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The deformation of a circular, inextensible elastic cell is examined when the cell is placed into two

different background potential flows: a uniform stream and a circulatory flow induced by a point vortex

located inside the cell. In a circulatory flow a cell may deform into a mode m shape with m-fold rotational

symmetry. In a uniform stream, shapes with 2-fold rotational symmetry tend to be selected. In a weak

stream a cell deforms linearly into an ellipse with either its major or its minor axis aligned with the

oncoming flow. This marks an interesting difference with a bubble with constant surface tension in a

uniform stream, which can only deform into a mode 2 shape with its major axis perpendicular to the

stream (Vanden-Broeck & Keller 1980b). In general, as the strength of the uniform stream is increased

from zero, solutions emerge continuously from the cell configurations in quiescent fluid found by Flaherty

et al. (1972). A richly-populated solution space is described with multiple solution branches which either

terminate when a cell reaches a state with a point of self-contact or loop round to continuously connect

two different possible cell states under identical conditions in the absence of flow.

Keywords: Inviscid flow, fluid-structure interaction, elastic cell

1. Introduction

Many applications in engineering and the physical and biological sciences involve the interaction be-

tween a moving fluid and a solid object. Of particular interest is the case when a free boundary is

present, for example when an elastic solid deforms in response to local fluid forces (see, for example,

Korobkin et al. 2011). Examples include flapping flags (e.g. Michelin & Llewellyn-Smith 2010), the

swimming of microorganisms (e.g. Lauga & Powers 2009), and the transport of liquified natural gas

(e.g. Ten et al. 2011). Knowledge of how an elastic boundary deforms in the presence of a class of

simple fluid flows is of fundamental importance. For example, recent work by Alben (2011) examines

the interaction between a point vortex and a flexible wall. In the present paper we study the equilibrium

states which may be achieved when an elastic cell is placed into two prototype fluid motions, a uniform

stream and a swirling flow.

In a seminal paper, Flaherty et al. (1972) calculated the buckled states of a thin-walled elastic cell

subjected to a constant transmural pressure, that is a constant net pressure between the exterior of the

cell and the interior. They showed that when the transmural pressure exceeds a sequence of threshold

values, the cell may buckle into a configuration with two-fold, three-fold, etc., rotational symmetry.

As the transmural pressure is increased, cells eventually reach a state with a point of self-contact, and

further increasing the transmural pressure produces cells whose profiles self-intersect. Flaherty et al.

(1972) bypassed this difficulty, and widened the space of physically admissible solutions, by allowing

the contact point to extend into a line of self-contact which can be described using a similarity solution

structure.

When an elastic cell is placed into a moving fluid, the local transmural pressure is not constant but
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varies around the cell boundary. In this case, the problem of predicting the cell shape is inherently

coupled to the exterior flow problem through the dynamic balance of fluid and elastic stresses at the

cell boundary. In the present work, we assume that the exterior fluid motion is inviscid and irrotational

and that the pressure inside the cell is constant. Our goal is to predict the possible equilibrium cell

shapes. Two types of exterior flow field are examined: first a uniform stream and second the circulatory

flow induced by a point vortex placed inside the cell. In each case the problem is solved by seeking an

analytic description for the complex velocity potential in the form of a power series in an appropriate

conformally-mapped domain. The coefficients of the series are determined numerically by enforcing

the dynamic stress condition on the cell boundary via a collocation method. Our work complements

studies on the similar problem involving a bubble with surface tension conducted by Vanden-Broeck

& Keller (1980b) for a bubble placed in a uniform stream, and by Crowdy (1999a) and Wegmann &

Crowdy (2000) for a bubble placed into a flow with circulation. Other related work includes studies

of inviscid waves on a fluid annulus by Crowdy (1999b), Crowdy (2001) and Blyth & Vanden-Broeck

(2005).

In the next section we formulate the general framework for studying the deformation of the cell in

either of the two mentioned flow-fields. Section 3 covers the case of a uniform flow field, and section 4

addresses the circulatory flow problem.

2. General formulation

We consider the deformation of a closed, two-dimensional elastic cell placed into an inviscid, irrotational

flow. Two exterior flow-fields are considered, namely a uniform stream and a circulatory flow induced

by a point vortex located inside the cell. The two different flow configurations are illustrated in Figures

1 and 8 respectively. In both cases, the fluid occupies the infinite region exterior to the cell and the

interior region is assumed to be held at a constant pressure pa. The cell boundary is modelled as a thin

elastic shell.

Ignoring inertia, a balance of forces and moments in the elastic cell boundary requires (e.g. Flaherty

et al. 1972)

γ ′+κq = 0, q′−κγ = pa − p, q = m′, (2.1)

where γ(s) and q(s) are the tangential and shear tensions respectively with units of force per unit length,

m(s) is the bending moment, p is the pressure in the liquid at the cell boundary, and s denotes arc

distance along the cell boundary measured positively in the counterclockwise direction. The primes in

(2.1) denote differentiation with respect to s. The curvature κ = −θ ′(s), where θ is the angle made

between the tangent to the boundary and the horizontal. For the undeformed circular cell of radius a the

curvature is κ =−1/a. For the bending moment, we adopt the simple linear relationship

m = EB(κ −κR), (2.2)

where EB is a bending modulus and κR is a reference curvature attained when the elastic cell is in its

resting state; in the present work κR will be assumed to be a constant and, therefore, to play no part in

the dynamics according to (2.1). According to thin shell theory, EB = Eh3/[12(1−ν2)], where E is the

Young’s modulus, ν is the Poisson ratio, and h the shell thickness which is here assumed to be constant

(e.g. Fung 1965). The relationship (2.2) has been justified for the case of an inextensible elastic shell,

as assumed here, by Pozrikidis (2002). Integrating (2.1) once with respect to arc length and eliminating

γ and q, we obtain the dynamic relationship between the liquid pressure at the cell boundary and elastic
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stresses,

pa − p = EB

(

κ ′′+
1

2
κ3 −σκ/L2

)

, (2.3)

where σ = L2(γ/EB + κ2/2) is a dimensionless constant of integration, and L is a length scale to be

discussed below.

To describe the flow it is convenient to introduce a complex potential w = φ + iψ , where φ(x,y) is

the velocity potential and ψ(x,y) is the stream function. Requiring that the complex function w(z) be

analytic, it only remains to satisfy the relevant boundary conditions. These stipulate that the cell bound-

ary is a streamline and that the liquid pressure at the cell boundary is in balance with the elastic forces

according to (2.1). Starting from Bernoulli’s equation, and making use of (2.3), we non-dimensionalise

using L as a reference length and U as a reference speed associated with the background flow to obtain

1

2
α|u|2 −

(

κ ′′+
1

2
κ3 −σκ

)

= B, (2.4)

on the cell boundary, where |u|= |∇φ | is the flow speed, B is the Bernoulli constant, and

α =
ρL3U2

EB

, (2.5)

where ρ is the density of the liquid. The particular choices for U and L will be discussed in subsequent

sections.

In the limit α → ∞, with α/σ = O(1), the first two terms in the bracket on the left hand side

of (2.4) are effectively removed, and we recover the problem for a bubble with surface tension in an

ambient flow. In this case, for the circulatory flow problem, analytical solutions have been derived by

Crowdy (1999a) and Wegmann & Crowdy (2000). An exact solution for a bubble in a uniform flow was

obtained by McLeod (1955); numerical solutions were subsequently presented by Petrova (1970) and

Vanden-Broeck & Keller (1980b).

Taking the limit α → 0 in (2.4) effectively removes the first term leaving the classical problem of

an elastic shell exposed to a constant pressure difference across its boundary (e.g. Antman 2005). This

limit can be thought of as removing the background flow by setting U to zero so that the pressure is

uniform throughout the liquid. A simple solution is given by κ = constant corresponding to a circular

shell. In this case the constant B on the right hand side of (2.4) represents the transmural pressure across

the shell boundary ∆ p (= exterior pressure minus interior pressure). Classical theory predicts that a

circular cylindrical shell buckles into a non-circular shape with n-fold rotational symmetry, for integer

n, when the transmural pressure across the shell boundary ∆ p exceeds the critical value ∆ p = n2 − 1

(e.g. Fung 1997, p. 217). Flaherty et al. (1972) studied post-buckling solutions valid when ∆ p > n2−1

including shapes with points of contact and segments of contact.

3. An elastic cell in a uniform stream

First we examine the deformation experienced by a cell placed in a uniform stream of strength U∞, as

is illustrated in Figure 1(a). In our calculations we assume that the cells have both a horizontal and a

vertical line of symmetry, as in the sketch in Figure 1(a). To calculate the shape of the cell this we make

use of the conformal mapping method of Ozugurlu & Vanden-Broeck (2000), the particular details of

which are clearly described in that paper and so we will provide only the essential details needed for the
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Fig. 1: (a) Sketch of uniform flow past an elastic cell in the physical (x,y) plane. (b) The flow

configuration in the complex potential w = φ + iψ plane. (c) The semicircular image in the t-plane after

the conformal mapping (3.2). Points A−D are mapped between the planes as shown.

present problem. The key idea is to map the flow in the upper-half complex potential w-plane shown in

Figure 1(b) to the interior of the semicircle of unit radius in the complex t-plane shown in Figure 1(b).

The line ψ = 0 corresponds to a horizontal line of symmetry in the physical plane. The upper half of the

elastic cell boundary occupies −b 6 φ 6 b and is mapped to the semicircular boundary in the t-plane.

For convenience we choose U =U∞ as the velocity scale and L = b/U∞ as the length scale. Hence-

forth all variables are assumed to have been made dimensionless according to these scales. The di-

mensionless elastic parameter (2.5) takes the form α = ρb3/(U∞EB). Making use of the conditions at

infinity, we may determine the Bernoulli constant and hence write (2.4) as

1

2
α|u|2 −

(

κ ′′+
1

2
κ3 −σκ

)

=
1

2
α +P, (3.1)

where P = b3(p∞− pa)/(EBU3
∞) and p∞ is the far-field pressure. On the upper part of the cell boundary,

traversing from B to C, the dimensionless velocity potential occupies the range −1 6 φ 6 1. The

conformal mapping to the t-plane is effected by taking

−w =
1+ t2

2t
. (3.2)

Under this mapping points A-D in the complex potential w-plane shown in Figure 1(b) are mapped to

the t-plane as shown in Figure 1(c). Near to the fore and aft stagnation-points located at B and C in

Figure 1, the complex velocity ζ = u− iv has the local behaviour ζ ∼ O(t2 −1) as t →±1, and for this
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reason it is convenient to seek an analytic description for the complex velocity inside the unit semicircle

in the form

ζ = (1− t2)
∞

∑
n=1

cn t2n−2, (3.3)

where the infinite set of coefficients cn is to be found. These coefficients are taken to be real in order to

satisfy the kinematic condition that v = 0 along AB and CD in Figure 1(a). The right hand side in (3.3)

has been constructed so that ζ is analytic and that the flow is symmetric about the vertical centreline, so

that on the unit semicircle

ζ (eiω ) = ζ
(

ei(π−ω)
)

(3.4)

for angles 0 6 ω 6 π , where the bar indicates the complex conjugate.

In the far field the flow must match to the uniform stream, and this requires ζ → 1 as t → 0, where-

upon

c1 = 1. (3.5)

A numerical method is used to satisfy the dynamic boundary condition (2.4) on the cell boundary. This

is discussed in the next section.

3.1. Numerical method

Following Ozugurlu & Vanden-Broeck (2000) we satisfy the dynamic boundary condition approxi-

mately using a collocation method. We discretize the semicircular boundary in the t-plane by writing

t = eiω and taking N equally-spaced points in ω in the range 0 < ω < π/2 excluding the end-points 0

and π/2. Noting that

xφ + iyφ =
1

u− iv
=

u+ iv

u2 + v2
, (3.6)

after a little algebra we may obtain the convenient expression for the curvature,

κ =
1

sinω

uvω − vuω

(u2 + v2)1/2
, (3.7)

where we have used the fact that φ = −cosω according to the mapping (3.2). It should be noted that

according to (3.7) the undeformed circular cell has negative curvature. A closed form expression for

the term κ ′′ may be readily derived; however it is rather lengthy and it is suppressed in the interest of

brevity. Fixing two out of the three parameters α , P and σ , we truncate the infinite series in (3.3) at the

finite level n = N and apply the dynamic boundary condition (2.4) at each of the N collocation points

to obtain N nonlinear algebraic equations for the N unknowns c2, . . . ,cN and the remaining parameter.

These equations are solved using Newton iteration supplied with a suitable initial condition.

Although it provides a convenient means for performing the computations, using b/U∞ as the refer-

ence length scale makes physical interpretation difficult. To present our results we will first rescale using

the fixed cell perimeter as the reference length. To do this we first compute the dimensional perimeter

of the cell λ (b/U∞), where λ is the dimensionless cell perimeter defined by

λ = 2

∫ b

−b
(u2 + v2)−1/2 dφ . (3.8)
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We then report results with reference to the new dimensionless parameters α̂ , P̂ and σ̂ , where

α̂ =

(

λ

2π

)3

α =
ρa3U2

∞

EB

, P̂ =

(

λ

2π

)3

P =
a3(p∞ − pa)

EBU3
∞

, σ̂ =

(

λ

2π

)2

σ . (3.9)

Cells are then plotted in units of a, the equivalent radius of a circle with the same physical perimeter as

the cell, rather than units of b/U∞. We note that 2πa = λ b/U∞. A useful measure for characterising the

deformed cells is the dimensionless bending energy

Ê =
1

2π

∫ 2π

0
κ̂2 dŝ, (3.10)

where κ̂ = (λ/2π)κ and ŝ = (2π/λ )s. The dimensionless bending energy Ê has been normalised so

that it is equal to unity for a circular cell. For a typical calculation, we fix α̂ and P̂ and obtain σ̂ as part

of the solution.

Under the new non-dimensionalisation the dynamic boundary condition (3.1) becomes

1

2
α̂ |u|2 −

(

κ̂ ′′+
1

2
κ̂3 − σ̂ κ̂

)

=
1

2
α̂ + P̂, (3.11)

where a prime denotes differentiation with respect to ŝ. When α̂ = 0, (3.11) reduces precisely to the

equation studied by Flaherty et al. (1972) for an elastic cell in a quiescent environment. Multiple

solutions exist for this problem. First, a circular cell is always a solution. Bifurcations from the circular

state occur at a sequence of critical pressures, P̂ = n2 − 1, for natural number n, whereupon the cell

can buckle into a non-circular shape with n-fold rotational symmetry. These buckled shapes eventually

reach a pinched state in which the cell has at least one point of self-contact. Flaherty et al. (1972)

computed the first few critical pressures at which pinching occurs for mode 2, 3 and 4 shapes to be

P̂c2 = 5.247, P̂c3 = 21.65, P̂c4 = 51.84. (3.12)

Given the expected left-right and up/down symmetry of the cells placed into a uniform stream, we are

only interested in the even mode buckled states with n = 2k, for natural number k.

3.2. Linear theory: α ≪ 1.

Vanden-Broeck & Keller (1980b) conducted a linearised analysis for a bubble in a uniform stream in the

limit when the bubble is only mildly deformed. To a first order approximation, they found the bubble

deforms into the shape of an ellipse with its major axis oriented perpendicular to the oncoming stream.

We may perform a similar analysis here for a circular cell placed into a weak uniform stream by taking

α̂ to be small. The analysis is most conveniently presented using the nondimensionalisation introduced

at the end of section 3.1, so that the dimensionless radius of the undeformed circular cell is equal to

unity.

In the simplest case, we consider small perturbations from the circular state. To leading order ap-

proximation, the flow around the cell corresponds to that due to a uniform stream past a circular cylin-

der of unit radius, so that to a first approximation the slip velocity on the cell boundary is given by

u = −2sins eθ , where eθ is the polar unit vector tangent to the circle (e.g. Batchelor 1967). Retaining

the leading order contribution from the exterior flow, the dynamic boundary condition (3.11) is written

κ̂ ′′+
1

2
κ̂3 − σ̂ κ̂ =

1

2
α̂ − α̂ cos2s− P̂, (3.13)
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which we recognise as a forced Duffing equation (e.g. Drazin 1992). Assuming that the cell is only

slightly deformed from a circle, we expand by writing

κ̂(s) =−1+ α̂ κ̂1(s)+ · · · , σ̂ = σ0 + α̂σ1 + · · · . (3.14)

Substituting these expansions into (3.13), we obtain at leading order P̂ = 1/2−σ0. At O(α̂) we find

that σ1 = 1/2 and that κ̂1 satisfies the equation

κ̂ ′′
1 +(P̂+ 1)κ̂1 =−cos2s. (3.15)

The homogeneous form of this equation is the same as that for small perturbations from the circular

state in the absence of flow. It is known that (e.g. Fung 1997, p. 217) a circular cell buckles into a shape

with n-fold rotational symmetry when the transmural pressure exceeds a sequence of threshold values,

which in the present analysis correspond to P̂ = n2 − 1 for natural number n.

The right hand side of (3.15) forces a deformation with two-fold rotational symmetry. The particular

integral solution to (3.15) is

κ̂1 =
1

(3− P̂)
cos2s, (3.16)

which implies that the elastic cell deforms linearly into an ellipse. Of particular interest is the fact that

when P̂ < 3 the ellipse has its major axis oriented at ninety degrees to the oncoming stream, as for the

bubble problem studied by Vanden-Broeck & Keller (1980); however, when P̂ > 3 the ellipse has its

major axis aligned with the oncoming stream, a circumstance which cannot arise for a bubble. A kind of

resonance occurs at the pressure P̂ = 3 where (3.16) fails and no periodic solution is possible according

to the present linear theory. This issue can be resolved using a weakly nonlinear theory, as is discussed

in the next section.

3.3. Weakly nonlinear theory: P̂ = 3.

In this section we use a weakly nonlinear theory to resolve the behaviour at the resonant pressure P̂ = 3.

The key idea is to posit an expansion valid when α̂ ≪ 1 which is capable of removing the secular terms

which are responsible for the failure of the linear theory. We fix P̂ = 3 and expand by writing

κ̂(s) =−1+ α̂1/3 k1(s)+ α̂2/3 k2(s)+ α̂ k3(s)+ · · · , (3.17)

and

σ̂ = σ0 + α̂1/3 σ1 + α̂2/3 σ2 + · · · . (3.18)

Substituting into (3.11) we derive a sequence of problems at each order. These problems are to be solved

subject to the conditions appropriate for mode 2 shapes (Flaherty et el. 1972)

κ̂ ′(0) = κ̂ ′(π/2) = 0,

∫ π/2

0
κ̂ ds =−

π

2
(3.19)

also being satisfied at each order of approximation. We present only the important details of the analysis.

At leading order we find that σ0 = −5/2. At O(α̂1/3) we obtain k1 = a1 cos2s+ b1 sin2s for constants

a1 and b1. Proceeding to O(α̂) we find that σ1 = 0 and that

b1

(

a2
1 + b2

1

)

= 0, a1

(

a2
1 + b2

1

)

=
32

9
, σ2 =

3

4

(

a2
1 + b2

1

)

. (3.20)
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FIG. 2: (a) Solution branch showing Ê against α̂ for P̂ = 0. (b) Cell profiles along the solution branch

shown in (a). The cells are plotted on an (x̂, ŷ) graph where (x̂, ŷ) = (2π/λ )(x,y). Each cell has the

same perimeter equal to 2π .

These results follow from enforcing conditions (3.19) and from requiring that the secular terms which

appear in the solution for k3(s) are eliminated. The solution to (3.20) is a1 = (2/3)121/3, b1 = 0, and

σ2 = (1/3)122/3. Since a1 > 0 cells will deform into mode 2 shapes with their major axis perpendicular

to the uniform stream. The bending energy is found to be

Ê = 1+

(

a2
1

2

)

α̂2/3 +O(α̂), (3.21)

which implies the presence of a cusp in the Ê − α̂ solution curve at P̂ = 3. Both of the last two ob-

servations will be corroborated by the results of full nonlinear calculations to be discussed in the next

section.

3.4. Results

The linear theory in section 3.2 suggests that important differences will arise depending on whether we

have P̂ < 3 or P̂ > 3. We begin by examining the former case, P̂ < 3. In Figure 2(a) we show the

solution curve in Ê − α̂ space for the case P̂ = 0. In agreement with the linear theory, the cell starts

to deform into a vertically aligned elliptical shape as α̂ is increased from zero. The branch shown in

Figure 2(a) terminates at the point where the cell pinches together. Cell profiles are shown in Figure

2(b). The leftmost dot in Figure 2(a) corresponds to the circular profile in Figure 2(b). The remaining

dots correspond to cell profiles in an obvious way. The calculations may be continued beyond the

point of self-contact to obtain self-intersecting cell profiles. For an elastic cell in an ambient medium

at constant pressure a point of contact is established when the transmural pressure between the interior

and the exterior reaches a critical value, and thereafter self-intersection is found. Flaherty et al. (1972)
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FIG. 3: Pinching cell profiles for uniform stream flow for (P̂, α̂c) = (−200,789) shown with a thick

solid line, (0,29.3) shown with a thin solid line, and (5.247,0) shown with a broken line. The circles

indicate the Flaherty et al. (1972) solution for a static cell. The cells are plotted on an (x̂, ŷ) graph where

(x̂, ŷ) = (2π/λ )(x,y).

continued the solution space beyond the point of contact by constructing a similarity solution for which

the corresponding cell profiles are made up of closed loops connected by a straight line. Working on

a different problem but in a similar vein, Vanden-Broeck & Keller (1980a) extended the solution of

Crapper (1957) for capillary waves on a liquid surface beyond the point where the waves establish

periodic points of self-contact enclosing trapped bubbles of air by allowing for an adaptable pressure

inside the bubbles. Extending our solution space in the same spirit ought to be possible for the present

problem, although we do not pursue this here.

In Figure 3 we show the limiting cell profiles with a point of self-contact for three different values

of P̂. In each case the cells were found by trial and error to identify the correct value of α̂ for self-

contact, which we call α̂c. In the extreme case, α̂c = 0 at P̂ = 5.247 which coincides precisely with the

critical pressure identified by Flaherty et al. (1972) for a static cell with two-fold rotational symmetry to

develop a point of self-contact. Flaherty’s solution at this pressure is shown in the figure with circles. As

P̂ is reduced from this critical pressure, the point-contact cells become more slender. Indeed, as P̂ passes

through zero and then becomes large and negative, the cells become increasingly slender and eventually

approach a limiting shape. The approach to a limiting cell configuration is indicated by the behaviour

of the speed at the top of the cell, q = |u|2, which is shown in Figure 4(a). As the limiting shape is

approached the magnitude of the elastic terms on the left hand side of the dynamic boundary condition

(3.1) becomes relatively small. This suggests that the limiting profile corresponds to the pinched bubble

with surface tension in a uniform stream computed by Vanden-Broeck & Keller (1980b). Repeating

their calculation for the bubble by disregarding the elastic terms in (2.4), we find that P̂/α̂c = −0.273

and q = 6.56 at the top of the bubble. The latter value is shown by the dashed line in Figure 4(a).

In Figure 4(b) the elastic cell profiles for large negative P̂ clearly approach the limiting bubble shape,

which is shown with circles.
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ŷ

FIG. 4: (a) The speed q = |u|2 at the top of the pinched cells (as illustrated in Figure 3) versus α̂c. The

dashed line shows the limiting value for a pinched bubble q = 6.56. (b) Close-up of one quarter of the

pinching cell profiles for (P̂, α̂c) = (−200,761) (thick solid line), (−1.6× 103,5.92× 103) (thin solid

line) and (−2.56×104,9.38×104) (dashed line). The limiting shape corresponding to a pinched bubble

is shown with circles. Note that (x̂, ŷ) = (2π/λ )(x,y).

We now turn particular attention on the case P̂ > 3. As remarked above, the solution space is

expected to be much richer here because of the possibility of multiple solutions at α̂ = 0. In Table 1 we

summarise the possible cell shapes at α̂ = 0. Note that we are only interested in physically admissible

solutions - other mathematically possible solutions exist but they correspond to cell shapes with one or

more self-intersections. Since we are interested in the effect of a uniform stream on the cell shapes for

α̂ > 0, the orientation of mode n buckled states is important to within the symmetry restrictions imposed

by the problem (recall that cells are required to be both up/down and left/right symmetric). With this

in mind, mode 2 shapes at α̂ = 0 with their major axes oriented vertically and horizontally are to be

treated as distinct. Similarly, there are two distinct even mode n shapes that are related to each other

by a rotation about their centre through an angle π/n. We emphasise that although mode-n shapes are

possible at α̂ = 0 (the Flaherty problem), when α̂ > 0 the mode 2 shape is forced by the background

flow. However, higher order modes may emerge and possibly dominate to produce cell shapes with

higher order rotational symmetry as we shall see.

3 6 P̂ 6 5.247 5.247 6 P̂ 6 15 15 6 P̂ 6 35 35 6 P̂ 6 51.84 51.84 6 P̂ 6 63

Circle, mode 2 Circle Circle, mode 4 Circle, mode 4, mode 6 Circle, mode 6

Table 1: Possible physically admissible cell shapes at α̂ = 0. Note that for a mode n shape. Higher

mode k shapes exist beyond the range shown here.
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FIG. 5: (a) Solution branch for P̂ = 3.2. Unphysical sections of the branch in α̂ < 0 are shown with a

broken line. (b) Solution branches for P̂ = 25. The pinched cells corresponding to the dots at the end of

each branch are also shown. The inset in (b) shows the two buckled shapes at α̂ = 0. The solid/dashed

cell in the inset deforms into cell B/C as α̂ is increased.
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Ê
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crosses on the P̂ = 3 curve represent the weakly nonlinear prediction (3.21): Ê = 1+ 1.16 α̂2/3.
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FIG. 7: (a) Solution branches corresponding to pinched cell shapes. Branches 1 and 2 emerge from

P̂ = 5.247 at α̂ = 0, and branches 2, 4 emerge from P̂ = 51.84 at α̂ = 0; that is they emerge from the

two pinching pressures for mode 2 and mode 4 shapes respectively in static fluid (Flaherty et al. 1972).

The left/right cell shapes inset into the figure correspond to P̂ = 55.0 on branch 4/solid part of branch 2

respectively. (b) Cell profiles at P̂ = 55 at α̂ = 0 and α̂ = 98.4.

As α̂ is increased from zero, multiple solution branches emanate from the many possible states at

α̂ = 0 summarised in the previous paragraph and in Table 1. Figure 5(a) shows the solution branch for

the case P̂ = 3.2. Parts of the branch extending to non-physical values α̂ < 0 are included to illustrate

that the two apparently separate branches in α̂ > 0 are in fact connected. The whole solution branch

has a cross-over point at Ê = 1.52 at which there are two solutions for the cell shape relevant to our

problem, that is two mode 2 shapes, one with major axis aligned with the oncoming stream and one

with major axis perpendicular to the stream. Also shown in Figure 5(a) are typical cell shapes at three

different points on the solution branch. At Ê = 1 the cell is perfectly circular. According to the linear

theory of section 3.2 the branch emanating from Ê = 1 corresponds to mode 2 shapes with the major

axis aligned with the horizontal. Cells of this type are found along the branch emanating from Ê = 1

up to the branch corss-over point at Ê = 1.52 (two typical cells are shown as shapes A and B). On the

uppermost solution branch in Figure 5(a), the cell shape at α̂ = 0 is a partially buckled mode 2 shape at

α̂ = 0 with major axis perpendicular to the oncoming stream. A typical cell further to the right along

this branch is shown as shape C. Eventually, as α̂ is increased, cells along the uppermost branch reach

a pinched state with a point of self-contact similar to that shown in Figure 2(b).

As was noted in section 3.2, a kind of resonance occurs at the critical pressure P̂ = 3 in the limit

α̂ → 0, where linear perturbation theory fails. The weakly nonlinear calculation presented in section

3.3 predicted the occurrence of a cusp in the Ê − α̂ curve at α̂ = 0, and this is confirmed by fully

nonlinear calculations. As P̂→ 3+ we find that the loop in Figure 5(a) shrinks and eventually disappears.

The transition through P̂ = 3 is shown in Figure 6, which demonstrates the change in character of the

solution branch in Ê − α̂ space in the neighbourhood of the point (Ê , α̂) = (1,0) as P̂ passes through
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FIG. 8: Cell profiles straddling a wall aperture: P̂ = 3.2 and α̂ = 116.3 (upper panel) and P̂ = 25

and α̂ = 7.74× 103 (lower panel). The pinched cell profile in the lower panel appears eventually by

continuing the solution branches seen in Figure 5(b) beyond point B. The heavy horizontal lines in each

panel represent the solid wall.

3 from above. Parts of the solution branch in the non-physical parameter range α̂ < 0 are shown to aid

mathematical understanding. Evidently the bifurcation diagram does indeed have a cusp at α̂ = 0 at the

critical pressure P̂ = 3. Moreover the quantitative agreement between the weakly nonlinear prediction

for the bending energy (3.21), shown with crosses in the middle diagram, is excellent. Cells along

the branch at P̂ = 3 emanating from the cusp into α̂ > 0 are of mode 2 type with their major axis

perpendicular to the oncoming stream, which is also in agreement with the weakly nonlinear theory

prediction. Eventually, as α̂ increases, the cells reach a state with a point of self-contact.

In the range 5.247 6 P̂ 6 15 the only relevant solution at α̂ = 0 is the circle according to Table 1.

Increasing α̂ leads to mode 2 shapes with major axis aligned with the oncoming stream, in agreement

with the linear theory of section 3.2. Eventually α̂ reaches a critical value at which the cells pinch. In

the range 15 6 P̂ 6 35, the relevant solutions at α̂ = 0 are the circle and two mode 4 shapes which

are equivalent to within a rotation through π/4. Figure 5(b) shows the three solution branches which

emerge from these three states at α̂ = 0. Solutions along each of these branches terminate at points

corresponding to the pinched cell shapes A, B and C. Comparing the solution space in this figure with

that seen in Figure 5(b), we see that the loop containing A, B has split into two disjoint parts.

Figure 7(a) shows the solution branches corresponding to pinched cell shapes. For P̂ < 22.3 there

is one pinched solution. This is found on the uppermost part of the branch in Figure 5(a), for example

(recall that there are no pinched solutions on the loop through the points A, B in this figure). When

P̂ > 22.3 two pinched solutions appear. In Figure 7(a), branch 1 corresponds to the cell shapes shown

in Figure 3. Pinched cell shapes on branches 1, 2 (dashed part), 3 and 5 emerge from either a circle

or from a mode 2, mode 4, or mode 6 buckled state as α̂ is increased from zero for constant P̂. A cell

profile which emerges as a continuous deformation from a mode 6 shape at α̂ = 0 is shown in Figure
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Fig. 8: Sketch of the elastic cell C with a point vortex of strength Γ at the centre. The fluid is outside.

7(b). Branch 4 (shown with a solid line) and the solid part of branch 2 are particularly interesting as they

correspond to pinched cell shapes which emerge from self-intersected cells as α̂ is increased from zero

for fixed P̂. This is to say that at certain values of P̂, physically realisable cell shapes may be obtained

in the presence of flow even when no physically admissible solutions exists at the same P̂ in the absence

of flow.

Finally we note that since an elastic cell may deform into a mode 2 shape with its major axis aligned

with the flow, an alternative, and physically acceptable, interpretation of some of the self-intersecting

cell shapes which are found beyond the point of contact is available. Referring to the sketch in Figure

1(a), we disregard that part of the flow-field in y < 0 and view the sections AB and CD of the x-axis as

a solid wall. The upper part of the cell may be then be viewed as an elastic cap over an aperture into a

region of constant pressure. Two examples are shown in Figure 8. The configuration shown in the lower

panel of this figure corresponds to a point on the continuation of the branch through point B in Figure

5(b) beyond the point of self-contact. Note that a similar intrepretation is not possible for a bubble since

this always deforms into a mode 2 shape with major axis perpendicular to the stream.

4. An elastic cell in a circulatory flow

In this section we study the shape of an elastic cell placed into a circulatory flow, as is illustrated in

Figure 8. The circulatory flow in the fluid, which lies in the infinite region outside the cell, is induced by

a point vortex inside the cell. In the unperturbed configuration the cell boundary C is circular, of radius

a, and the point vortex is located at the cell centre z = 0. Our goal is to identify non-circular equilibrium

states. The complex potential associated with the point vortex when viewed in isolation is given by

w =−i
Γ

2π
log(z/a), (4.1)

where Γ is the strength of the vortex and z = x + iy. For Γ > 0 the fluid swirls around the cell in

the anticlockwise direction. Selecting the length scale L = a and the velocity scale U = Γ /a, the

dimensionless parameter in (2.5) becomes

α =
ρaΓ 2

EB

. (4.2)

In order to analyse the cell deformation in response to the vortex-induced flow, we write (e.g.
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Vanden-Broeck 2010)

dw

dz
= u− iv = eτ−iθ , (4.3)

where u, v are the velocity components at C in the x, y directions respectively. Here τ = log(u2 +v2)1/2,

and θ is the angle between the unit tangent vector t (shown in Figure 8) and the horizontal.

To represent the flow, we aim to find an analytic function τ − iθ such that the dynamic condition

(2.4) and the no-penetration condition hold on the boundary C. For computational purposes, we note

that (Blyth et al. 2012)

κ =−eτ ∂θ

∂φ
, κ ′′ =−e3τ

[

2

(

∂τ

∂φ

)2 ∂θ

∂φ
+ 3

∂τ

∂φ

∂ 2θ

∂φ2
+

∂ 2τ

∂φ2

∂θ

∂φ
+

∂ 3θ

∂φ3

]

. (4.4)

For the undeformed, circular cell boundary we have κ =−1.

Insisting that the boundary C corresponds to a streamline on which ψ = 0, we transform the flow

domain in the complex z-plane into the interior of the unit circle in the ζ -plane via the mapping

ζ = e−2iπw; (4.5)

note that |ζ |= 1 on ψ = 0. We seek a solution by writing (Vanden-Broeck & Miloh 1995)

τ − iθ = A+ g(ζ ), A =− log2π − iπ/2+ logζ , (4.6)

where A represents the singular contribution made by the point vortex (4.1) and g(ζ ) is a function which

is analytic inside the unit circle. For g(ζ ) we seek the series representation

g(ζ ) =
∞

∑
n=1

anζ n, (4.7)

where the an are coefficients to be found. Assuming that the cell boundary has a line of reflectional

symmetry, a straightforward argument shows that the an are real. When C has k-fold rotational symmetry

we find that

an = 0 if n 6= 0 (mod k). (4.8)

For an undeformed, circular cell boundary C all of the coefficients an are zero. The task is now to

compute the coefficients an to satisfy the dynamic boundary condition (2.4). In general this must be

done numerically, and a suitable method will be described in due course. First, in the next section, we

consider small amplitude cell deformation.

4.1. Linear theory

The velocity potential for the flow with circular streamlines around the undeformed circular boundary

C is given by φ = θ/2π . Denoting the dimensionless polar distance to the centre of the undeformed

boundary by r, we perturb C to the new configuration described by

r = 1+ ε coskθ , (4.9)
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where k is an integer constant and ε ≪ 1 is a small parameter. We note that under this perturbation

the perimeter of the boundary C is unchanged up to O(ε2). Ignoring contributions of size O(ε2), the

choice k = 1 simply corresponds to a small translation of C through a distance ε which preserves the

unperturbed circular shape, and for this reason we restrict attention to k > 2. Consistent with (4.9) the

basic flow is perturbed so that the velocity potential becomes

φ =
θ

2π
+ εΦ(r)sin kθ , (4.10)

where the function Φ(r) is to be determined. Computing the perturbed velocity field and substituting

into the dynamic boundary condition (2.4), we obtain at the leading order,

α

8π2
−

(

σ −
1

2

)

= B, (4.11)

and at O(ε) we find

α

2π

(

kΦ(1)−
1

2π

)

− (1− k2)

(

3

2
−σ − k2

)

= 0. (4.12)

At first order, the kinematic condition on the elastic boundary requires

Φ ′(1) =−
k

2π
. (4.13)

The solution for Φ which remains regular at infinity and which satisfies (4.13) is Φ = r−k/(2π). Sub-

stituting this into (4.12) and using (4.11) we arrive at the dispersion relation

α = 8π2

(

k+ 1

k− 1

)

(

B− (k2 − 1)
)

. (4.14)

Wegmann & Crowdy (2000) derived a similar dispersion relation for the case of bubble with surface

tension in a circulatory flow. It is interesting to note that the dispersion relation (4.14) requires B> k2−1

for positive α , which parallels the condition on the transmural pressure for a buckled tube in a static

liquid (see the comments at the end of section 2).

4.2. Numerical method

In our numerical method we truncate the series in (4.7) at a finite level and determine the series co-

efficients via a collocation method. In view of the symmetry conditions (4.8), we may re-express the

infinite series (4.7) at a point on the boundary in the form

g(ζ ) =
∞

∑
l=1

blζ
kl =

∞

∑
l=1

ble
−2iπklφ , (4.15)

where bl = akl , and we have used the fact that ζ = exp(−2iπφ) on C for 0 6 φ 6 1. Due to the k-fold

rotational symmetry and the reflectional symmetry we need only collocate the portion 0 6 φ 6 1/(2k).
We place N collocation points on the elastic boundary at locations denoted by the values of the velocity

potential,

φ j =
( j− 1)

N
h, j = 1, . . . ,N, (4.16)
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where h = 1/(2k). By applying (2.4) at each of the collocation points, we complete a set of N nonlinear

algebraic equations for the N unknowns including bl , l = 1, . . . ,N − 1, and the Bernoulli constant B.

The equations are solved iteratively using Newton’s method and a suitable initial guess. In particular

when tracing solution branches it is convenient to apply a continuation method and use as initial guess

the converged solution from a previous calculation.

In computational practice we followed two different approaches: first to choose values of α and σ
and to solve for the set bl , l = 1, . . . ,N − 1 and B, and second to choose values of σ and b1 and to solve

for bl , l = 2, . . . ,N−1, and B and α . The second approach is convenient to ensure that a deformed, non-

circular solution is obtained and is consistent with the discussion in section 4.1 concerning linear theory,

where we effectively fix the amplitude of the wave and then fix one of the three parameters α , B and σ .

Once a solution has been found, its physical profile in the x− y plane is constructed by integrating the

identity

∂x

∂φ
+ i

∂y

∂φ
=

1

u− iv
= e−τ+iθ (4.17)

over the range 0 6 φ 6 1/(2k) and using the symmetry properties to assemble the remainder of the cell

profile.

As a check on the numerics we compare with the predictions of linear theory discussed in section

4.1 for the sample case σ = 0. For k = 2 the linear theory yields α = 30π2 ≈ 296 and B = 17/4 = 4.25,

and the numerical calculations yield α = 296 and B = 4.25 and so both sets of values agree to the given

precision. Higher values of k were also checked with similar success.

4.3. Results

Having computed a deformed cell shape we can calculate its dimensionless perimeter, λ , using the

formula

λ =

∫ 1

0
e−τ dφ . (4.18)

In presenting our results we prefer to discuss how a circulatory flows of different strengths affect the

same elastic cell of fixed perimeter. To this end, we note that (2.4) is invariant under the set of transfor-

mations

(u,κ ,α) =

(

2π

λ

)

(û, κ̂, α̂), s =

(

λ

2π

)

ŝ, σ =

(

2π

λ

)2

σ̂ , B =

(

2π

λ

)3

B̂. (4.19)

Applying the transformations (4.19) effectively corresponds to redefining the original choice of scales

used in the non-dimensionalisation from a to λ a for the length and from Γ /a to Γ /(λ a) for the velocity.

In so doing we may take our computed solutions and rescale so that (x̂, ŷ) = (2π/λ )(x,y) to obtain the

solution in the x̂− ŷ plane for a cell of perimeter 2π . This aids comparison with the work of Flaherty et

al. (1972) who discuss cells of dimensionless perimeter 2π . To describe our solutions it is convenient

to refer to the dimensionless measure of the bending energy in the cell boundary,

Ê =
1

2π

∫ 2π

0
κ̂2 dŝ. (4.20)

For an undeformed circular cell Ê = 1.
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FIG. 10: (a) Mode k = 2 solution branches for σ̂ = 0 (thick solid line), σ̂ = 1 (thin solid line) and

σ̂ = −1 (dashed line). The cells are circles at Ê = 1 on each branch and reach profiles with points of

self-contact at the dots at the end of the branches.

(a) (b)

0 500 1000 1500 2000
1

2

3

4

5

6

7

8

9

10

11

12

Ê
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FIG. 11: (a) Mode k = 3 solution branches for σ̂ = 5. The cell is a circle at Ê = 1 and reaches a profile

with a point of self-contact at the dot at the end of the branch.
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In Figure 10 we show mode k = 2 solution branches for three different values of σ̂ . Traversing

each of the branches from left to right the cells deform from circles (with Ê = 1) into shapes with a

point of self-contact. The solution branches may be continued further to obtain physically implausible

self-intersecting cell-profiles. Evidently solutions whose cell profiles do not self-intersect, but for which

α̂ is negative, are possible although it is not clear how to interpret these in a physically meaningful way

– the formulation of our problem sensibly demands that α̂ be positive. Mode k = 3 solutions are shown

in Figure 11 for the case σ̂ = 5. This value was chosen so that the profile with a point of self-contact is

reached in the physically realisable α̂ positive regime.

When α̂ = 0 the dynamic condition at the cell boundary, namely (2.4), reduces to the equation de-

scribing the shape of a cell held in a constant pressure environment studied by Flaherty et al. (1972). In

this case our B corresponds to their pressure p and our constant σ̂ corresponds to their constant c (notice

that they define curvature to be positive for the circular state whereas we take it to be negative). We have

confirmed that when our solution branches meet the line α̂ = 0 we faithfully recompute the pertinent

solutions found by Flaherty et al. (1972). In fact, we recomputed their solutions independently and

checked that our value of B for a chosen σ̂ corresponded exactly to their values of p and c respectively

(note that they do not explicitly report the value of c).

5. Summary

We have studied the deformation of an inextensible thin-walled elastic cell placed in either a uniform

stream or a circulatory flow. Using complex variable methods we have computed the cell configurations

which arise in these two scenarios for different flow strengths. Our work extends the calculations of

Flaherty et al. (1972) for buckled cells in a quiescent environment at constant pressure to the case

where deformation occurs in response to a spatially-dependent dynamic pressure at the cell boundary.

For a cell placed into a uniform stream, the background flow forces upon a circular cell a mode-2 type

deformation. A key result of our work is the observation that while a bubble with constant surface

tension must deform linearly in a weak uniform stream into an ellipse with its minor axis aligned with

the flow, for an elastic cell the linearly deformed shape is again an ellipse but either its minor or its major

axis may be aligned with the flow. While mode-2 type deformation dominates for small deformations

from a circular state, higher order modes can come into play, and indeed dominate the cell shape, under

strong deformation. In all of our calculations for a cell in a uniform stream, we have assumed that cells

have a horizontal line of symmetry. The issue of whether cell shapes which are not up-down symmetric

are possible has not been addressed here and is left as a problem for future work. For a cell placed

into a circulatory flow, no single mode shape dominates and cells with m-fold rotational symmetry are

possible.

The stability of the equilibrium shapes computed here has not been addressed and this important

issue is left as a problem for future work. Another possible avenue for extension is to compute waves

on a fluid annulus bounded by elastic plates, the capillary version of which has been studied by Crowdy

(1999b) and Blyth & Vanden-Broeck (2005). Perhaps the most natural extension of the present work is

to consider the combination of our two flow-fields, namely the flow past an elastic cell endowed with a

finite circulation. This would provide a simple model of the flow past a flexible aerofoil. Work on this

problem is currently underway.
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