137 research outputs found

    Typhoon disaster risk assessment based on emergy theory: A case study of Zhuhai City, Guangdong Province, China

    Get PDF
    Typhoons and cyclones are the most impacting and destructive natural disasters in the world. To address the shortcomings of a previous typhoon disaster risk assessment (for example, human factors were involved in determining weights by importance, and this affected the experimental results), an emergy method, which converts energy flows of different properties into the same solar energy basis for a convenient comparison, was used to assess the risk of regional typhoon disasters. Typhoon disaster-related data from 2017 were used to develop an index system including resilience, potential strength, and sensitivity which was in turn applied to assess typhoon disaster risks in Zhuhai City, Guangdong Province, China. The results showed that the spatial distribution of the typhoon disaster risks in Zhuhai significantly differed, with the highest risk in Xiangzhou district, the second highest risk in Doumen district, and the lowest risk in Jinwan district. In addition, improving the level of regional resilience can effectively reduce risks from typhoon disasters. The application of the emergy method in a typhoon disaster risk assessment may provide some theoretical support for national and regional governmental strategies for disaster prevention and reduction

    Addressing sea level rise in the People\u27s Republic of China and the United States: a comparative review of administrative and policy frameworks

    Get PDF
    Sea level rise (SLR) is directly influenced by climate change through the processes of temperature affecting the growth and decay of continental ice (Barron and Thompson 1990). It is a significant environmental challenge that threatens coastal areas of many nations throughout the world. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report issued in 2007 states that SLR poses a serious challenge to sustainable development along many coastal areas. The objectives of this thesis are to examine the SLR management issue both in the P.R.C. and the U.S, identify the government agencies that are concerned with SLR issues in the two countries and the specific programs that have been conducted by these agencies, analyze the key obstacles to managing risks associated with SLR, and recommend actions to address some of these challenges. The research methods include reviewing the monitoring efforts, laws, and administrative systems dealing with SLR in the U.S. and the P.R.C., surveying a panel of experts consisting of government agency administrators and researchers in the two countries, and performing vulnerability analysis through case studies of two significant coastal areas in the U.S. and the P.R.C. The research findings indicate that the SLR monitoring efforts of the two countries are very similar, both in terms of technology used and the density of monitoring stations along the coastlines. However, different stages of policy development related to SLR were evident, with the U.S. having established a more integrated federal and state-level policy framework for incorporating SLR issues into coastal planning through the Coastal Zone Management Act of 1972. Currently, risk assessments and some planning activities similar to those conducted in the U.S. are being implemented or are under development by policy makers in the P.R.C.. The main obstacles reported by the experts in both countries to systematically incorporating SLR risks into coastal zone planning were limited budgets, public apathy and the presence of other pressing coastal management issues. Public education efforts designed to convey the potential risk of SLR to stakeholders of specific coastal communities, including possible socioeconomic and environmental consequences, would appear to be a logical strategy to address key reported obstacles to integration of SLR risks into long-term coastal planning

    Studies on Water Management Issues

    Get PDF
    This book shares knowledge gained through water management related research. It describes a broad range of approaches and technologies, of which have been developed and used by researchers for managing water resource problems. This multidisciplinary book covers water management issues under surface water management, groundwater management, water quality management, and water resource planning management subtopics. The main objective of this book is to enable a better understanding of these perspectives relating to water management practices. This book is expected to be useful to researchers, policy-makers, and non-governmental organizations working on water related projects in countries worldwide

    Water Resource Variability and Climate Change

    Get PDF
    Climate change affects global and regional water cycling, as well as surficial and subsurface water availability. These changes have increased the vulnerabilities of ecosystems and of human society. Understanding how climate change has affected water resource variability in the past and how climate change is leading to rapid changes in contemporary systems is of critical importance for sustainable development in different parts of the world. This Special Issue focuses on “Water Resource Variability and Climate Change” and aims to present a collection of articles addressing various aspects of water resource variability as well as how such variabilities are affected by changing climates. Potential topics include the reconstruction of historic moisture fluctuations, based on various proxies (such as tree rings, sediment cores, and landform features), the empirical monitoring of water variability based on field survey and remote sensing techniques, and the projection of future water cycling using numerical model simulations

    Environmental Sustainability in Maritime Infrastructures

    Get PDF
    This Special Issue is entitled “Environmental Sustainability in Maritime Infrastructures”. Oceans and coastal areas are essential in our lives from several different points of view: social, economic, and health. Given the importance of these areas for human life, not only for the present but also for the future, it is necessary to plan future infrastructures, and maintain and adapt to the changes the existing ones. All of this taking into account the sustainability of our planet. A very significant percentage of the world's population lives permanently or enjoys their vacation periods in coastal zones, which makes them very sensitive areas, with a very high economic value and as a focus of adverse effects on public health and ecosystems. Therefore, it is considered very relevant and of great interest to launch this Special Issue to cover any aspects related to the vulnerability of coastal systems and their inhabitants (water pollution, coastal flooding, climate change, overpopulation, urban planning, waste water, plastics at sea, effects on ecosystems, etc.), as well as the use of ocean resources (fisheries, energy, tourism areas, etc.)

    Flow-3D CFD model of bifurcated open channel flow: setup and validation

    Get PDF
    Bifurcation is a morphological feature present in most of fluvial systems; where a river splits into two channels, each bearing a portion of the flow and sediments. Extensive theoretical studies of river bifurcations were performed to understand the nature of flow patterns at such diversions. Nevertheless, the complexity of the flow structure in the bifurcated channel has resulted in various constraints on physical experimentation, so computational modelling is required to investigate the phenomenon. The advantages of computational modelling compared with experimental research (e.g. simple variable control, reduced cost, optimize design condition etc.) are widely known. The great advancement of computer technologies and the exponential increase in power, memory storage and affordability of high-speed machines in the early 20th century led to evolution and wide application of numerical fluid flow simulations, generally referred to as Computational Fluid Dynamics {CFD). In this study, the open-channel flume with a lateral channel established by Momplot et al (2017) is modelled in Flow-3D. The original investigation on divided flow of equal widths as simulated in ANSYS Fluent and validated with velocity measurements

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Environmental Livelihood Security in Southeast Asia and Oceania: A Water-Energy-Food-Livelihoods Nexus Approach for Spatially Assessing Change

    No full text
    This document addresses the need for explicit inclusion of livelihoods within the environment nexus (water-energy-food security), not only responding to literature gaps but also addressing emerging dialogue from existing nexus consortia. We present the first conceptualization of ‘environmental livelihood security’, which combines the nexus perspective with sustainable livelihoods. The geographical focus of this paper is Southeast Asia and Oceania, a region currently wrought by the impacts of a changing climate. Climate change is the primary external forcing mechanism on the environmental livelihood security of communities in Southeast Asia and Oceania which, therefore, forms the applied crux of this paper. Finally, we provide a primer for using geospatial information to develop a spatial framework to enable geographical assessment of environmental livelihood security across the region. We conclude by linking the value of this research to ongoing sustainable development discussions, and for influencing policy agenda

    Risk-Informed Sustainable Development in the Rural Tropics

    Get PDF
    Many people live in rural areas in tropical regions. Rural development is not merely a contribution to the growth of individual countries. It can be a way to reduce poverty and to increase access to water, health care, and education. Sustainable rural development can also help stop deforestation and reduce live-stock, which generate most of the greenhouse gas emissions. However, eorts to achieve a sustainable rural development are often thwarted by oods, drought, heat waves, and hurricanes, which local communities are not very prepared to tackle. Agricultural practices and local planning are still not very risk-informed. These deciencies are particularly acute in tropical regions, where many Least Developed Countries are located and where there is, however, great potential for rural development. This Special Issue contains 22 studies on best practices for risk awareness; on local risk reduction; on several cases of soil depletion, water pollution, and sustainable access to safe water; and on agronomy, earth sciences, ecology, economy, environmental engineering, geomatics, materials science, and spatial and regional planning in 12 tropical countries
    corecore