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Abstract

We initiate the study of the heterogeneous facility location problem with limited re-
sources. We mainly focus on the fundamental case where a set of agents are positioned in
the line segment [0, 1] and have approval preferences over two available facilities. A mecha-
nism takes as input the positions and the preferences of the agents, and chooses to locate a
single facility based on this information. We study mechanisms that aim to maximize the
social welfare (the total utility the agents derive from facilities they approve), under the
constraint of incentivizing the agents to truthfully report their positions and preferences.
We consider three different settings depending on the level of agent-related information
that is public or private. For each setting, we design deterministic and randomized strate-
gyproof mechanisms that achieve a good approximation of the optimal social welfare, and
complement these with nearly-tight impossibility results.

1. Introduction

The truthful facility location problem is one of the most prominent paradigms in envi-
ronments with strategic participants, and it was in fact the prototypical problem used by
Procaccia and Tennenholtz (2013) to put forward their very successful research agenda of
approximate mechanism design without money about a decade ago. Since then, the problem
has been extensively studied in the literature of theoretical computer science and artificial
intelligence, with a plethora of interesting variants emerging over the years. Among those,
one particularly meaningful variant, which captures several important scenarios, is that of
heterogeneous facility location, introduced by Feigenbaum and Sethuraman (2015) and stud-
ied notably by Serafino and Ventre (2015, 2016), Anastasiadis and Deligkas (2018), Fong
et al. (2018), Chen et al. (2020) and Li et al. (2020a). In this setting, there are multiple
facilities, and each of them plays a different role – for example, a library and a basketball
court. Consequently, the preferences of the agents for the possible outcomes do not only
depend on the location of the facility (as in the original model of Procaccia and Tennenholtz
(2013)), but also on the type of the facility. As a result, the mechanism design problem now
becomes far more challenging.1

1. In particular, the preference domain is no longer single-peaked, and therefore maximizing the happiness
of the agents cannot be achieved by simple median mechanisms.

© AI Access Foundation. All rights reserved.



Deligkas, Filos-Ratsikas & Voudouris

While the literature on heterogeneous facility location is quite rich by this point, there
is a fundamental setting that has surprisingly eluded previous investigations. In particular,
all previous works have considered the case of multiple (predominantly two) facilities which
all have to be located, based on the positions and the preferences of the agents. However,
in many real-world applications, resources are limited, and therefore a decision has to be
made about which subset of the facilities should be build and where. For instance, the
governing body might have sufficient funds to build only one of two options, either a library
or a basketball court. The decision must be made based on the preferences of the agents
over the two facilities, but also on their positions, in a way that incentivizes the agents to
reveal all their private information truthfully; this is clearly a challenging mechanism design
problem.

1.1 Our Setting

We initiate the study of the heterogeneous facility location problem with limited resources.
We focus on the most fundamental case where there are two facilities, and only one of
them must be located somewhere in the line segment [0, 1]. In particular, there is a set
of agents, each of whom is associated with a position in [0, 1] and an approval preference
over the facilities. An agent may approve one of the two facilities or both, and obtains
positive utility2 only if a facility that she approves is built; otherwise, she has zero utility
irrespectively of her position.

Our goal is to design strategyproof mechanisms that choose and locate a single facility,
so as to maximize the social welfare (the total utility of the agents) and incentivize the
agents to truthfully report their private information. We study the following three settings
depending on the level of information about the positions and the preferences of the agents
that is assumed to be public or private.

• General setting: Both the positions and the preferences are private information of the
agents.

• Known-preferences setting: The positions are private information of the agents, whereas
the preferences are public information.

• Known-positions setting: The preferences are private information of the agents, whereas
the positions are public information.

We measure the performance of a strategyproof mechanism by its approximation ratio,
defined as the worst-case ratio over all instances of the problem between the maximum
possible social welfare and the social welfare achieved by the mechanism. For each of the
aforementioned settings, we derive upper and lower bounds on the achievable approximation
ratio of strategyproof mechanisms. An overview of our results can be found in Table 1.

2. We remark that in several facility location settings (e.g., see (Procaccia & Tennenholtz, 2013; Lu et al.,
2009, 2010)), the agents are associated with costs instead of utilities. In the literature of heterogeneous
facility problems however, the setting is commonly defined in terms of utilities, as there is no meaningful
way of assigning a cost to undesirable outcomes, such as a facility which the agent does not approve.
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Deterministic Randomized

General 2 (1, 2]

Known-preferences 2 [4/3?, 4/3]

Known-positions [13/11, 2] (1, 3/2]

Table 1: Overview of our results for deterministic and randomized strategyproof mecha-
nisms. The lower bound 4/3 (marked with ?) in the known-preferences setting holds only
for the class of Random-Median mechanisms defined in Section 4. For the general and
known-preference settings, the bound of 2 also holds for the more general case where we
can choose k out of m ≥ 2 facilities, for appropriate values of k and m.

1.2 Discussion of our Results

We start our investigation by studying deterministic mechanisms in the general setting,
where we show that a simple group-strategyproof mechanism, which we call Middle,
achieves an approximation ratio of 2 (Theorem 3.1); the same guarantee extends to the
other two settings we consider. We complement this result by showing a lower bound of 2
on the approximation ratio of any deterministic strategyproof mechanism, even when the
preferences of the agents are assumed to be known (Theorem 4.1). Combining these two
results, we completely resolve the problem of identifying the best possible deterministic
strategyproof mechanism for both the general and the known-preferences settings. For the
known-positions setting, we show that there is no deterministic strategyproof mechanism
with approximation ratio better than 13/11 (Theorem 5.1).

We also consider randomized mechanisms, and provide improved approximation guar-
antees for both the known-preferences and the known-positions settings. More specifically,
for the known-preferences setting we derive a novel universally group-strategyproof mecha-
nism, termed Mirror, which achieves an approximation ratio of 4/3 (Theorem 4.4). This
mechanism is in fact a member of a larger class of universally group-strategyproof mecha-
nisms, and as we prove, it is the best possible mechanism in this class (Theorem 4.5). For
the known-positions setting, we prove that a variant of the well-known Random Dicta-
torship mechanism, equipped with a carefully chosen tie-breaking rule for the agents that
approve both facilities, is a universally group-strategyproof mechanism (Theorem 5.2) and
achieves an approximation ratio of 3/2 (Theorem 5.6).

Finally, we make initial progress in more general settings with m ≥ 2 facilities, from
which we can choose to locate k < m. We consider three variations based on whether the
utility of each agent is determined by all the facilities she approves, or by the one that is
the closest to or the farthest away from her position. For such utility classes, we show that
an adaptation of Middle still has an approximation ratio of 2 in the general setting, it
is group-strategyproof for k = 1, but it is only strategyproof for k ≥ 2 (Theorem 6.1 and
Lemma 6.2). We complement this result by showing that when k ≤ 2m it is impossible to
do better, even when the preferences of the agents are known (Theorem 6.3).
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1.3 Related Work

As we mentioned earlier, the literature on truthful facility location is long and extensive;
here, we discuss only those works that are most closely related to our setting. The funda-
mental difference between our work and virtually all of the papers on heterogeneous facility
location is that they consider settings with two facilities, where both facilities have to be
built, and the utility/cost of an agent is calculated with respect to the closest or the farthest
among the two.

In particular, Chen et al. (2020) consider a setting in which agents have approval pref-
erences over the facilities, similarly to what we do here, and for which the positions of the
agents are known. Li et al. (2020a) consider a more general metric setting along the lines of
Chen et al. (2020), and design a deterministic mechanism which improves upon the result
of (Chen et al., 2020) when the metric is a line. Fong et al. (2018) consider a setting in
which the agents have fractional preferences in (0, 1); similarly to us, besides studying the
general setting, they also consider restricted settings with known preferences or known po-
sitions. Serafino and Ventre (2015, 2016) and Kanellopoulos et al. (2021) consider a discrete
setting, where the agents are positioned on the nodes of a graph, and the facilities must
be located on different nodes. (Feigenbaum & Sethuraman, 2015) were the first to study
heterogeneous facility location, by presenting a “hybrid” model combining the standard
facility location problem with the obnoxious facility location problem (Cheng et al., 2011,
2013). This setting was extended by Anastasiadis and Deligkas (2018), who allowed agents
to be indifferent between whether a facility would be built or not. Xu et al. (2021) study
a setting where the goal is to locate two facilities under the constraint that the distance
between the locations of the facilities is at least larger than a predefined bound.

Li et al. (2020b) study a conceptually similar but fundamentally different facility location
problem under budget constraints. In their setting, the facilities are strategic and need to
be compensated monetarily in order for them to be built; the goal is to maximize an
aggregate objective given that the total payment is below a predefined budget. Besides
these works, there is long literature of (homogeneous) facility location, studying different
objectives (Alon et al., 2010; Cai et al., 2016; Feigenbaum et al., 2013; Feldman & Wilf,
2013), multiple facilities (Escoffier et al., 2011; Fotakis & Tzamos, 2013; Lu et al., 2009,
2010), different domains (Schummer & Vohra, 2002; Tang et al., 2020; Sui et al., 2013; Sui
& Boutilier, 2015), different cost functions (Filos-Ratsikas et al., 2015; Fotakis & Tzamos,
2016), and several interesting variants (Golomb & Tzamos, 2017; Kyropoulou et al., 2019;
Zhang & Li, 2014; Filos-Ratsikas & Voudouris, 2021; Anshelevich et al., 2021b). We refer
the reader to the recent survey of Chan et al. (2021) for a detailed overview. We also refer
the reader to the survey of Anshelevich et al. (2021a) for an overview of the literature on
distortion, which has been applied for analyzing facility location settings.

Finally, it is instructive to explain how our setting fits within the framework of general
social choice. The original facility location setting of Procaccia and Tennenholtz (2013) can
be seen as a voting setting in which there is a continuum of alternatives on the real line, and
the agents have single-peaked preferences over them, given by the distance functions defined
by their most-preferred positions. In our heterogeneous facility location setting, there is
also another “voting component” in which agents cast approval votes over a different set
of alternatives. In that sense, one can view the setting as a social choice scenario over two
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dimensions, one for the type and one for the position of the facility. On the “type axis”, the
1-out-of-m setting can be seen as a standard single-winner voting setting, whereas the k-out-
of-m is a multiwinner election setting, e,g., see (Caragiannis et al., 2017, 2022; Faliszewski
et al., 2017).

2. Preliminaries

We consider a facility location setting with a set N of n agents and two facilities; we will
discuss extensions to settings with more than two facilities in Section 6. Every agent i ∈ N
has a position xi ∈ [0, 1]; let x = (xi)i∈N be the position profile consisting of the positions
of all agents. Furthermore, every agent i ∈ N also has an approval preference (or, simply,
preference) ti = {0, 1}2 over the two facilities, where tij = 1 denotes that the agent approves
facility j ∈ {1, 2} and tij = 0 denotes that she does not approve facility j; let t = (ti)i∈N
be the preference profile consisting of the preferences of all agents. Let I = (x, t) denote an
instance of this setting.

Given an instance I = (x, t), our goal is to choose and locate a single facility so as to
optimize some objective function that depends on both the distances of the agents from the
facility location and on whether they approve the chosen facility. In particular, if facility
j ∈ {1, 2} is chosen to be located at y ∈ [0, 1], the utility of every agent i ∈ N is defined to
be ui(j, y|I) = tij ·

(
1− d(xi, y)

)
, where d(xi, y) = |xi− y| is the distance between xi and y.

Then, the social welfare is the sum of the utilities of all agents:

W (j, y|I) :=
∑
i∈N

ui(j, y|I).

We denote the optimal social welfare for instance I as W ∗(I) := max(j,y)W (j, y|I).

A mechanism M takes as input an instance I = (x, t) consisting of the position and
preference profiles of the agents, and outputs an outcome M(I) = (jM , yM ) consisting of a
facility jM ∈ {1, 2} that is to be placed at yM ∈ [0, 1]. The approximation ratio ρ(M) of
M is defined as the worst-case ratio (over all possible instances) between the optimal social
welfare and the social welfare of the outcome chosen by the mechanism, that is,

ρ(M) = sup
I

W ∗(I)

W (M(I)|I)
.

A mechanism is strategyproof if it is in the best interest of every agent to report their true
position and preferences, irrespectively of the reports of the other agents. Formally, a mecha-
nism M is strategyproof if, for every pair of instances I = (x, t) and I ′ = ((x′i,x−i), (t

′
i, t−i))

in which only a single agent i misreports a different position and preferences, it holds that

ui(M(I)|I) ≥ ui(M(I ′)|I).

Besides mechanisms that deterministically select a facility and its location, we will
also study randomized mechanisms, which choose the outcome according to probability
distributions. In particular, a randomized mechanism locates each facility j ∈ {1, 2} at
y ∈ [0, 1] with some probability pj(y) such that

∑
j∈{1,2}

∫ 1
0 pj(y)dy = 1. Denoting by
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p = (p1, p2) the probability distribution (for both facilities) used by the mechanism, the
expected utility of every agent i ∈ N is computed as

ui(p|I) =
∑

j∈{1,2}

tij ·
∫ 1

0
(1− |xi − y|) · pj(y)dy.

A randomized mechanism is strategyproof in expectation if no agent can increase her ex-
pected utility by misreporting. Also, we say that a randomized mechanism is universally
strategyproof if it is a probability distribution over deterministic strategyproof mechanisms.
Clearly, a universally strategyproof mechanism is strategyproof in expectation, but the
converse is not necessarily true.

We will also discuss about mechanisms that are resilient to misreports by coalitions of
agents. In particular, a mechanism is group-strategyproof if no coalition of agents can simul-
taneously misreport such that the utility of every agent in the coalition strictly increases.

We are interested in mechanisms that satisfy strategyproofness properties (like the ones
discussed above) and at the same time achieve an as low as possible approximation ratio
(that is, an approximation ratio as close as possible to 1). In our technical analysis in the
upcoming sections, we will distinguish between the following settings:

• In the general setting, the agents can misreport both their positions and preferences.

• In the known-preferences setting, the preferences of the agents are assumed to be
known and the agents can misreport only their positions.

• In the known-positions setting, the positions of the agents are assumed to be known
and the agents can misreport only their preferences.

Observe that positive results (i.e., (group-)strategyproof mechanisms with proven approxi-
mation guarantees) for the general setting are also positive results for the known-preferences
and known-positions settings. Moreover, negative results (i.e., lower bounds on the approx-
imation of (group-)strategyproof mechanisms) for the restricted settings are also negative
results for the general setting. Finally, results (positive or negative) for one of the two
restricted settings do not imply anything for the other restricted setting.

3. General Setting

We start the presentation of our technical results by focusing on the general setting; recall
that in this setting the agents can misreport both their positions and their preferences. Due
to the structure of the problem, which combines voting (based on the preferences of the
agents) and facility location (based on the positions of the agents), it is natural to wonder
whether simple adaptations of the median mechanism (which is known to be strategyproof
and optimal for the original single-facility location problem) lead to good solutions. For
example, we could define mechanisms that locate the majority-winner facility (breaking
ties in a consistent way) at the median among the agents that approve it, or at the overall
median agent. Unfortunately, it is not hard to observe that the first mechanism is not
strategyproof, while the second one has an approximation ratio that is linear in the number
of agents.
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Mechanism 1: Middle

for each facility j ∈ {1, 2} do
Count the number nj of agents that approve each facility j

Locate the most-preferred facility at 1/2

Luckily, there is an even simpler deterministic mechanism that is group-strategyproof
and achieves an approximation of at most 2 in the general setting. We call this mechanism
Middle; see Mechanism 1. In the next section, we will further show that this mechanism is
best possible among all deterministic strategyproof mechanisms in terms of approximation,
even when the preferences of the agents are known.

Theorem 3.1. Middle is group-strategyproof and has an approximation ratio of at most
2.

Proof. Consider any instance I = (x, t). To show that the mechanism is group-strategyproof,
first observe that the positions of the agents are not taken into account when deciding which
facility to locate and where. Hence, no agent has a reason to misreport her position. It
remains to argue that there exists no group of agents who can all strictly increase their util-
ity by misreporting their preferences. To this end, assume that facility j ∈ {1, 2} is chosen
to be placed at 1/2. Observe that the utility of any agent that approves j is maximized
subject to the constraint that the chosen facility is always placed at 1/2. Hence, such agents
would not have incentive to participate in a misreporting coalition. Moreover, the count
nj of facility j would only increase if any group of agents that truly disapprove facility j,
misreport that they approve it. Hence, the outcome would not change in such a case, thus
proving that is indeed group-strategyproof.

We now focus on the approximation ratio of the mechanism. Let w be the facility
chosen by the mechanism, and let o be the optimal facility. We make the following simple
observations:

• Since the facility is placed at 1/2, every agent i that approves w has utility at least
1/2.

• By the definition of the mechanism, since w is the majority winner, we have that
nw ≥ no.

• Since the maximum utility of any agent is 1, we have that W ∗(I) ≤ no.

Putting all of these together, we have:

W (Middle(I)|I) ≥ 1

2
nw ≥

1

2
no ≥

1

2
W ∗(I),

and the bound on the approximation ratio follows.

4. Known-Preferences Setting

Here, we focus on the known-preferences setting, where we assume that the agents can
only strategize over their positions. Our first result is a lower bound of 2 on the approx-
imation ratio of any strategyproof deterministic mechanism, thus proving that Middle
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(0, 1)
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(a) Instance I
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(1, 0)

(0, 1)

1

(b) Instance I ′

Figure 1: The two instances used in the proof of Theorem 4.1, which differ only on the
position of an agent with preferences (1, 0) marked in blue.

(the mechanism presented in the previous section) is best possible for the general and the
known-preferences settings.

Theorem 4.1. In the known-preferences setting, there is no deterministic strategyproof
mechanism with approximation ratio better than 2− δ, for any δ > 0.

Proof. Consider an arbitrary deterministic strategyproof mechanism and the following in-
stance I depicted in Figure 1. There are four agents, two with preferences (0, 1) and two
with preferences (1, 0). One agent of each type is positioned at some ε ∈ (0, 1/2) and the
other is positioned at 1. Without loss of generality, we can assume that the mechanism
chooses to locate facility 2.

Now consider a second instance I ′ that is obtained from I when only the agent i with
preference (1, 0) that is positioned at ε is moved to 1. Since the mechanism is strategyproof,
it must choose to locate facility 2 in instance I ′ as well; otherwise, agent i would prefer to
misreport her position in instance I as 1, thus leading to instance I ′ and the selection of
facility 1, which would increase her utility from 0 to positive. However, the welfare from
locating facility 2 in instance I ′ is at most 1 + ε (no matter where it is located), whereas
the optimal welfare is equal to 2, achieved when facility 1 is located at 1. The bound on
the approximation ratio follows by selecting ε to be arbitrarily small.

Next, we turn our attention to randomization and consider the class of Random-Median
mechanisms. Every mechanism in this class operates by first randomly choosing one of the
facilities based on the preferences of the agents, which is then located at the median among
the agents that approve it. So, different choices of the probability distribution according to
which the facility is chosen lead to different Random-Median mechanisms. It is not hard to
observe that all such mechanisms are universally group-strategyproof.

Lemma 4.2. Every Random-Median mechanism M is universally group-strategyproof.

Proof. The lemma follows directly by the following two facts: (1) The choice of the facility
to be located is made only based on the preferences of the agents, which are assumed to be
known, and thus cannot be manipulated. (2) Given the facility, the location is chosen to
be the position of the median agent among the ones that approve it, which is known to be
a strongly strategyproof mechanism.

Probably the simplest Random-Median mechanism one may come up with to select every
facility with probability proportional to the number of agents that approve it. As such, we
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Mechanism 2: Proportional

for each facility j ∈ {1, 2} do
Count the number nj of agents that approve each facility j

for each facility j ∈ {1, 2} do
Choose facility j with probability

nj

n1+n2

Locate the chosen facility at the median among the agents that approve it

call this mechanism Proportional; see Mechanism 2. By exploiting the definition of this
probability, we can show that Proportional has an approximation of (1+

√
3)/2 ≈ 1.366,

thus significantly improving upon the bound of 2 achieved by deterministic mechanisms.

Theorem 4.3. In the known-preferences setting, Proportional is universally group-
strategyproof and has an approximation ratio (1 +

√
3)/2 ≈ 1.366.

Proof. Since the mechanism is Random-Median, it is universally group-strategyproof due
to Lemma 4.2. To bound the approximation ratio, let Wj be the welfare of the agents that
approve facility j when it is chosen (and located at the median of those agents). Without
loss of generality, assume that W1 ≥ W2. We also have that W1 ≤ n1 since the maximum
possible utility of any agent is 1. Furthermore, we have that W2 ≥ n2/2. To see why this is
the case, consider the agents that approve facility 2 in pairs, where one is on the left of the
median (among those that approve facility 2) and the other is on the right of the median,
and observe that the total utility of this pair of agents is at least 1. Since there are n2/2
such pairs, the claim follows. The approximation ratio is

ρ(Proportional) =
W1

n1
n1+n2

W1 + n2
n1+n2

W2
=

1
n1

n1+n2
+ n2

n1+n2
· W2
W1

≤ 1
n1

n1+n2
+ n2

n1+n2
· n2/2

n1

=
2n2

1 + 2n1n2

2n2
1 + n2

2

.

Now, let y = n1/n2 and observe that, since n1 ≥W1 ≥W2 ≥ n2/2, it must be that y ≥ 1/2.
By dividing the last expression above by n2

2, we obtain:

ρ(Proportional) ≤ 2(n1/n2)2 + 2(n1/n2)

2(n1/n2)2 + 1
=

2y2 + 2y

2y2 + 1
.

Hence, in order to bound the approximation ratio of the mechanism it suffices to maximize

the function 2y2+2y
2y2+1

subject to the constraint y ≥ 1/2. It is not hard to observe that the

maximum value is (1 +
√

3)/2 ≈ 1.366 for y∗ = 1/(
√

3− 1), thus proving the upper bound
on the approximation ratio.

We can further improve upon the bound of Proportional, by defining the slightly
more involved Mirror mechanism, which uses a probability distribution that is a piecewise
function of the numbers of agents that approve the two facilities; see Mechanism 3. Following
along the lines of the proof of Theorem 4.3, we can show that Mirror has an approximation
ratio of 4/3.
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Mechanism 3: Mirror

for each facility j ∈ {1, 2} do
Count the number nj of agents that approve each facility j

for each facility j ∈ {1, 2} do
if nj ≥ n3−j then

α :=
3nj−2n3−j

4nj−2n3−j

Choose facility j with probability α and facility 3− j with probability 1−α

Locate the chosen facility at the median among the agents that approve it

Theorem 4.4. In the known-preferences setting, Mirror is universally group-strategyproof
and has an approximation ratio of 4/3.

Proof. Since the mechanism is Random-Median, it is universally group-strategyproof due
to Lemma 4.2. To bound the approximation ratio, let Wj be the welfare of the agents that
approve facility j when it is chosen (and located at the median of those agents). Observe
that for any facility j ∈ {1, 2} it holds that Wj ≤ nj since the maximum possible utility of
any agent is 1, and Wj ≥ nj/2 following the same reasoning as in the proof of Theorem 4.3.
Due to symmetry, we can assume without loss of generality that n1 ≥ n2, in which case
facility 1 is chosen with probability α := 3n1−2n2

4n1−2n2
and facility 2 is chosen with probability

1− α. We distinguish between the following two cases:

• W1 ≥W2. Then, the approximation ratio is:

ρ(Mirror) =
W1

α ·W1 + (1− α) ·W2
=

1
3n1−2n2
4n1−2n2

+ n1
4n1−2n2

· W2
W1

≤ 1
3n1−2n2
4n1−2n2

+ n1
4n1−2n2

· n2/2
n1

=
4

3
.

• W2 > W1. We have:

ρ(Mirror) =
W2

α ·W1 + (1− α) ·W2
=

1
3n1−2n2
4n1−2n2

· W1
W2

+ n1
4n1−2n2

≤ 1
3n1−2n2
4n1−2n2

· n1/2
n2

+ n1
4n1−2n2

=
2n2(4n1 − 2n2)

3n2
1

.

It is not hard to observe that this last expression is maximized to 4/3 when n1 = n2.

Hence, in any case the approximation ratio of the mechanism is at most 4/3.

We conclude this section by showing that Mirror is best possible among all Random-
Median mechanisms in terms of approximation.

Theorem 4.5. In the known-preferences setting, the approximation ratio of any Random-
Median mechanism is at least 4/3− δ, for any δ > 0.
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1
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Figure 2: The two instances used in the proof of Theorem 5.1, which differ only on the
preference of the agent positioned at 1/6 marked in blue.

Proof. Consider an arbitrary Random-Median mechanism and the following instance I
(which was also used in the proof of Theorem 4.1. There are four agents, two with pref-
erences (0, 1) and two with preferences (1, 0). One agent of each type is positioned at
ε ∈ (0, 1/2) while the other is positioned at 1 − ε. Due to symmetry, we can assume that
the agents located at ε are the medians for the two facilities. The mechanism randomly
chooses one of the facilities. Without loss of generality, we can assume that it chooses fa-
cility 1 with some probability p ≤ 1/2 and facility 2 with probability 1− p. Hence, facility
1 is located at ε with probability p.

Now consider the instance I ′ that is obtained from I by moving the agent i at 1−ε with
preference (1, 0) to ε. We claim that the mechanism must choose facility 1 with probability
p′ ≤ p ≤ 1/2 in this new instance. Suppose that this is not the case and the mechanism
chooses facility 1 with probability p′ > p in I ′. Since the expected utility of agent i is
p · 2ε in I, she would have incentive to misreport her position as ε so that facility 1 is
chosen with probability p′ and her expected utility is increased to p′ · 2ε. This contradicts
the fact that the mechanism is strategyproof in expectation (since it is universally strong
group-strategyproof).

In instance I ′, the maximum welfare we can achieve by placing facility 1 is 2 (when it
is placed at ε), and by placing facility 2 is 1 + ε (no matter where it is located). Hence,
since the maximum possible expected social welfare achieved by the mechanism is 2p′+(1+
ε)(1 − p′) ≤ 3+ε

2 , the approximation ratio of the mechanism is at least 4
3+ε ≥ 4/3 − δ, for

any δ > 4ε
9+3ε .

5. Known-Positions Setting

We now turn our attention to the known-positions setting, in which the positions of the
agents are fixed, and thus the agents can misreport only their preferences. Our first result
is a lower bound of 13/11 on the approximation ratio of any deterministic strategyproof
mechanism.

Theorem 5.1. In the known-positions setting, there is no deterministic strategyproof mech-
anism with approximation ratio smaller than 13/11.

Proof. Suppose towards a contradiction that there exists a deterministic strategyproof
mechanism that has an approximation ratio strictly smaller than 13/11, and consider the
following instance I depicted in Figure 2. There is an agent with preferences (0, 1) posi-
tioned at 0, an agent with preferences (1, 1) positioned at 1/6, an agent with preferences
(1, 1) positioned at 5/6, and an agent with preferences (1, 0) positioned at 1. Due to the

11
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Mechanism 4: Randomized Dictatorship (RD)

for each agent i ∈ N do
Pick agent i with probability 1/n

if the chosen agent i∗ approves a single facility j then
Locate facility j at xi∗

else
Locate the optimal facility at xi∗

symmetry of the instance, without loss of generality, we can assume that the mechanism
chooses to place facility 1 at some location y ∈ [0, 1].

If y ≤ 1/2, the social welfare achieved by the mechanism is(
1−

∣∣∣∣y − 1

6

∣∣∣∣ )+

(
1−

(
5

6
− y
))

+

(
1− (1− y)

)
=

7

6
+ 2y −

∣∣∣∣y − 1

6

∣∣∣∣ ≤ 11

6
.

Since the optimal social welfare is 13/6 (achieved by placing either facility 1 at 5/6 or
facility 2 at 1/6), the approximation ratio of the mechanism is then 13/11, contradicting
the assumption that it is strictly smaller than 13/11. Consequently, it must be y > 1/2.

Now consider the instance I ′ that is obtained from I by changing the preference of the
agent at 1/6 to (0, 1). In I ′, the maximum possible social welfare one can hope to achieve
by placing facility 1 is 11/6 (when it is located anywhere in the interval [5, 6, 1] is 11/6) and
by placing facility 2 is 13/6 (when it is located at 1/6). Hence, to have an approximation
ratio strictly smaller than 13/11, the mechanism must choose to locate facility 2 in I ′ at
some position z ∈ [0, 1]. Similarly to instance I, we can show that it must be z < 1/2
as otherwise the approximation ratio of the mechanism would be at least 13/11. Hence,
the agent positioned at 1/6 with preferences (1, 1) in instance I has incentive to misreport
her preferences as (0, 1) so that the facility is located closer to her, and thus increase her
utility. However, this contradicts the assumption that the mechanism is strategyproof, and
the theorem thus follows.

Unfortunately, we have been unable to design any deterministic mechanism with ap-
proximation ratio strictly smaller than the bound of 2 achieved by Middle (see Section 3),
and leave it as a challenging open question. Instead, we continue by considering randomized
mechanisms. Observe that the instances from Figure 2 show that there is no randomized
strategyproof mechanism with approximation ratio 1 for the known-positions setting. This
is because no matter how the mechanism locates the facilities on instance I, it has to locate
facility 2 on Instance I ′, thus the agent positioned at 1/6 has incentives to misreport her
preferences.

Next, we analyze a particular version of the well-known Random Dictatorship (RD)
mechanism. Our version picks each agent uniformly at random and locates her favorite
facility at her position, breaking ties in favor of the optimal facility; see Mechanism 4.
We will show that, in the known-positions setting, this mechanism is universally group-
strategyproof and has an approximation ratio of 3/2.

Theorem 5.2. In the known-positions setting, RD is universally group-strategyproof.

12
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Proof. Clearly, RD is a uniform probability distribution over the set of all possible deter-
ministic mechanisms each of which treats a different agent as dictator, and locates one of
the facilities that the dictator approves at her position. The lemma follows since the agents
cannot misreport their positions and no agent has any incentive to lie about which facilities
she approves when she is chosen as a dictator; also note that any coalition of agents that
does not include the dictator cannot change the outcome of the mechanism.

To show that the approximation ratio of RD is 3/2, we will exploit a series of structural
properties of worst-case instances, in which the approximation ratio of the mechanism is
maximized. In particular, we will show that there exists a worst-case instance that is
characterized by the following three properties:

• There are no agents that approve both facilities (Lemma 5.3).

• Every agent that approves the non-optimal facility is positioned at 0 or 1 (Lemma 5.4).

• Every agent that approves the optimal facility is positioned at 0 or some median
position x ∈ [0, 1] or 1 (Lemma 5.5).

To show these properties, we will start with an arbitrary instance and gradually change the
preferences and the positions of the agents in a specific order so that the aforementioned
properties are satisfied. Every change we make leads to a transformed instance in which
the approximation ratio of RD does not decrease. It then suffices to define a worst-case
instance satisfying these properties and bound the approximation ratio of the mechanism
for this instance. This will be a function of a handful of variables representing the number
of agents that are positioned at {0, x, 1} and approve one of the two facilities.

The first property is quite easy to observe, given the definition of the mechanism.

Lemma 5.3. In a worst-case instance, all agents approve one facility.

Proof. Consider an arbitrary instance in which there is a set of agents that approve both
facilities. If the mechanism chooses any such agent, then the optimal facility is placed at the
position of this agent. By transforming the preference of the agent so that she only approves
the optimal facility, the optimal welfare remains unaffected, whereas the welfare achieved
by the mechanism can only decrease. This is because the agent does not contribute to the
welfare gained when the dictator is an agent who approves only the non-optimal facility.

Next, we show the second property.

Lemma 5.4. In a worst-case instance, every agent that approves a non-optimal facility is
positioned at 0 or 1.

Proof. Consider an arbitrary instance in which each agent approves a single facility (from
Lemma 5.3). Without loss of generality, assume that the optimal facility is 1, and let S
be the set of agents that approve the non-optimal facility 2. We order the agents in S in
terms of their positions, such that x1 ≤ x2 ≤ ... ≤ x|S|. We partition S into two sets L and
R, such that L consists of the first d|S|/2e agents in S and R = S \ L. Observe that if the
number of agents in S is odd, the unique median agent in S is included in L, whereas if
the number of agents in S is even, one of the two medians in S is included in L, while the

13
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other is included in R. To prove the lemma, we claim that moving the agents in L to 0 from
left to right, and the agents in R to 1 from right to left, leads to a sequence of instances
such that the approximation ratio of RD does not decrease between consecutive instances.
Due to symmetry, it suffices to prove this claim only for instances obtained by moving the
agents in L.

Let mL denote the median agent that is included in L and observe that facility 1 will
remain optimal after moving any agent ` ∈ L \ {mL}. In particular, since the agents in
L \ {`} are not moved, their contribution to the maximum welfare achieved from facility
2, i.e. when it is placed at the position of mL, remains the same. On the other hand, the
contribution of agent ` (who is moved) cannot increase as her distance from the median
agent(s) in S either remains the same (if x` = 0) or increases (if x` > 0). Once all the
agents in L \ {mL} have been moved to 0, we can also show that moving agent mL to 0
cannot increase the maximum possible welfare from facility 2. This follows directly by the
discussion below, where we show that the expected welfare of RD does not increase each
time we move an agent in L, and thus the approximation ratio does not decrease.

Suppose it is time to move agent ` ≤ |L| to 0, that is, it holds that xi = 0 for every
i < `. The expected welfare of RD can be partitioned into the contribution WS of agents
in S (that approve only facility 2) and the contribution WS of the remaining agents (that
approve only facility 1). Clearly, changing the position of any agent in S does not affect
WS . We can write WS as

WS =
1

n

∑
i∈S

∑
j∈S

(
1− d(xi, xj)

)
=

1

n

( ∑
i∈S\{`}

∑
j∈S\{`}

(
1− d(xi, xj)

)
+ 2

∑
i∈S\{`}

(
1− d(xi, x`)

)
+ 1

)
.

After moving agent ` to x′` = 0, the first double sum in the above expression and the
constant 1 will remain unaffected. So, we will focus on the second sum, and show that it
cannot increase. We define the set S<` of agents in S before ` and the set S>` of agents
in S after `. By the definition of the set L, it holds that |S<`| ≤ |S>`|, with the equality
holding only in the case where the number of agents in S is odd and ` = mL. Moreover, by
the definition of agent `, it holds that xi = 0 for every i ∈ S<`. We now have that∑

i∈S\{`}

(
1− d(xi, x`)

)
=
∑
i∈S<`

(
1− d(xi, x`)

)
+
∑
i∈S>`

(
1− d(xi, x`)

)
=
∑
i∈S<`

(
1− (x` − xi)

)
+
∑
i∈S>`

(
1− (xi − x`)

)
=
∑
i∈S<`

(
1− (0− xi)

)
+
∑
i∈S>`

(
1− (xi − 0)

)
+ |S>`| − |S<`|

≥
∑
i∈S<`

(
1− (x′` − xi)

)
+
∑
i∈S>`

(
1− (xi − x′`)

)
=

∑
i∈S\{`}

(
1− d(xi, x

′
`)
)
,
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as desired. This last sequence of equalities and inequalities also shows that moving mL to 0
cannot increase the maximum possible social welfare from facility 2, as claimed above.

The third and last property follows by a proof similar to the one of the lemma above.

Lemma 5.5. Let x ∈ [0, 1] be the position of the median agent among those that approve
the optimal facility in a worst-case instance. Then, every agent that approves the optimal
facility is positioned at 0 or x or 1.

Proof. Consider an arbitrary instance in which each agent approves a single facility (from
Lemma 5.3), and all agents approving the non-optimal facility are positioned at 0 or 1 (from
Lemma 5.4). Without loss of generality, assume that the optimal facility is 1, and let S be
the set of agents that approve it. We will gradually transform this instance into one that
satisfies the conditions of the lemma by appropriately moving the agents, such that each
time we move an agent the approximation ratio of RD does not decrease. Let L and R be
the sets of the non-median agents in S who are at the left and at the right of the median
agent(s) in S, respectively. Due to symmetry, it suffices to focus only on L and show that
the agents therein can be moved either to 0 or x. We will also assume that facility 1 remains
optimal throughout the whole process; observe that this is without loss of generality since
if facility 2 becomes the optimal one at some point of the process, then by replicating the
procedure used in the proof of Lemma 5.4, we can move all agents in S to 0 or 1, thus
obtaining the desired structure.

Suppose the agents in S are ordered in terms of their positions, such that x1 ≤ x2 ≤
... ≤ x|S|. Let ` be the left-most agent in L who is not positioned at 0 or x, that is, x` < x
and xi = 0 for every i < `. We can write the optimal social welfare as

W ∗ =
∑
i∈S

(
1− d(xi, x)

)
=

∑
i∈S\{`}

(
1− d(xi, x)

)
+ 1− (x− x`) = A+ x`.

Let WS be the contribution of the agents in S to the expected welfare achieved by RD, and
let WS denote the contribution of the remaining agents who approve facility 2. We have

WS =
1

n

∑
i∈S

∑
j∈S

(
1− d(xi, xj)

)
=

1

n

( ∑
i∈S\{`}

∑
j∈S\{`}

(
1− d(xi, xj)

)
+ 2

∑
i∈S\{`}

(
1− d(xi, x`)

)
+ 1

)
.

Let S≤` be the set of agents in S different than ` with position at most x`, and let S>` be the
set of agents in S with position strictly larger than `. By the definition of ` (who belongs
to L and is the left-most agent that is not positioned at 0 or x), it holds that |S≤`| < |S>`|.
Therefore,

WS =
1

n

( ∑
i∈S\{`}

∑
j∈S\{`}

(
1− d(xi, xj)

)
+ 2

∑
i∈S≤`

(
1− d(xi, x`)

)
+ 2

∑
i∈S>`

(
1− d(xi, x`)

)
+ 1

)

=
1

n

( ∑
i∈S\{`}

∑
j∈S\{`}

(
1− d(xi, xj)

)
+ 2

∑
i∈S≤`

(
1 + xi

)
+ 2

∑
i∈S>`

(
1− xi

)
+ 1 + 2x`

(
|S>`| − |S≤`|

))
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= B +
2

n
x`
(
|S>`| − |S≤`|

)
.

Hence, the approximation ratio of RD is

ρ(RD) =
A+ x`

WS +B + 2
nx`
(
|S>`| − |S≤`|

) .
Now observe that, since |S>`| − |S≤`| > 0, the ratio is a monotonic function of x`. If it is
decreasing, we can move agent ` to 0, and if it is increasing, we can move agent ` to the
position y ∈ (x`, x] of the first agent that lies strictly to the right of `. Therefore, we can
always move the left-most agent in L who is not positioned at 0 or x, to either 0 or strictly
to the right. At some point, this procedure will lead all agents in L to be positioned either
at 0 or x, and symmetrically, all agents in R to be positioned either at x or 1.

We are now ready to prove the bound on the approximation ratio of RD.

Theorem 5.6. The approximation ratio of RD is 3/2.

Proof. Consider a worst-case instance I in which the optimal facility is 1. From Lemmas 5.3,
5.4 and 5.5, we can assume that there are n = α0 + αx + α1 + β0 + β1 agents in total, such
that:

• α0 agents approve only facility 1 and are positioned at 0;

• αx agents approve only facility 1 and are positioned at some x ∈ [0, 1];

• α1 agents approve only facility 1 and are positioned at 1;

• β0 agents approve only facility 2 and are positioned at 0;

• β1 agents approve only facility 2 and are positioned at 1.

Since x is the position of the median agent among those that approve facility 1, we have
that α0 +αx ≥ α1 and αx+α1 ≥ α0. We also have that β0 ≥ β1. The optimal social welfare
is achieved by placing facility 1 at position x, and is equal to

W ∗(I) = α0 · (1− x) + αx + α1 · x = α0 + αx + (α1 − α0)x.

Since facility 2 is not optimal, we have that W ∗ ≥ β0 ≥ β1. The expected welfare of RD is

W (RD(I)) =
1

n

(
α0

(
α0 + αx(1− x)

)
+ αx

(
α0(1− x) + αx + α1x

)
+ α1

(
αxx+ α1

)
+ β2

0 + β2
1

)
=

1

n

(
(α0 + αx)2 + α2

1 + 2αx(α1 − α0)x+ β2
0 + β2

1

)
.

Hence, by replacing n = α0 + αx + α1 + β0 + β1, the approximation ratio or RD can be
written as the following function of x:

ρ(RD) = (α0 + αx + α1 + β0 + β1) · α0 + αx + (α1 − α0)x

(α0 + αx)2 + α2
1 + β2

0 + β2
1 + 2αx(α1 − α0)x

.
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It is now not hard to see that, since the factors of x in the enumerator and the denominator
are either both positive or negative, the ratio is a monotonic function in terms of x, and it
thus attains its maximum value for x = 0 or x = 1.

Therefore, we can further simplify the worst-case instance I and assume that there are
n = α0 + α1 + β0 + β1 agents in total, such that:

• α0 agents approve only facility 1 and are positioned at 0;

• α1 agents approve only facility 1 and are positioned at 1;

• β0 agents approve only facility 2 and are positioned at 0;

• β1 agents approve only facility 2 and are positioned at 1;

Without loss of generality, we assume that α0 ≥ max{α1, β0, β1}, hence the optimal welfare
is W ∗ = α0, achieved by placing facility 1 at 0. The expected social welfare of RD is

W (RD(I)) =
α2

0 + α2
1 + β2

0 + β2
1

α0 + α1 + β0 + β1
,

and thus the approximation ratio is

ρ(RD) =
α0(α0 + α1 + β0 + β1)

α2
0 + α2

1 + β2
0 + β2

1

.

By nullifying the partial derivatives of this function in terms of α0, α1, β0 and β1 we obtain
a system of four equations, whose solution shows that the ratio is maximized to 3/2 when
α0 = 3α1 and α1 = β0 = β1.

6. Extensions to Choosing k out of m Facilities

So far we have exclusively focused on the fundamental case where there are two facilities
and one of them must be located. In this section, we define and make initial progress for
natural generalizations when there are m ≥ 2 different facilities from which we can choose
to locate k < m. There is a plethora of ways to define the utility of an agent. For instance,
we can define it as the utility the agent derives from a subset of the facilities that are located
and are among the ones she approves. This subset may include all such facilities, or just
the facility that is the closest or the farthest from the agent’s position. For such cases, it is
quite easy to see that a straightforward adaptation of Middle satisfies strategyproofness
constraints and has an approximation ratio of at most 2. In addition, by extending the proof
of Theorem 4.1, we can show for particular values of m and k that this is the best-possible
approximation among deterministic mechanisms, even when the preferences of the agents
are assumed to be known.

Formally, let I = (x, t,m, k) be an instance with position profile x, preference profile
t, and m ≥ 2 facilities out of which we must chose and locate k ≥ 1. Let S a subset of
k facilities that are chosen to be located, and denote by yj ∈ [0, 1] the location of facility
j ∈ S; let y = (yj)j∈S . Then, we can define the following three classes of utilities functions,
to which we refer as sum, min and max:

usumi (S,y|I) =
∑
j∈S

tij ·
(
1− d(xi, yj)

)
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Mechanism 5: (k,m)-Middle

for each facility j ∈ {1, . . . ,m} do
Count the number nj of agents that approve each facility j

Locate the k most-preferred facilities at 1/2, breaking ties arbitrarily

umin
i (S,y|I) = max

j∈S

{
tij ·

(
1− d(xi, yj)

)}
umax
i (S,y|I) = min

j∈S

{
tij ·

(
1− d(xi, yj)

)}
.

For these three classes of utility functions, we will show that the (k,m)-Middle mechanism
defined below is either group-strategyproof or strategyproof (depending on the number of
facilities it must choose) and has an approximation ratio of 2.

Theorem 6.1. For any utility class C ∈ {sum,min,max}, the (k,m)-Middle is group-
strategyproof when k = 1, strategyproof when k ≥ 2, and has an approximation ratio of at
most 2.

Proof. For k = 1, the proof that the mechanism is group-strategyproof and has approxi-
mation ratio of at most 2 follows directly by Theorem 3.1 since the utility of every agent is
defined by a single facility which is located at 1/2. For the same reason, Theorem 3.1 also
implies that the approximation ratio of the mechanism is at most 2 for the min and max
utility classes when k ≥ 2.

Now consider any instance I = (x, t,m, k) with m > k ≥ 2. To show that the mechanism
is strategyproof for any utility class, first observe that since it does not take into account
the positions of the agents when deciding which subset of facilities to locate and where,
the agents have no incentive to misreport their positions. In addition, no agent has any
incentive to unilaterally misreport her preferences since any such misreport can only increase
the count of facilities she does not approve, and thus her utility cannot increase.

To show that the mechanism has approximation ratio at most 2 for the sum utility class,
let S be the subset of k facilities chosen by the mechanism, and also let O be the optimal
subset of k facilities. We make the following simple observations:

• For every j ∈ S, it holds that nj =
∑

i∈N tij .

• Since every j ∈ S is placed at 1/2, it holds that 1− d(xi, yj) ≥ 1/2 for every agent i
that approves j.

• By the definition of the mechanism, we have that nj ≥ no for every j ∈ S.

• Since the maximum utility of any agent is k, we have that W ∗(I) ≤ k · no.

Putting everything together, we have that

W ((k,m)-Middle(I)|I) =
∑
i∈N

∑
j∈S

tij ·
(

1− d
(
xi,

1

2

))
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≥ 1

2

∑
j∈S

∑
i∈N

tij =
1

2
k · nj ≥

1

2
k · no ≥

1

2
W ∗(I),

and the bound on the approximation ratio follows.

For completeness, we present a simple instance showing that (k,m)-Middle is not
group-strategyproof when k ≥ 2 for any of the utility classes we consider.

Lemma 6.2. For any utility class C ∈ {sum,min,max}, (k,m)-Middle is not group-
strategyproof when k ≥ 2.

Proof. Consider an instance with m ≥ 4 facilities, from which we must choose and locate
k ∈ {2, . . . ,m − 2}. There are n = m agents such that every agent approves a different
facility; specifically, agent i ∈ {1, . . . ,m} approves only facility i. Since ni = 1 for every
facility i, the (k,m)-Middle mechanism can choose any set S of k facilities. Then, for any
utility class C ∈ {sum,min,max}, every agent approving a facility j 6∈ S obtains zero utility.
Since k ≤ m − 2, every pair of agents (i, j) approving facilities i, j 6∈ S have incentive to
form a coalition and change their preferences so that they both approve i and j. Such a
group misreport would lead to ni = nj = 2, and result in both i and j being part of any
set of k facilities chosen by the mechanism, thus showing that the agents have successfully
manipulated the mechanism.

By appropriately extending the proof of Theorem 4.1, we can show that, for any m and
k ≥ 1 such that m ≥ 2k, the approximation ratio of any deterministic mechanism is at
least 2, even when the preferences of the agents are known. As a result, (k,m)-Middle is
the best possible strategyproof deterministic mechanism in terms of approximation in the
general and in the known-preferences settings for any such choice of m and k.

Theorem 6.3. For any utility class C ∈ {sum,min,max} and any m, k such that m ≥ 2k,
the approximation ratio of every deterministic strategyproof mechanism that locates k out
of m facilities is at least 2− δ, for any δ > 0, even when the preferences of the agents are
known.

Proof. Consider an arbitrary deterministic strategyproof mechanism and the following in-
stance I with m ≥ 2 facilities, from which we must choose and locate k ≤ m/2. There
are n = 2m agents, such that there are exactly two agents that approve only facility
j ∈ {1, . . . ,m}. For every facility j, one of the agents that approve it is positioned at some
ε ∈ (0, 1/2), while the other such agent is positioned at 1. Let S be the subset of k facilities
which the mechanism chooses to locate. Clearly, since every agent approves a single facility,
her utility is the same under any utility class. In particular, every agent that approves a
facility j 6∈ S has utility 0 in I, and every pair of agents that approve a facility j ∈ S have
combined utility at most 1 + ε (when j is located anywhere in the interval [ε, 1]). Hence,
the social welfare of the mechanism in I is at most (1 + ε)k.

Now, let us enumerate the facilities not included in S as {1, . . . ,m − k}. Consider a
sequence of instances I0 = I, I1, . . . , Im−k such that instance Ij , j ∈ {1, . . .m−k} is obtained
from instance Ij−1 by moving the agent that is positioned at ε and approves facility j to
1. Since I0 = I and every pair of instances (Ij , Ij−1) differ only on the position of a single
agent that approves a facility not in S, the mechanism must choose to locate the same set
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(1, 0)

0

(1, 1), . . . , (1, 1)

1/2

(0, 1)

1

(a) Instance I

(1, 0)

0

(1, 1), . . . , (1, 1)

(0, 1)

1/2 1

(b) Instance I ′

Figure 3: The two instances used in the proof of Lemma 7.1 to show that RD is not
strategyproof in the general setting. In instance I, RD chooses facility 1 whenever an agent
with preferences (1, 1) is chosen as the dictator. This gives the agent with preferences (1, 0)
marked in blue incentive to misreport her position, thus leading to instance I ′, where the
tie is broken in favor of facility 2.

S of k facilities so that the utility of the agents that are moved is not increased from zero
to positive; otherwise, the mechanism would not be strategyproof.

In the last instance Im−k of this sequence, all the agents that approve facilities not in S
are located at 1. Since m ≥ 2k, there exists a subset S′ of k facilities such that S ∩ S′ = ∅
which can be located at 1 to achieve a social welfare of 2k; each of the two agents whose
facility is chosen has utility equal to 1. Since the agents approving facilities in S are at the
same positions as in I, by locating the set S of facilities, the social welfare of the mechanism
in Im−k is again at most (1 + ε)k. The bound of 2 − δ on the approximation ratio of the
mechanism follows by selecting ε to be arbitrarily small.

7. Conclusion and Open Problems

There are several interesting problems that either remain open or arise from our work. The
first natural direction is to tighten our results for deterministic and randomized mechanisms
for the different settings we have considered. For deterministic mechanisms, while the
general and the known-preferences settings are resolved by our work, it would still be quite
interesting to close the gap between 13/11 and 2 for the known-positions setting. For
randomized mechanisms, the most intriguing open question is whether there exists such a
mechanism with approximation ratio significantly smaller than 2 in the general setting. An
obvious candidate is the RD mechanism that we presented in the context of the known-
positions setting. Unfortunately, the particular variant of RD is no longer strategyproof
when both the positions and the preferences of the agents are private, as shown by the
following lemma.

Lemma 7.1. RD is not strategyproof in the general setting.

Proof. Let n ≥ 4, and consider the following instance I depicted in the left part of Figure 3.
There is an agent with preferences (1, 0) positioned at 0, n − 2 agents with preferences
(1, 1) positioned at 1/2, and one agent with preferences (0, 1) positioned at 1. Since the
maximum possible social welfare by placing facility 1 is the same as the maximum possible
social welfare by placing facility 2, we can without loss of generality assume that the optimal
facility is 1, and thus when an agent with preferences (1, 1) is randomly chosen, facility 1 is
placed at her position; to avoid ties altogether, we could move the n−2 agents that are now
positioned at 1/2 to 1/2 − ε, for some arbitrarily small ε > 0. Observe that the expected
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utility of the agent i that has preferences (0, 1) positioned at 1 is 1
n , as she only gets some

utility when she is chosen.
Now consider the instance I ′ that is obtained from I by moving agent i from 1 to 1/2;

this instance is depicted in the right part of Figure 3. Since the optimal facility in I ′ is 2,
when an agent with preferences (1, 1) is randomly chosen as the dictator, facility 2 is placed
at her position. Therefore, agent i has incentive to deviate to 1/2 and change instance I to
I ′ in order for her expected utility to become (1− 1

n) · 1
2 = n−1

2n > 1
n , thus proving that RD

is not strategyproof when the agents can misreport their positions.

Intuitively, the reason that makes RD manipulable in the general setting is the tie-
breaking rule that we use for the agents who approve both facilities; recall that such ties
are broken in favor of the optimal facility. Breaking ties in this way is crucial for our
characterization of the worst-case instances in Section 5, but can be exploited by agents who
are allowed to misreport their positions. Designing a variant of RD that is strategyproof in
the general setting is straightforward, for example, by breaking ties between the two facilities
equiprobably. Importantly however, the aforementioned characterization no longer holds in
that case, which makes the analysis much more challenging. As a matter of fact, we can
show that for any variant that uses a fixed probabilistic tie-breaking rule, the approximation
ratio is strictly larger than 3/2! In the following theorem, we show this for the version of
RD that breaks ties by locating facility 1 with probability p and facility 2 with probability
1− p; we refer to this mechanism as p-RD.

Lemma 7.2. p-RD has approximation ratio at least 1.518, for every fixed p ∈ [0, 1].

Proof. Without loss of generality assume that p ∈ [0, 1/2], and consider the following in-
stance. There are 30 agents positioned at 0: 15 of them have preferences (1, 1) and the
remaining 15 have preferences (1, 0). Furthermore, there are 20 agents positioned at 1:
10 of them have preferences (1, 0) and the remaining 10 have preferences (0, 1). Observe
that the optimal solution locates facility 1 at 0 and achieves social welfare 30. The ex-

pected social welfare of p-RD is (3+p)·152+2·102

50 . Hence, the approximation ratio of p-RD is
1500

(3+p)·152+200
, which is larger than 120

79 > 1.518 for every p ∈ [0, 1/2].

Finding the exact approximation ratio of p-RD is an intriguing open question. Perhaps
more interestingly, one can define yet another strategyproof variant of RD, whose approxi-
mation ratio is not ruled out by Lemma 7.2. For example, we can count how many agents
approve each facility and break ties proportionally to those numbers. It is quite easy to
observe that the RD mechanism using the proportional tie-breaking rule is strategyproof
for the general setting, and is a promising candidate for achieving a better approximation
ratio. To this end, we state the following conjecture.

Conjecture 7.3. For the general setting, the RD mechanism with the proportional tie-
breaking rule has approximation ratio 3/2.

Besides strengthening our results, there are several meaningful extensions of our model
that could be the subject of future work. For the k out of m facilities setting, while we
have made an important first step, there is still significant work to be done, particularly
in the known-positions setting. One could also consider several different variants of our
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basis model. For example, the agents may have fractional preferences rather than approval
preferences (that is, each agent may assign weights in [0, 1] to the facilities, instead of weights
in {0, 1}). Other possible variants include settings in which some facilities are obnoxious
(Mei et al., 2018; Feigenbaum & Sethuraman, 2015), meaning that agents would like to be far
from them if they are built, and discrete settings in which the facilities can only be built at
predefined locations on the line (e.g., see (Dokow et al., 2012; Feldman et al., 2016; Serafino
& Ventre, 2015, 2016)). Finally, an interesting generalization of our problem is when every
facility comes at a different cost, and the objective is to maximize the social welfare by
choosing and locating k facilities under the constraint that their accumulated costs is below a
predefined budget. This latter setting is directly motivated by participatory budgeting, which
has recently drawn the attention of the computational social choice community (Benade
et al., 2021; Aziz & Shah, 2020).
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