1,686 research outputs found

    Heterogeneous Facility Location with Limited Resources

    Get PDF
    We initiate the study of the heterogeneous facility location problem with limited resources. We mainly focus on the fundamental case where a set of agents are positioned in the line segment [0,1] and have approval preferences over two available facilities. A mechanism takes as input the positions and the preferences of the agents, and chooses to locate a single facility based on this information. We study mechanisms that aim to maximize the social welfare (the total utility the agents derive from facilities they approve), under the constraint of incentivizing the agents to truthfully report their positions and preferences. We consider three different settings depending on the level of agent-related information that is public or private. For each setting, we design deterministic and randomized strategyproof mechanisms that achieve a good approximation of the optimal social welfare, and complement these with nearly-tight impossibility results

    Nash Welfare and Facility Location

    Full text link
    We consider the problem of locating a facility to serve a set of agents located along a line. The Nash welfare objective function, defined as the product of the agents' utilities, is known to provide a compromise between fairness and efficiency in resource allocation problems. We apply this welfare notion to the facility location problem, converting individual costs to utilities and analyzing the facility placement that maximizes the Nash welfare. We give a polynomial-time approximation algorithm to compute this facility location, and prove results suggesting that it achieves a good balance of fairness and efficiency. Finally, we take a mechanism design perspective and propose a strategy-proof mechanism with a bounded approximation ratio for Nash welfare
    corecore