30,174 research outputs found

    Designing Network Protocols for Good Equilibria

    Get PDF
    Designing and deploying a network protocol determines the rules by which end users interact with each other and with the network. We consider the problem of designing a protocol to optimize the equilibrium behavior of a network with selfish users. We consider network cost-sharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge cost-sharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users. We systematically study the design of optimal cost-sharing protocols for undirected and directed graphs, single-sink and multicommodity networks, and different measures of the inefficiency of equilibria. Our primary technical tool is a precise characterization of the cost-sharing protocols that induce only network games with pure-strategy Nash equilibria. We use this characterization to prove, among other results, that the Shapley protocol is optimal in directed graphs and that simple priority protocols are essentially optimal in undirected graphs

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(logk)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    Designing Cost-Sharing Methods for Bayesian Games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE). We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players

    Computing with strategic agents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 179-189).This dissertation studies mechanism design for various combinatorial problems in the presence of strategic agents. A mechanism is an algorithm for allocating a resource among a group of participants, each of which has a privately-known value for any particular allocation. A mechanism is truthful if it is in each participant's best interest to reveal his private information truthfully regardless of the strategies of the other participants. First, we explore a competitive auction framework for truthful mechanism design in the setting of multi-unit auctions, or auctions which sell multiple identical copies of a good. In this framework, the goal is to design a truthful auction whose revenue approximates that of an omniscient auction for any set of bids. We focus on two natural settings - the limited demand setting where bidders desire at most a fixed number of copies and the limited budget setting where bidders can spend at most a fixed amount of money. In the limit demand setting, all prior auctions employed the use of randomization in the computation of the allocation and prices.(cont.) Randomization in truthful mechanism design is undesirable because, in arguing the truthfulness of the mechanism, we employ an underlying assumption that the bidders trust the random coin flips of the auctioneer. Despite conjectures to the contrary, we are able to design a technique to derandomize any multi-unit auction in the limited demand case without losing much of the revenue guarantees. We then consider the limited budget case and provide the first competitive auction for this setting, although our auction is randomized. Next, we consider abandoning truthfulness in order to improve the revenue properties of procurement auctions, or auctions that are used to hire a team of agents to complete a task. We study first-price procurement auctions and their variants and argue that in certain settings the payment is never significantly more than, and sometimes much less than, truthful mechanisms. Then we consider the setting of cost-sharing auctions. In a cost-sharing auction, agents bid to receive some service, such as connectivity to the Internet. A subset of agents is then selected for service and charged prices to approximately recover the cost of servicing them.(cont.) We ask what can be achieved by cost -sharing auctions satisfying a strengthening of truthfulness called group-strategyproofness. Group-strategyproofness requires that even coalitions of agents do not have an incentive to report bids other than their true values in the absence of side-payments. For a particular class of such mechanisms, we develop a novel technique based on the probabilistic method for proving bounds on their revenue and use this technique to derive tight or nearly-tight bounds for several combinatorial optimization games. Our results are quite pessimistic, suggesting that for many problems group-strategyproofness is incompatible with revenue goals. Finally, we study centralized two-sided markets, or markets that form a matching between participants based on preference lists. We consider mechanisms that output matching which are stable with respect to the submitted preferences. A matching is stable if no two participants can jointly benefit by breaking away from the assigned matching to form a pair.(cont.) For such mechanisms, we are able to prove that in a certain probabilistic setting each participant's best strategy is truthfulness with high probability (assuming other participants are truthful as well) even though in such markets in general there are provably no truthful mechanisms.by Nicole Immorlica.Ph.D

    Descending Price Optimally Coordinates Search

    Full text link
    Investigating potential purchases is often a substantial investment under uncertainty. Standard market designs, such as simultaneous or English auctions, compound this with uncertainty about the price a bidder will have to pay in order to win. As a result they tend to confuse the process of search both by leading to wasteful information acquisition on goods that have already found a good purchaser and by discouraging needed investigations of objects, potentially eliminating all gains from trade. In contrast, we show that the Dutch auction preserves all of its properties from a standard setting without information costs because it guarantees, at the time of information acquisition, a price at which the good can be purchased. Calibrations to start-up acquisition and timber auctions suggest that in practice the social losses through poor search coordination in standard formats are an order of magnitude or two larger than the (negligible) inefficiencies arising from ex-ante bidder asymmetries.Comment: JEL Classification: D44, D47, D82, D83. 117 pages, of which 74 are appendi

    Generalized Incremental Mechanisms for Scheduling Games

    Get PDF
    We study the problem of devising truthful mechanisms for cooperative cost sharing games that realize (approximate) budget balance and social cost. Recent negative results show that group-strategyproof mechanisms can only achieve very poor approximation guarantees for several fundamental cost sharing games. Driven by these limitations, we consider cost sharing mechanisms that realize the weaker notion of weak groupstrategyproofness. Mehta et al. [Games and Economic Behavior, 67:125–155, 2009] recently introduced the broad class of weakly group-strategyproof acyclic mechanisms and show that several primal-dual approximation algorithms naturally give rise to such mechanisms with attractive approximation guarantees. In this paper, we provide a simple yet powerful approach that enables us to turn any r-approximation algorithm into a r-budget balanced acyclic mechanism. We demonstrate the applicability of our approach by deriving weakly group-strategyproof mechanisms for several fundamental scheduling problems that outperform the best possible approximation guarantees of Moulin mechanisms. The mechanisms that we develop for completion time scheduling problems are the first mechanisms that achieve constant budget balance and social cost approximation factors. Interestingly, our mechanisms belong to the class of generalized incremental mechanisms proposed by Moulin [Social Choice and Welfare, 16:279–320, 1999]

    Capitation

    Get PDF
    The European Central Bank has identified in the reference value of the monetary aggregate M3 the first pillar of its monetary policy.monetary aggregate euro

    Game theory

    Get PDF
    game theory
    corecore