518,009 research outputs found

    Effects of Prediction Feedback in Multi-Route Intelligent Traffic Systems

    Full text link
    We first study the influence of an efficient feedback strategy named prediction feedback strategy (PFS) based on a multi-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. In this scenario, our model incorporates the effects of adaptability into the cellular automaton models of traffic flow. Simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux. At the end of this paper, we also discuss in what situation PFS will become invalid in multi-route systems.Comment: 15 pages, 15 figures, Physica A (2010), doi:10.1016/j.physa.2010.02.03

    Modeling and predicting the popularity of online news based on temporal and content-related features

    Get PDF
    As the market of globally available online news is large and still growing, there is a strong competition between online publishers in order to reach the largest possible audience. Therefore an intelligent online publishing strategy is of the highest importance to publishers. A prerequisite for being able to optimize any online strategy, is to have trustworthy predictions of how popular new online content may become. This paper presents a novel methodology to model and predict the popularity of online news. We first introduce a new strategy and mathematical model to capture view patterns of online news. After a thorough analysis of such view patterns, we show that well-chosen base functions lead to suitable models, and show how the influence of day versus night on the total view patterns can be taken into account to further increase the accuracy, without leading to more complex models. Second, we turn to the prediction of future popularity, given recently published content. By means of a new real-world dataset, we show that the combination of features related to content, meta-data, and the temporal behavior leads to significantly improved predictions, compared to existing approaches which only consider features based on the historical popularity of the considered articles. Whereas traditionally linear regression is used for the application under study, we show that the more expressive gradient tree boosting method proves beneficial for predicting news popularity

    Prediction feedback in intelligent traffic systems

    Full text link
    The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this paper, we studied dynamics of traffic flow with real-time information provided and the influence of a feedback strategy named prediction feedback strategy is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.Comment: 14 pages, 15 figure

    Genre Prediction to Inform the Recommendation Process

    Get PDF
    In this paper we present a time-based genre prediction strategy that can inform the book recommendation process. To explicitly consider time in predicting genres of interest, we rely on a popular time series forecasting model as well as reading patterns of each individual reader or group of readers (in case of libraries or publishing companies). Based on a conducted initial assessment using the Amazon dataset, we demonstrate our strategy outperforms its baseline counter-part

    Spatial Uncertainty of Target Patterns Generated by Different Prediction Models of Landslide Susceptibility

    Get PDF
    This contribution exposes the relative uncertainties associated with prediction patterns of landslide susceptibility. The patterns are based on relationships between direct and indirect spatial evidence of landslide occurrences. In a spatial database constructed for the modeling, direct evidence is the presence of landslide trigger areas, while indirect evidence is the presence of corresponding multivariate context in the form of digital maps. Five mathematical modeling functions are applied to capture and integrate evidence, indirect and direct, for separating landslide-presence areas from the areas of landslide assumed absence. Empirical likelihood ratios are used first to represent the spatial relationships. These are then combined by the models into prediction scores, ordered, equal-area ranked, displayed, and synthesized as prediction-rate curves. A critical task is assessing how uncertainty levels vary across the different prediction patterns, i.e., the modeling results visualized as fixed, colored groups of ranks. This is obtained by a strategy of iterative cross validation that uses only part of the direct evidence to model the pattern and the rest to validate it as a predictor. The conducted experiments in a mountainous area in northern Italy point at a research challenge that can now be confronted with relative rank-based statistics and iterative cross-validation processes. The uncertainty properties of prediction patterns are mostly unknown nevertheless they are critical for interpreting and justifying prediction results

    Improving Stock Trading Decisions Based on Pattern Recognition Using Machine Learning Technology

    Get PDF
    PRML, a novel candlestick pattern recognition model using machine learning methods, is proposed to improve stock trading decisions. Four popular machine learning methods and 11 different features types are applied to all possible combinations of daily patterns to start the pattern recognition schedule. Different time windows from one to ten days are used to detect the prediction effect at different periods. An investment strategy is constructed according to the identified candlestick patterns and suitable time window. We deploy PRML for the forecast of all Chinese market stocks from Jan 1, 2000 until Oct 30, 2020. Among them, the data from Jan 1, 2000 to Dec 31, 2014 is used as the training data set, and the data set from Jan 1, 2015 to Oct 30, 2020 is used to verify the forecasting effect. Empirical results show that the two-day candlestick patterns after filtering have the best prediction effect when forecasting one day ahead; these patterns obtain an average annual return, an annual Sharpe ratio, and an information ratio as high as 36.73%, 0.81, and 2.37, respectively. After screening, three-day candlestick patterns also present a beneficial effect when forecasting one day ahead in that these patterns show stable characteristics. Two other popular machine learning methods, multilayer perceptron network and long short-term memory neural networks, are applied to the pattern recognition framework to evaluate the dependency of the prediction model. A transaction cost of 0.2% is considered on the two-day patterns predicting one day ahead, thus confirming the profitability. Empirical results show that applying different machine learning methods to two-day and three-day patterns for one-day-ahead forecasts can be profitable

    Short-Term Industrial Load Forecasting Based on Ensemble Hidden Markov Model

    Get PDF
    Short-term load forecasting (STLF) for industrial customers has been an essential task to reduce the cost of energy transaction and promote the stable operation of smart grid throughout the development of the modern power system. Traditional STLF methods commonly focus on establishing the non-linear relationship between loads and features, but ignore the temporal relationship between them. In this paper, an STLF method based on ensemble hidden Markov model (e-HMM) is proposed to track and learn the dynamic characteristics of industrial customer’s consumption patterns in correlated multivariate time series, thereby improving the prediction accuracy. Specifically, a novel similarity measurement strategy of log-likelihood space is designed to calculate the log-likelihood value of the multivariate time series in sliding time windows, which can effectively help the hidden Markov model (HMM) to capture the dynamic temporal characteristics from multiple historical sequences in similar patterns, so that the prediction accuracy is greatly improved. In order to improve the generalization ability and stability of a single HMM, we further adopt the framework of Bagging ensemble learning algorithm to reduce the prediction errors of a single model. The experimental study is implemented on a real dataset from a company in Hunan Province, China. We test the model in different forecasting periods. The results of multiple experiments and comparison with several state-of-the-art models show that the proposed approach has higher prediction accuracy
    • …
    corecore