922 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Energy-aware routing protocols in wireless sensor networks

    Get PDF
    Saving energy and increasing network lifetime are significant challenges in the field of Wireless Sensor Networks (WSNs). Energy-aware routing protocols have been introduced for WSNs to overcome limitations of WSN including limited power resources and difficulties renewing or recharging sensor nodes batteries. Furthermore, the potentially inhospitable environments of sensor locations, in some applications, such as the bottom of the ocean, or inside tornados also have to be considered. ZigBee is one of the latest communication standards designed for WSNs based on the IEEE 802.15.4 standard. The ZigBee standard supports two routing protocols, the Ad hoc On-demand Distance Vector (AODV), and the cluster-tree routing protocols. These protocols are implemented to establish the network, form clusters, and transfer data between the nodes. The AODV and the cluster-tree routing protocols are two of the most efficient routing protocols in terms of reducing the control message overhead, reducing the bandwidth usage in the network, and reducing the power consumption of wireless sensor nodes compared to other routing protocols. However, neither of these protocols considers the energy level or the energy consumption rate of the wireless sensor nodes during the establishment or routing processes. (Continues...)

    Análisis de desempeño de leach variando el porcentaje de cluster head

    Get PDF
    The LEACH protocol is a “standard” protocol used in the analysis and simulation of wireless sensor networks. This article analyzes the effect of varying parameter values in the LEACH protocol. In particular, the case of varying cluster head node assignments to , , and  of the total nodes of the network. Specifically, it shows the energy effect of this variation and the corresponding data traffic analysis, showing simulation results that illustrate the behavior resulting from this variation by using an approach of time-division multiplexing on the clusters.El protocolo LEACH es un protocolo “patrón” utilizado en análisis y simulación de redes de sensores inalámbricos. En este artículo, se analiza el efecto de variar los valores de los parámetros utilizados en el protocolo LEACH que, para el caso particular, se presenta la variación de asignación de nodos Cluster Head en porcentajes del ,  y  del total de los nodos de la red. En particular, se muestra el efecto energético de esta variación y su respectivo análisis de tráfico de datos, presentando resultados de simulación que ilustran el comportamiento de esta variación, bajo un enfoque de acceso múltiple por división de tiempo sobre los cluster encontrados por LEACH

    DESIGN OF A MINIMAL OVERHEAD CONTROL TRAFFIC TOPOLOGY DISCOVERY AND DATA FORWARDING PROTOCOL FOR SOFTWARE-DEFINED WIRELESS SENSOR NETWORKS

    Get PDF
    Software-defined networking is a novel concept that is ported into wireless sensor networks to make them more manageable and customizable. unfortunately, the topology discovery and maintenance processes generate high overhead control packet exchange between the sensor nodes and the central controller leading to a deterioration of the network's performance. In this paper, a novel minimal overhead control traffic topology discovery and data forwarding protocol is proposed and detailed. The proposed protocol requires some changes to the topology discovery protocol implemented in SDN-WISE to improve its performance. The proposed protocol has been implemented within the IT-SDN framework for evaluation. The results show reduced overhead control traffic and increase, of about 20%, data packet delivery rate over the protocol in SDN-WISE

    Structure and topology of transcriptional regulatory networks and their applications in bio-inspired networking

    Get PDF
    Biological networks carry out vital functions necessary for sustenance despite environmental adversities. Transcriptional Regulatory Network (TRN) is one such biological network that is formed due to the interaction between proteins, called Transcription Factors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional robustness in the face of perturbation or mutation: a property that is proven to be a result of its underlying network topology. In this thesis, we first propose a three-tier topological characterization of TRN to analyze the interplay between the significant graph-theoretic properties of TRNs such as scale-free out-degree distribution, low graph density, small world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological robustness as well as information spread in TRNs. With the understanding of the TRN topology, we explore its potential use in design of fault-tolerant communication topologies. To this end, we first propose an edge rewiring mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes, called hubs, while preserving its other significant graph-theoretic properties. We apply the rewired TRN topologies in the design of wireless sensor networks that are less vulnerable to targeted node failure. Similarly, we apply the TRN topology to address the issues of robustness and energy-efficiency in the following networking paradigms: robust yet energy-efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection framework for smart city applications and a data transfer framework deployed over a fog computing platform for collaborative sensing --Abstract, page iii

    Distributed information extraction from large-scale wireless sensor networks

    Get PDF

    Enhancing Security and Energy Efficiency in Wireless Sensor Network Routing with IOT Challenges: A Thorough Review

    Get PDF
    Wireless sensor networks (WSNs) have emerged as a crucial component in the field of networking due to their cost-effectiveness, efficiency, and compact size, making them invaluable for various applications. However, as the reliance on WSN-dependent applications continues to grow, these networks grapple with inherent limitations such as memory and computational constraints. Therefore, effective solutions require immediate attention, especially in the age of the Internet of Things (IoT), which largely relies on the effectiveness of WSNs. This study undertakes a comprehensive review of research conducted between 2018 and 2020, categorizing it into six main domains: 1) Providing an overview of WSN applications, management, and security considerations. 2) Focusing on routing and energy-saving techniques. 3) Reviewing the development of methods for information gathering, emphasizing data integrity and privacy. 4) Emphasizing connectivity and positioning techniques. 5) Examining studies that explore the integration of IoT technology into WSNs with an eye on secure data transmission. 6) Highlighting research efforts aimed at energy efficiency. The study addresses the motivation behind employing WSN applications in IoT technologies, as well as the challenges, obstructions, and solutions related to their application and development. It underscores that energy consumption remains a paramount issue in WSNs, with untapped potential for improving energy efficiency while ensuring robust security. Furthermore, it identifies existing approaches' weaknesses, rendering them inadequate for achieving energy-efficient routing in secure WSNs. This review sheds light on the critical challenges and opportunities in the field, contributing to a deeper understanding of WSNs and their role in secure IoT applications

    Multi-Hop Selective Constructive Interference Flooding Protocol For Wireless Sensor Networks

    Get PDF
    Connectivity is a critical issue in WSNs, as the data collected needs to be sent to the base station or the processing centers. Low connectivity due to the limited radio range of sensor nodes and random distribution leads the network to be partitioned into disconnected groups, which can interrupt or completely prevent communication between nodes. For effective communication, each node must be located close enough to each other. Improper positioning of the nodes can cause a failure in sending or receiving radio signals, resulting in a segmented or incomplete network. A Multi-Hop Selective Constructive Interference Flooding (MSCIF) protocol is proposed to address the problem of low connectivity in WSNs with a sparse distribution and improve the network’s lifetime. MSCIF integrates three main algorithms: clustering algorithm, selection algorithm, and a synchronized flooding. The first step of the proposed protocol involves the development of an energy efficient clustering algorithm which is appropriate for WSN with a sparse density topology. Clustering is necessary in the proposed protocol as it helps to exclude nodes that are far away from other nodes, which consume a lot of energy. The stages of clustering are: initialization, scheduling, and clustering. The second step in MSCIF protocol involves designing a selection algorithm to select the minimum connected dominating nodes. This is to improve the network reliability and control the energy consumption by reducing the number of cooperating nodes. The third step is applying a fast-synchronized flooding to achieve a constructive interference at the receiver to improve the received signal strength and improve connectivity

    Power Optimization for Wireless Sensor Networks

    Get PDF
    corecore