate θ itself from the input mesh to the orthogonal mesh and then calculate the partials along mesh lines.

The step-by-step procedure to obtain $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial \mathrm{t}$ is as follows:
(1) Calculate rotated z-coordinates (ZPC) of points along the input blade sections at 5-percent-meridional-chord locations, that is, at the semi-alternate mesh points of

Figure 27. - Full alternate mesh on which gradients of θ are obtained.

Figure 28. - Relation of semi-alternate mesh to z^{-}and r-directions.
figure 26.
(2) Use SPLINT calls along each input blade section to obtain corresponding rotated r-coordinates (RPC) and angles with respect to the unrotated z -axis α_{bs} (fig. 28).
(3) Calculate arc length SZRBL along each input blade section ($s_{b s}$ direction) using the ZBL, RBL coordinates.
(4) Calculate arc length SZRPC along the same blade sections using the calculated ZPC, RPC coordinates of the semi-alternate mesh.
(5) Use SPLINT calls in the s_{bs}-direction (or SPINSL if BETALE and BETATE are specified) to calculate θ and $\partial \theta / \partial s_{b s}$ at the ZPC, RPC points from known θ at the ZBL, RBL points.
(6) Use SPLINT calls in the s_{bs}-direction to calculate blade thickness in the θ direction (TTPC) at the ZPC, RPC points from TTBL at the ZBL, RBL points. This concludes the calculation of variables at the semi-alternate mesh points of figure 26.
(7) A procedure is then begun to obtain required distances, angles, and gradients on a finer grid of points along the lines in the t^{\prime}-direction, that is, at the points of the full alternate mesh of figure 27. Store values of z, r, θ, blade thickness, $\alpha_{b s}$, and $\partial \theta / \partial s_{\mathrm{bs}}$ into arrays along the t^{\prime}-lines.
(8) Calculate arc length SZRBL along the t^{\prime}-lines using the ZPC, RPC coordinates (stored for each line in ZPCT1, RPCT1).
(9) Calculate r-coordinates (RPCT2) of points along the t-lines at 5 -percent distance increments from hub to shroud (where s^{\prime} and t^{\prime} cross, fig. 27). Use SPLINT calls to obtain corresponding z -coordinates (Z PCT2).
(10) Calculate arc length SZRPC up the t^{\prime}-lines using the ZPCT2, RPCT2 coordinates of the full alternate mesh. Also calculate angles with respect to the unrotated r-axis $\alpha_{t^{\prime}}$ (fig. 28).
(11) Use SPLINT calls in the t^{\prime}-direction to obtain θ and $\partial \theta / \partial \mathrm{t}^{\prime}$ at the full alternate mesh points (ZPCT2, RPCT2) from known θ at the semi-alternate mesh points (ZPCT1, RPCT1).
(12) Use SPLINT calls in the t^{\prime}-direction to obtain $\alpha_{\mathrm{bs}}, \partial \theta / \partial \mathrm{s}_{\mathrm{bs}}$, and blade thickness at the full alternate mesh points (ZPCT2, RPCT2) from known values at the semialternate mesh points (ZPCT1, RP'CT1).
(13) Store calculated values of z, r, θ, blade thickness, $\alpha_{b s}$, and $\partial \theta / \partial s_{b s}$ at the full alternate mesh points into two-dimensional arrays ZPC, RPC, THPC, TTPC, ANGZ, and DTHDSP. This procedure, from step 7 to step 13 , is executed for each of the t-lines of the alternate mesh.
(14) Calculate $\partial \theta / \partial z$ and $\partial \theta / \partial \mathrm{r}$ from $\partial \theta / \partial s_{\mathrm{bs}}$ and $\partial \theta / \partial t^{\prime}$ at the $s^{\prime}-$ and t^{\prime} points of the full alternate mesh with the following equations:

$$
\begin{align*}
& \frac{\partial \theta}{\partial \mathrm{z}}=\frac{\partial \theta}{\partial \mathrm{s}_{\mathrm{bs}}} \frac{\cos \alpha_{\mathrm{t}^{\prime}}}{\cos \left(\alpha_{\mathrm{bs}}+\alpha_{\mathrm{t}^{\prime}}\right)}-\frac{\partial \theta}{\partial \mathrm{t}^{\prime}} \frac{\sin \alpha_{\mathrm{bs}}}{\cos \left(\alpha_{\mathrm{bs}}+\alpha_{\mathrm{t}^{\prime}}\right)} \tag{C1}\\
& \frac{\partial \theta}{\partial \mathrm{r}}=-\frac{\partial \theta}{\partial s_{\mathrm{bs}}} \frac{\sin \alpha_{\mathrm{t}^{\prime}}}{\cos \left(\alpha_{\mathrm{bs}}+\alpha_{\mathrm{t}^{\prime}}\right)}+\frac{\partial \theta}{\partial \mathrm{t}^{\prime}} \frac{\cos \alpha_{\mathrm{bs}}}{\cos \left(\alpha_{\mathrm{bs}}+\alpha_{\mathrm{t}^{\prime}}\right)} \tag{C2}
\end{align*}
$$

(The $\partial \theta / \partial \mathrm{z}$ and $\partial \theta / \partial \mathrm{r}$ gradients are the ones that will be interpolated back to the orthogonal mesh and then transformed to get $\partial \theta / \partial s$ and $\partial \theta / \partial \mathrm{t}$.)
(15) Interpolate, by using LININT calls, from $\partial \theta / \partial z$ and $\partial \theta / \partial r$ on the $s^{\prime}-t^{\prime}$ alternate mesh to obtain $\partial \theta / \partial z$ and $\partial \theta / \partial r$ on the orthogonal mesh points that lie between the leading and trailing edges of the blades.
(16) Transform the $\partial \theta / \partial z$ and $\partial \theta / \partial \mathrm{r}$ to obtain $\partial \theta / \partial \mathrm{s}$ and $\partial \theta / \partial t$ at the orthogonal mesh points within the blade (fig. 25). The following equations are used:

$$
\begin{align*}
& \frac{\partial \theta}{\partial s}=\frac{\partial \theta}{\partial z} \cos \varphi+\frac{\partial \theta}{\partial r} \sin \varphi \tag{C3}\\
& \frac{\partial \theta}{\partial t}=\frac{\partial \theta}{\partial r} \cos \varphi-\frac{\partial \theta}{\partial z} \sin \varphi \tag{C4}
\end{align*}
$$

APPENDIX D

INCOMPRESSIBLE STREAM-FUNCTION EQUATION

The stream-function equation is modified slightly for incompressible flow. The only terms that must be altered in equation (B14) of part I are the two terms $\partial \mathrm{I} / \partial \mathrm{t}$ and $\mathrm{T} \partial s / \partial \mathrm{t}$. Since it is assumed that there is uniform total pressure upstream and no total pressure loss, $\partial s / \partial t=0$. By definition, $I=H_{i}-\omega \lambda$. For uniform upstream stagnation conditions, H_{i} is constant, so that

$$
\begin{equation*}
\frac{\partial I}{\partial t}=-\omega \frac{\partial \lambda}{\partial t} \tag{D1}
\end{equation*}
$$

For incompressible flow, equation (D1) is used instead of equation (B16) of part I in equation (B14) of part I. The result is that equations (A1) and (A4) are unchanged and equations (A2) and (A3) are replaced by

$$
\begin{gather*}
\xi=0 \tag{D2}\\
\zeta=\omega \frac{\partial \lambda}{\partial t} \tag{D3}
\end{gather*}
$$

However, in the program, the variable ZETA is not used for this purpose, but $\omega \partial \lambda / \partial t$ is added at the proper point in subroutine COEF.

APPENDIX E

GENERATION OF LEADING- AND TRAILING-EDGE RADII ON
 TSONIC BLADE SECTIONS

In the TSONIN subroutine, blade-section geometry along streamlines is calculated for input to the TSONIC program (ref. 3). In this process, leading- and trailing-edge radii must be generated within the blade-coordinate envelope used in MERDL.

The blade envelope in the leading-edge region along a streamline for MERDL is shown in figure 29. The envelope has thickness at the leading edge, which is the way blockage is modeled in MERIDL. The points wiere the meridional streamline is intersected by MERIDL vertical orthogonal mesh lines are also indicated. These are projected in the θ-direction to the blade surfaces to obtain potential TSONIC input points, as shown in figure 29. Some of these points near the leading or trailing edge will later be eliminated.

Subroutine TSONIN calculates a leading-edge radius within the envelope of figure 29, as shown in figure 30. This leading-edge radius touches three sides of the blade-section envelope and is entirely contained within it. The technique for calculating this radius is as follows. A similar technique is used at the trailing edge.
(1) Calculate the r-coordinate at the leading edge of the blade section $r_{l e}$. This $r_{l e}$ will be used for all points in the leading-edge region, not just those at A and B.
(2) Initially set a counter (ICOUNT) to zero and a damping factor (DAMP) to 1.

Figure 30. - Envelope of blade surface coordinates with respect to TSONIC origin.

Figure 29. - Envelope of blade surface for MERIDL flow model.
(3) Initially estimate the tangency angles β_{1} and β_{2} (at points 1 and 2, fig. 30) from the slopes of the two blade surfaces at their end points (A and B in fig. 29).
(4) Initially estimate a leading-edge radius, RI, using θ-coordinates at points A and B :

$$
\mathrm{RI}=\frac{\mathrm{r}_{1 \mathrm{e}^{\theta} \mathrm{A}}-\mathrm{r}_{1 \mathrm{e}}{ }^{\theta} \mathrm{B}}{2} \cos \left(\frac{\beta_{1}+\beta_{2}}{2}\right)
$$

(5) With the estimated RI, calculate m-coordinates of tangency points from (fig. 30)

$$
\begin{aligned}
& \mathrm{m}_{1}=\operatorname{RI}\left[1 \cdot-\sin \left(\beta_{1}\right)\right] \\
& \mathrm{m}_{2}=\operatorname{RI}\left[1 \cdot+\sin \left(\beta_{2}\right)\right]
\end{aligned}
$$

(6) With SPLINT calls on each of the blade surfaces and m_{1} and m_{2}, calculate new estimates of the tangency point θ-coordinates θ_{1} and θ_{2} and surface slopes $\mathrm{d} \theta_{1} / \mathrm{dm}$ and $\mathrm{d} \theta_{2} / \mathrm{dm}$ at these points.
(7) Using $r_{l e}$ and the surface slopes, calculate a new estimate of the tangency angles β_{1} and β_{2} :

$$
\begin{aligned}
& \beta_{1}=\tan ^{-1} \frac{\mathrm{r}_{\mathrm{le}} \mathrm{~d} \theta_{1}}{\mathrm{dm}} \\
& \beta_{2}=\tan ^{-1} \frac{\mathrm{r}_{\mathrm{le}} \mathrm{~d} \theta_{2}}{\mathrm{dm}}
\end{aligned}
$$

(8) Estimate new leading-edge radius, using updated tangency point θ-coordinates and $\beta^{\top} \mathrm{s}$:
(9) Check relative change in RI. If tolerance is met, RI is set to $\mathrm{RI}_{\text {new }}$ and accepted. If the tolerance is not met, RI is recalculated as follows:

$$
\mathrm{RI}=\frac{(\mathrm{DAMP})(\mathrm{RI})+\mathrm{RI}_{\text {new }}}{\mathrm{DAMP}+1}
$$

and the iteration loop from steps 5 to 9 is repeated.
If the calculated RI ever becomes negative in this procedure, DAMP is incremented by 1 and the process is begun again at step 3. The counter ICOUNT is incremented by 1 for each loop through steps 5 to 9 . If ICOUNT reaches 100 , an error message is printed and the current value of RI is accepted.

The leading-edge radius calculated by this process will be that shown in figure 30. The TSONIC origin in this figure is at point T, and the MERIDL origin is at point M. The $\Delta \theta$ from point M to point T is calculated as follows:

$$
\Delta \theta=\frac{\theta_{1} \cos \beta_{2}+\theta_{2} \cos \beta_{1}}{\cos \beta_{1}+\cos \beta_{2}}
$$

and is subtracted from the surface coordinates relative to MERIDL origin to obtain those relative to TSONIC origin.

APPENDIX F

CALCULATION OF CHANGE OF DENSITY DUE TO BLOCKAGE AT BLADE

LEADING OR TRAILING EDGE

For the transonic velocity-gradient solution, incidence and deviation corrections to the assumed midchannel stream surface are made near the leading and trailing edges, as described in appendix F of part I. There is no correct existing value for the density within the blade row to use in this process. However, this density, $\rho_{\text {bf }}$, can be calculated from the free-stream density ρ_{fs} by making a blockage correction with the continuity equation. Iteration is required to solve the equation involved in this calculation. This calculation is done in subroutine LINDV.

From the assumption of continuous angular momentum and from continuity across the leading and trailing edges (but allowing W_{m} to be discontinuous), the following equation is derived as equation (F1) of part I:

$$
\begin{equation*}
\tan \beta_{\mathrm{bf}}=\left(\frac{\rho_{\mathrm{bf}}}{\rho_{\mathrm{fs}}}\right)\left(\frac{\mathrm{B}_{\mathrm{le}}}{\text { Pitch }}\right) \tan \beta_{\mathrm{fs}} \tag{F1}
\end{equation*}
$$

Also, from continuity, we have

$$
(\rho \mathrm{W} \cos \beta)_{\mathrm{fs}}(\text { Pitch })=(\rho \mathrm{W} \cos \beta)_{\mathrm{bf}} \mathrm{~B}_{\mathrm{le}}
$$

By using the relation $\cos ^{2} \beta=1 /\left(1+\tan ^{2} \beta\right)$, we can solve for $\mathrm{W}_{\mathrm{bf}}^{2}$ to obtain

$$
\begin{equation*}
\mathrm{W}_{\mathrm{bf}}^{2}=\mathrm{W}_{\mathrm{fs}}^{2} \frac{\left(1+\tan ^{2} \beta_{\mathrm{bf}}\right)}{\left(1+\tan ^{2} \beta_{\mathrm{fs}}\right)} \frac{\rho_{\mathrm{fs}}^{2}}{\rho_{\mathrm{bf}}^{2}} \frac{\text { Pitch }^{2}}{\mathrm{~B}_{\mathrm{le}}^{2}} \tag{F2}
\end{equation*}
$$

Finally, $W_{b f}$ is related to ρ_{bf} by the relation

$$
\begin{equation*}
\rho_{\mathrm{bf}}=\rho_{\mathrm{i}}^{\prime}(1-\text { Ploss })\left[1-\frac{\mathrm{W}_{\mathrm{bf}}^{2}+2 \omega \lambda-(\omega \mathrm{r})^{2}}{2 \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{i}}^{\prime}}\right]^{1 /(\gamma-1)} \tag{F3}
\end{equation*}
$$

where

$$
\text { Ploss }=\frac{\mathrm{p}_{\text {ideal }}^{\prime \prime}-\mathrm{p}^{\prime \prime}}{\mathrm{p}_{\text {ideal }}^{\prime \prime}}
$$

Equations (F1) to (F3) can be solved iteratively. The procedure to be used depends, however, on whether the meridional component of velocity is subsonic or supersonic. Also, it should be noted that with high subsonic velocity $\left(W_{m}\right)_{f s}$, there may be no solution possible for $\left(\rho W_{m}\right)_{b f}$, especially with large blockage.

The equations used for the iterative solution are as follows: Let

$$
\begin{gather*}
\mathrm{k}_{1}=\frac{\left(\tan \beta_{\mathrm{fs}}\right) \mathrm{B}_{\mathrm{le}}}{\rho_{\mathrm{fs}}(\text { Pitch })} \tag{F4}\\
k_{2}=\frac{\left(\rho_{\mathrm{fs}} W_{\mathrm{fs}} \frac{\text { Pitch }}{\mathrm{B}_{\mathrm{le}}}\right)^{2}}{1+\tan ^{2} \beta_{\mathrm{fs}}} \tag{F5}
\end{gather*}
$$

In the program code, k_{1} is the variable CONST1 and k_{2} is CONST2. For the initial estimate in the iteration, use $\rho_{\mathrm{bf}}=\rho_{\mathrm{fs}}$, which is already known.

The usual case is when W_{m} is subsonic. In this case the sequence is to calculate $\tan \beta_{\mathrm{bf}}$, then $\mathrm{W}_{\mathrm{bf}}^{2}$, followed by the new ρ_{bf}. The equations for this (from eq. (F1) to (F3)) are

$$
\begin{gather*}
\tan \beta_{\mathrm{bf}}=\mathrm{k}_{1} \rho_{\mathrm{bf}} \tag{F6}\\
\mathrm{~W}_{\mathrm{bf}}^{2}=\frac{\mathrm{k}_{2}\left(1+\tan ^{2} \beta_{\mathrm{bf}}\right)}{\rho_{\mathrm{bf}}^{2}} \tag{F7}\\
\rho_{\mathrm{bf}}=\rho_{\mathrm{i}}^{\mathrm{f}}(1-\operatorname{Ploss})\left[1-\frac{\mathrm{w}_{\mathrm{bf}}^{2}+2 \omega \lambda-(\omega \mathrm{r})^{2}}{2 \mathrm{c}_{\mathrm{p}} \mathrm{~T}}\right]^{1 /(\gamma-1)} \tag{F8}
\end{gather*}
$$

Equations (F6) to (F8) are then iterated. This will converge to the subsonic solution if it exists.

The other case is when W_{m} is supersonic. In this case the sequence is reversed to calculate $\mathrm{W}_{\mathrm{bf}}^{2}$, followed by the new ρ_{bf}. The equations for this (from eq. (F1)
to (F3)) are

$$
\begin{gather*}
\mathrm{W}_{\mathrm{bf}}^{2}=\left\{1-\left[\frac{\rho_{\mathrm{bf}}}{\rho_{\mathrm{i}}^{!}(1-\mathrm{Ploss})}\right]^{\gamma-1}\right\} 2 \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{i}}^{\prime}-2 \omega \lambda+(\omega \mathrm{r})^{2} \tag{F9}\\
\rho_{\mathrm{bf}}=\sqrt{\frac{\mathrm{k}_{2}}{\mathrm{~W}_{\mathrm{bf}}^{2}-\mathrm{k}_{2} \mathrm{k}_{1}^{2}}} \tag{F10}
\end{gather*}
$$

Equations (F9) and (F10) are then iterated. This will converge to the supersonic solution if it exists.

Since the procedure depends on whether W_{m} is subsonic or supersonic, W_{m} is checked to determine which procedure to use. Actually, we want to know the value of W_{m} that corresponds to the maximum value of $\rho \mathrm{W}_{\mathrm{m}}$. This occurs when $\mathrm{d}\left(\rho \mathrm{W}_{\mathrm{m}}\right) / \mathrm{dW} \mathrm{m}_{\mathrm{m}}=0$. By differentiating

$$
\rho \mathrm{W}_{\mathrm{m}}=\rho_{\mathrm{i}}^{\prime}\left[1-\frac{\mathrm{W}_{\mathrm{m}}^{2}+\mathrm{W}_{\theta}^{2}+2 \omega \lambda-(\omega \mathrm{r})^{2}}{2 \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{i}}^{\prime}}\right]^{1 /(\gamma-1)}(1-\text { Ploss }) \mathrm{W}_{\mathrm{m}}
$$

we obtain

$$
\frac{d\left(\rho W_{m}\right)}{d W_{m}}=\rho(1-\text { Ploss })\left[1-\frac{W_{m}^{2}}{(\gamma-1) c_{p} T}\right]=0
$$

Hence,

$$
\begin{equation*}
\left(w_{m}^{2}\right)_{\text {sonic }}=\gamma R T \tag{F11}
\end{equation*}
$$

as expected. But

$$
T=T^{\prime \prime}-\frac{W_{m}^{2}+W_{\theta}^{2}}{2 c_{p}}
$$

Substitute this into equation (F11) and solve for W_{m} to obtain

$$
\begin{equation*}
\left(W_{m}\right)_{\text {sonic }}=\sqrt{\frac{2 \gamma R T^{\prime \prime}}{\gamma+1}-\left(\frac{\gamma-1}{\gamma+1}\right) W_{\theta}^{2}} \tag{F12}
\end{equation*}
$$

In subroutine LINDV, $\left(W_{m}\right)_{\text {sonic }}$ is calculated by equation (F12). If $\left(W_{m}\right)_{f s}$ is less than ($\left.W_{m}\right)_{\text {sonic }}$, equations (F6) to (F8) are used to calculate $\rho_{\text {bf }}$ iteratively. And if $\left(W_{m}\right)_{f s}$ is greater than $\left(W_{m}\right)_{\text {sonic, }}$ equations (F9) and (F10) are used. In either case a solution may not exist because the blockage is enough so that $\left(\rho W_{m}\right)_{\text {bf }}$ is larger than $\left(\rho W_{m}\right)_{\text {sonic }}$. In this case an error message is printed and ρ_{bf} is set equal to ρ_{fs}. Calculation will proceed but may be inaccurate.

LINEAR INTERPOLATION IN A QUADRILATERAL

There are several instances where it is required for the program to interpolate from a two-dimensional array of values on a grid. If the grid were rectangular, this would be straightforward. However, usually this is not the case. In most cases the grid is a rectangular grid that is deformed like a net that has stretched out of shape. Thus, each region has four sides, but the corners are not necessarily right angles. The method of interpolation is the simplest possible. First, we find the particular quadrilateral containing the point, as shown in figure 31. All that is necessary is to interpolate linearly within the quadrilateral. The interpolation is linear along the boundary and between corresponding points along the boundary.

An illustration should clarify the manner of interpolation. Suppose it is desired to find the value at point P in figure 32. It is assumed that values of the function are known at the corner points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . The function values at these points will be designated F_{A}, F_{B}, F_{C}, and F_{D}. Suppose that the point P lies on a line between points three-quarters of the way along AB and CD , as shown. Also suppose that \mathbf{P} lies on a line between points two-thirds of the way along BD and AC , as shown. Then, we can interpolate linearly along $A B$ and $C D$, followed by linear interpolation along the vertical line through P. If F is the interpolated value of P, we obtain

$$
F=\frac{1}{12} F_{A}+\frac{1}{4} F_{B}+\frac{1}{6} F_{C}+\frac{1}{2} F_{D}
$$

Figure 31. - Typical mesh region.

Figure 32. - Example of linear interpolation in a quadritaterai.

Figure 33. - Typical quadrilateral.

The same result is obtained if we interpolate linearly along BD and AC , followed by linear interpolation along the horizontal line through P.

Figure 33 shows a quadrilateral containing a point P_{0} where it is desired to interpolate. It is assumed that the values of the function to be interpolated are known at the four corners and that the coordinates of the point P_{0} are given. The function values are denoted by z , and the coordinates by x and y . Subscripts are used to indicate the point. There are 14 values required to perform the interpolation: the coordinates of the four corners (eight values), the coordinates of the interpolation point (two values), and the function values at the four corners. If these 14 values are known, an equation for linear interpolation can be derived.

Figure 34. - Typical quadrilateral with interpolation tines.

Figure 34 shows the same quadilateral as figure 33 but with the added lines $P_{5} P_{6}$ and $P_{7} P_{8}$. The line $P_{5} P_{6}$ passes through the point P_{0} and is chosen so that $P_{1} P_{5}: P_{1} P_{3}=P_{2} P_{6}: P_{2} P_{4}$. Similarly, $P_{7} P_{8}$ passes through P_{0} and $P_{1} P_{7}: P_{1} P_{2}=$
$P_{3} P_{8}: P_{3} P_{4}$. Now let

$$
\begin{align*}
& f_{x}=\frac{P_{1} P_{7}}{P_{1} P_{2}} \tag{G1}\\
& f_{y}=\frac{P_{1} P_{5}}{P_{1} P_{3}} \tag{G2}
\end{align*}
$$

The coordinates of any point P_{i} will be designated by $\left(x_{i}, y_{i}\right)$. The difference of any two x or y values will be designated by $x_{i j}=x_{i}-x_{j}$ or $y_{i j}=y_{i}-y_{j}$. Thus,

$$
\begin{equation*}
f_{y}=\frac{x_{51}}{x_{31}}=\frac{y_{51}}{y_{31}}=\frac{x_{62}}{x_{42}}=\frac{y_{62}}{y_{42}} \tag{G3}
\end{equation*}
$$

The equation of line $P_{5} P_{6}$ is

$$
\begin{equation*}
\frac{y-y_{5}}{x-x_{5}}=\frac{y_{65}}{x_{65}} \tag{G4}
\end{equation*}
$$

By using equation (G3), y_{5}, y_{6}, x_{5}, and x_{6} can be expressed in terms of f_{y} and the known values. For example,

$$
\mathrm{y}_{5}=\mathrm{y}_{1}+\mathrm{y}_{51}=\mathrm{y}_{1}-\mathrm{f}_{\mathrm{y}} \mathrm{y}_{13}
$$

In a similar manner, we obtain

$$
\begin{align*}
& y_{5}=y_{1}-f_{y} y_{13} \\
& y_{6}=y_{2}+f_{y} y_{42} \\
& x_{5}=x_{1}-f_{y} x_{13} \tag{G5}\\
& x_{6}=x_{2}+f_{y} x_{42}
\end{align*}
$$

By substituting equations (G5) into (G4), we obtain

$$
\begin{equation*}
\frac{y-y_{1}+f_{y} y_{13}}{x-x_{1}+f_{y} x_{13}}=\frac{y_{2}+f_{y} y_{42}-y_{1}+f_{y} y_{13}}{x_{2}+f_{y} x_{42}-x_{1}+f_{y} x_{13}} \tag{G6}
\end{equation*}
$$

This line passes through P_{0}, so when $x=x_{0}, y=y_{0}$. When this substitution is made and we multiply through by the denominators, we obtain a quadratic in f_{y} :

$$
\begin{equation*}
a f_{y}^{2}+b f_{y}+c=0 \tag{G7}
\end{equation*}
$$

where \qquad

$$
\left.\begin{array}{c}
a=y_{13} x_{42}-x_{13} y_{42} \\
b=x_{13} y_{02}-y_{13} x_{02}+y_{01} x_{42}-x_{01} y_{42} \tag{G8}\\
c=y_{01} x_{21}-x_{01} y_{21}
\end{array}\right\}
$$

In a similar manner, we can obtain a quadratic in f_{x} :

$$
\begin{equation*}
a f_{x}^{2}+b f_{x}+c=0 \tag{G9}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
a=y_{12} x_{43}-x_{12} y_{43} \tag{G10}\\
b=x_{12} y_{03}-y_{12} x_{03}+y_{01} x_{43}-x_{01} y_{43} \\
c=y_{01} x_{31}-x_{01} y_{31}
\end{array}\right\}
$$

If $a \neq 0$ in equation (G7) or (G9), there are two solutions for f_{x} or $f_{y^{\prime}}$ However, there will be only one value between zero and 1 . When two sides are parallel, a will be zero and only one solution exists. Caution is needed when a is not zero but is very small. In this case there is one and only one solution between zero and 1; but if the usual quadratic formula is used, the answer will be inaccurate. The solution, however, can be accurately calculated by using a binomial expansion.

If we let f represent either f_{x} or f_{y}, the solution to either (G7) or (G9) can be written as

$$
\begin{equation*}
f=-\frac{b}{2 a}\left(1 \pm \sqrt{1-\frac{4 a c}{b^{2}}}\right) \tag{G11}
\end{equation*}
$$

When a is zero or small in magnitude, we want the root that is closest to zero. This is obtained by choosing the minus sign for the last term. Now we expand

$$
\left(1-\frac{4 a c}{b^{2}}\right)^{1 / 2}
$$

by the binominal series, to obtain

$$
\begin{equation*}
\sqrt{1-\frac{4 a c}{b^{2}}}=1-\frac{2 a c}{b^{2}}-\frac{2 a^{2} c^{2}}{b^{4}}-\frac{4 a^{3} c^{3}}{b^{6}}-\frac{10 a^{4} c^{4}}{b^{8}}-\ldots \tag{G12}
\end{equation*}
$$

for $|4 \mathrm{ac}|<\mathrm{b}^{2}$. Substituting equation (G12) into equation (G11), with the minus sign, gives

$$
\begin{equation*}
f=-\frac{c}{b}\left(1+\frac{a c}{b^{2}}+\frac{2 a^{2} c^{2}}{b^{4}}+\frac{5 a^{3} c^{3}}{b^{6}}+\cdots\right) \tag{G13}
\end{equation*}
$$

Equation (G13) is used when $\mathrm{ac} / \mathrm{b}^{2}$ is small. Otherwise, the usual quadratic formula is used. In the program (i.e., in subroutine LININT and also in subroutine CONTIN), equation (G13) is used whenever $|4 \mathrm{ac}| \leq \mathrm{b}^{2} / 100$. Only three terms of the series are used; the term $5 a^{3} c^{3} / b^{6}$ is dropped. This leads to a maximum relative error of less than 10^{-7}. When $|4 \mathrm{ac}|>\mathrm{b}^{2} / 100$, the quadratic formula will lose no more than two or three decimal places in accuracy.

There is one further point that must be considered. Up to this point, it has been assumed that the interpolation point is within the overall grid area, and thus we only need to interpolate within a quadrilateral. However, there are cases where extrapolation is necessary. In this case, the nearest quadrilateral is identified, and extrapolation is used. The procedure is similar, but one of the f's must be either negative or greater than 1. The problem, then, is to determine which f to use. Since the direction of the extrapolation is known, it is known whether f is negative or greater than 1. For example, suppose it was necessary to extrapolate below the bottom of the grid area. Then f_{y} must be negative. If only one of the two possible values is negative, the question is settled. If both are negative, the larger value (closest to zero) is used.

After both f_{x} and f_{y} are obtained, the linear interpolation can be performed to obtain z_{0}. Linear interpolation along $\mathrm{P}_{1} \mathrm{P}_{2}$ and $\mathrm{P}_{3} \mathrm{P}_{4}$ is followed by linear interpolation along $P_{7} P_{8}$. These interpolations are calculated by

$$
\begin{aligned}
& z_{7}=z_{1}+f_{x}\left(z_{2}-z_{1}\right) \\
& z_{8}=z_{3}+f_{x}\left(z_{4}-z_{3}\right) \\
& z_{0}=z_{7}+f_{y}\left(z_{8}-z_{7}\right)
\end{aligned}
$$

Combining these equations, we get

$$
\begin{equation*}
z_{0}=z_{1}\left(1-f_{x}\right)\left(1-f_{y}\right)+z_{2} f_{x}\left(1-f_{y}\right)+z_{3}\left(1-f_{x}\right) f_{y}+z_{4} f_{x} f_{y} \tag{G14}
\end{equation*}
$$

APPENDIX H

SYMBOLS

$\lambda \quad$ prerotation, $\left(r V_{\theta}\right)_{i}$, meters $^{2} / \mathrm{sec}$
$\boldsymbol{\xi} \quad$ coefficient in stream-function equation, defined in eq. (A2), $1 /$ meter
$\rho \quad$ density, $\mathrm{kg} /$ meter 3
$\varphi \quad$ angle between s-coordinate line and axis of rotation (fig. 25), rad
$\Omega \quad$ overrelaxation factor
$\omega \quad$ rotational speed (fig. 4, part I), rad/sec
Subscripts:
av average blade-to-blade value
b blade
bf blade flow
cr critical
fs free stream
hub hub
i inlet
$l \quad$ blade surface facing direction of positive rotation
le leading edge
$m \quad$ component in direction of meridional streamline
mid midchannel
o outlet
r component in radial direction
s component in s-direction
$t \quad$ component in t-direction
te trailing edge
tip tip
tr blade surface facing direction of negative rotation
z component in axial direction
θ component in tangential direction
Superscripts:

- absolute stagnation condition
" relative stagnation condition

REFERENCES

1. Wu, Chung Hua: A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. NACA TN 2604, 1952.
2. Katsanis, Theodore: Use of Arbitrary Quasi-Orthogonals for Calculating Flow Distribution in the Meridional Plane of a Turbomachine. NASA TN D-2546, 1964.
3. Katsanis, Theodore: FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
4. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Flow Surface of an Axial- or Mixed-Flow Turbomachine. I - User's Manual. NASA TN D-7343, 1973.
5. Katsanis, Theodore; and McNally, William D.: FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Flow Surface of an Axial- or Mixed-Flow Turbomachine. II - Programmer's Manual. NASA TN D-7344, 1974.
6. Katsanis, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Midchannel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct. I - User's Manual. NASA TN D-8430, 1977.
7. McCracken, Daniel D. ; and Dorn, William S.: Numerical Methods and FORTRAN Programming. John Wiley \& Sons, Inc., 1964.
8. Varga, Richard S.: Matrix Iterative Analysis. Prentice-Hall, Inc., 1962.
9. Katsanis, Theodore: A Computer Program for Calculating Velocities and Streamlines for Two-Dimensional, Incompressible Flow in Axial Blade Rows. NASA TN D-3762, 1967.
10. Schumann, Lawrence F.: FORTRAN Program for Calculating Leading- and Trailing-Edge Geometry of Turbomachine Blades. NASA TM X-73679, 1977.
11. Walsh, J. L.; Ahlberg, J. H.; and Nilson, E. N.: Best Approximation Properties of the Spline Fit. J. Math. Mech., vol. 11, no. 2, 1962, pp. 225-234.
12. Kannenberg, Robert G.: CINEMATIC - FORTRAN Subprograms for Automatic Computer Microfilm Plotting. NASA TM X-1866, 1969.

[^0]: *Supersedes NASA TN D-7344.

[^1]: a/---/ denotes unlabeled COMMON block.

[^2]: ${ }^{\text {a }} /---/$ denotes unlabeled COMMON block.

