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Abstract: Software-defined networking is a novel concept that is 

ported into wireless sensor networks to make them more manageable 

and customizable. unfortunately, the topology discovery and 

maintenance processes generate high overhead control packet 

exchange between the sensor nodes and the central controller leading 

to a deterioration of the network's performance. In this paper, a novel 

minimal overhead control traffic topology discovery and data 

forwarding protocol is proposed and detailed. The proposed protocol 

requires some changes to the topology discovery protocol 

implemented in SDN-WISE to improve its performance. The 

proposed protocol has been implemented within the IT-SDN 

framework for evaluation. The results show reduced overhead 

control traffic and increase, of about 20%, data packet delivery rate 

over the protocol in SDN-WISE.  
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1. Introduction 
 

Since the term “Internet of Things (IoT)” was first coined 

about a decade ago, the concept has been widely accepted and 

used in many areas [1]. The general idea revolves around 

interconnecting various heterogeneous devices in different 

geographical areas to communicate, store, or analyze data 

using the internet. Wireless Sensor Networks (WSNs) drive 

the growth of the IoT paradigm. WSNs are groups of 

specialized sensor nodes that are used to measure physical 

quantities such as sound, vibration, humidity, pressure, and 

temperature of an environment and convert them to electronic 

signals [2]. These signals are sent to a desired central location 

where they are used to make decisions. Each sensor node is 

equipped with limited resources [3] namely: one or more 

sensors, a processing unit, a memory, a power supply, and a 

Radio Frequency (RF) transceiver. The sensor nodes also 

communicate with one another using low-bandwidth wireless 

links.  

There are numerous application areas of WSNs including 

military applications, weather forecasting, health monitoring, 

disaster detection, smart cities/vehicle design, pollution 

detection, and power management in schools and office 

buildings [4]. Due to the limitations of sensor node resources, 

WSNs are unable to satisfy the requirements of all application 

scenarios. For instance, some applications may require WSNs 

to store information for future retrieval. Others may require 

regular user queries to be scheduled and automatically 

dispatched without external operator intervention. Still, others 

may need to share information among themselves in real-time 

to aid in decision-making tasks. These limitations are 

considered to be significant drawbacks of the performance of 

WSNs and the growth of the IoT paradigm. 

Considerable work has been carried out in the area of WSNs 

to improve the effective usage of sensor nodes' resources 

through the design of routing algorithms [5] and [6], the 

design of network architectures and topologies [7]. However, 

the task of designing innovative techniques, protocols, and 

applications to minimize the impact of WSN limitations 

creates the need for the usage of a Software-Defined 

Networking (SDN) solution to the WSN limitations. SDN is 

envisaged to offer better solutions to WSN limitations by 

decoupling the network control logic from the underlying 

hardware and by incorporating real-time network 

programmability and management [8]. Several latest 

recommendations in the SDN literature include: Anadiotis et 

al [9] presented SD-WISE, a software abstraction of sensor 

node's resources, to expand the SDN approach to WSN. In 

three cases, the key operations and characteristics of SDN 

were described and demonstrated to test the efficiency of the 

approach in WSN. The authors concluded that SDN could be 

considered an enabling technology for robust WSNs capable 

of performing complex tasks efficiently. Musa et al [10] 

reviewed some recent research on traditional WSN and 

discussed SDN-based management strategies for WSNs while 

at the same time emphasizing the benefits of SDN over 

traditional WSN.  

The tight interplay between the data plane and the control 

plane in traditional WSN makes the sensor nodes consume 

high energy when performing tasks. Smitha et al [11] 

proposed a distributed energy-efficient Software-Defined 

Wireless Sensor Network (SDWSN) and implemented the 

controller at the base station. With knowledge of the 

network’s global view, the controller selects the cluster heads 

based on energy and distance. Similarly, green routing 

algorithms were proposed to maximize the lifetime of the 

sensor network in [12] and [13]. The communication between 

the sensor nodes and the controller in these works was via 

OpenFlow protocol. The Problem of  OpenFlow [14] is that it 

requires a dedicated control channel. It also creates memory 

constraints and heavy overhead traffic; therefore, it is not 

suitable for SDWSN.  

Generally, the SDN concept requires each node to gather 

details about the network topology, send these details to the 

central controller, and continuously update the controller 

about the topology status [15]. The nodes are also required to 

request further information from the controller for ambiguous 

flows.  This results in continuous exchange of control 

messages between the central controller and the nodes. The 

continuous transmission of control messages impairs the 

quality of radio communication and drains the nodes’ energy 
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faster. This problem is more pronounced when the network 

topology is constantly changing due to node mobility or 

energy drainage. In any of these scenarios, additional control 

messages are shared to update the topology and the flow table, 

thus, leading to high traffic overheads. Also, when the hop 

count increases in the case of large networks, intermediate 

nodes generate flow requests to set up paths. The resultant 

effects include congestion, reduced network throughput, short 

network lifetime, and inefficient use of sensor node resources 

such as bandwidth, battery, CPU, and memory.  

To reduce the updates of the flow table, Pineas et al [16] 

proposed a flow aggregation mechanism to improve energy 

consumption, network performance, and lifetime, but this 

could lead to expected errors including accessibility failures, 

routing loops, and network traffic isolation. The works in [17], 

[18], and [19] investigated the potential for distributing the 

control system to minimize congestion and address WSN 's 

perpetual limitations. The authors proposed autonomous 

controllers, distributed to each domain, to monitor and 

effectively secure the domains to prevent external and internal 

attacks. To ensure uniformity of network rules and 

accessibility of these rules by all controllers, so that a 

malfunction in one section of the network will not bring down 

the entire network, controllers continuously synchronize data 

resulting in high overhead control traffic and inefficient 

network operation. 

This paper, therefore, focuses on reducing overhead traffic in 

topology discovery, topology maintenance, and data 

forwarding processes of SDWSNs to improve network 

operational efficiency and minimize energy consumption in 

the network performance by:  

• Designing a distributed SDWSN in which each cluster 

head is a sub-controller responsible for collecting the 

network topology information, performing low-level 

control functions such as admitting or removing sensor 

nodes to or from the network, distributing flow table, 

filtering and forwarding traffic, and updating the central 

controller on the network topology.  

• Designing a minimal overhead control traffic topology 

discovery, maintenance, and data forwarding protocol to 

minimize congestion, increase network throughput, and 

lifetime and improve the efficient use of sensor node 

resources.  

• Assessing protocol performance with different key 

network performance metrics within the IT-SDN 

framework. 

The rest of the paper is organized as follows: Section 2 

reviews works related to the research problem. Section 3 

discusses the limitations of the existing TD protocol, the 

modifications to the existing TD protocol, and the proposed 

protocol. Section 4 presents the proposed protocol and section 

5 outlines the experimental method used to validate it. In 

section 6, the experimental results are presented and analyzed, 

and the conclusion and future work are provided in section 7. 

2. Related Works 

Some research works relating to the work in this article are 

presented in this section. Topology information collection is a 

critical component of any SDN solution for WSN due to the 

limitations of WSNs. This, therefore, calls for the 

development of an efficient Topology Discovery (TD) 

protocol in SDWSN without compromising the performance 

of the network’s throughput, lifetime, and latency. To this end, 

Joseph et al [15]  addressed how overhead control traffic can 

be minimized to improve the efficiency of SDWSN. In a full 

literature review of various methods or algorithms, the authors 

identified the drawbacks and strengths as well as open issues 

and future research directions.  Babedi et al [20]  proposed a 

Request For Comments (RFC) 7567 based SDWSN QoS 

resource-aware scheme to minimize overhead traffic in highly 

dynamic and large-scale SDWSNs.  The proposed scheme 

improved data acquisition and network information collection 

time as well as network throughput, delay, and packet loss, 

compared to other implemented schemes.  

The authors in [21] introduced programmable controller logic 

in the sensor nodes so that when the nodes receive a new 

packet, they can take decisions without often sending flow 

requests to the controller. Besides, a new topology 

management layer was introduced to collect the local topology 

information. The proposed solution was intended to minimize 

the exchange of control messages between the SDN controller 

and the sensor nodes and to permit the programming of such 

sensor nodes as finite-state machines. Building on this work,  

Nasim et al [22]  proposed and implemented SDWSN “Fuzzy 

TD protocol ” to increase the delivery rate of packets, reduce 

the loss of packets, and conserve the energy of the network to 

further improve the performance of SDWSN. The approach 

uses node cost calculated from energy, queue length, and the 

number of neighbors of each node to build the flow table and 

to distribute it to all the nodes. Though it ensures a fair 

distribution of energy consumption, it is computationally 

expensive, and it turns to generate high overhead control 

traffic. Theodorou et al [23] proposed a separate control 

channel in SDWSN to minimize the performance issues of 

high control messages associated with the in-band control 

channel of SDWSNs. However, this additional network 

interface and dedicated channel increase the hardware 

complexity and cost of the sensor nodes. 

In [24], game theory and fork and join adaptive particle swarm 

optimization algorithm was proposed to improve network 

efficiency and service life. The authors stated that the 

algorithm automates the number and best positions of 

controllers, so that control messages can be exchanged with 

minimal overhead. While this approach ensures load 

balancing, it requires high computational power, and it does 

not improve overhead control traffic in dynamic networks. As 

data transmission and network communication consume a lot 

of resources, sensor node operations need to be altered to 

extend the network lifetime [25]. If this is not done properly 

in SDWSN, the efficiency of the controller decisions may be 

reduced as the controller is unable to have real-time network 

topology information. Faiza et al [26] investigated how the 

SDN approach was employed to decrease energy consumption 

in WSN. The authors provided the SDN architectural 

implementation in WSN to deal with energy consumption. 

However, this work was merely exploration since it did not 

provide implementation details and actual performance 

results. Sudip et al [27] proposed a situation-aware SDWSN 

protocol switching scheme using an information routing 

strategy to improve network efficiency. The proposed scheme 

adopts supervised learning algorithms that enable the 

controller to take decisions in real-time, based on network 

condition and application-specific requirements.  However, 

changing routing protocols in each sensor node takes more 

time, thus, increasing delay and loss of packets.  

To the best of our knowledge, the existing literature requires: 
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• Sensor nodes to collect and continuously report topology 

information to the controller via broadcast, 

• Sensor nodes to request flow table for ambiguous flows 

by broadcasting the request to immediate neighbors,  

• Sensor nodes to install flow table for the entire network, 

• Independent controllers to man clusters in distributed 

SDWSNs 

To fill the required gap, this paper proposes a minimized 

overhead traffic topology discovery, maintenance, and data 

forwarding protocol for SDWSN. 

3. Discussion of Literature Review Findings  

The literature review revealed the need for an efficient 

topology discovery protocol in SDWSN due to limitations of 

sensor node resources. we discuss the limitations of existing 

TD protocol and our modifications to it in this section.  

 3.1  Topology Discovery Process  

The network status collections start with each node 

broadcasting Topology Discovery (TD) packet to its 

neighbors. A node, upon receipt of a TD packet, inserts into 

its neighbor table the list of its current neighbors, the current 

RSSI, address, and the battery level. The node then updates its 

route towards the controller to enable it to send the neighbor 

report and receive flow table. The node also sets its battery 

level and address in the corresponding field of the TD packet 

and broadcasts the updated TD packet to its neighbors [21]. 

This process continues until the controller receives the 

network status. This process poses a serious challenge to 

efficient network operation as the sensor nodes expend limited 

resources processing, broadcasting, and relaying control 

messages to establish the network global view.  

The topology discovery process was modified by putting the 

network into clusters, depicted in Figure 1, using the concept 

in [17], allowing only the cluster head to broadcast TD 

packets, and restricting the sensor nodes to communicate with 

the controller and any other node through the cluster head. 

However, unlike [17], the cluster heads do not independently 

control the respective clusters and cannot modify the flow 

table. The cluster heads, here refer to as sub-controllers, (1) 

only rebroadcast TD packets on behalf of the central 

controller, (3) collate neighbor information and relay it to the 

central controller, and (4) distribute the neighbor table to all 

sensor nodes in the respective domains. The cluster heads can 

also admit or delete a node and update the central controller 

of the changes. The introduction of cluster heads, as sub-

controllers, eliminates performance degradation due to 

multiple controllers [19], improves network operational 

efficiency, and minimizes latency and congestion. 
 

 
Figure 1: Network Architecture of Proposed Solution 

    3.2  Topology Maintenance Process  

The existing TD protocol uses periodic beacon messages to 

keep the central controller updated on current network 

topology when the network is in operation. If one sensor node 

receives a beacon packet from another node that is not already 

in the neighbor table, it adds the other node’s address, battery 

level, and RSSI value into the neighbor table and updates the 

controller in the neighbor/network status report which is sent 

periodically. However, when the topology fluctuates due to 

sensor node failure or mobility, the SDN controller cannot 

correctly compute the routing rules and install them. As a 

result, the sensor nodes keep sending flow request messages 

and dropping packets in queues to be relayed. Besides, when 

hop count increases, in the case of large networks, the 

intermediate nodes generate flow requests to set up paths. The 

resultant effects are congestion and inefficient use of sensor 

node resources. To compensate node failure and mobility, 

Million et al [28] implemented a keepalive counter to track 

and remove dead nodes.  However, high dynamism in 

topology maintenance puts more constraints on the sensor 

nodes since the resources are limited.  

The topology maintenance process was modified to allow only 

the cluster heads to periodically broadcast the beacon 

messages to the respective domains. A node, upon receipt of 

a beacon message, unicasts its response to the cluster head 

with an update of its current status. If a node receives two 

beacon messages from two different cluster heads, it responds 

to the one with stronger RSSI. If a node moves out of coverage 

range of a cluster head, it listens for broadcast beacons 

continuously, and upon receipt of a beacon message, it 

requests to join that cluster. In this way, only the cluster heads 

collate the changes in the network and update the controller 

about them and also distribute the updated flow table to all the 

sensor nodes in the respective domains. Advantage was taken 

of the small size of a cluster, compared to the entire network, 

to limit the impact of the keepalive counter, implemented with 

the broadcast beacons, so that the cluster heads use it to 

remove dead nodes. It was assumed that since the controller 

has information about every node in the network, it can 

automatically select a cluster head for any cluster if an existing 

cluster head runs out of energy/dies or cannot meet the 

minimum threshold, set by the central controller, to be a 

cluster head. The central controller then sets a new threshold 

and uses it to select a normal node to act while a notification 

is sent to the administrator. 
 

3.3  Data Forwarding Process  
 

Nodes farther away from the destination of packets forward 

them to the closest neighbors, and nodes receiving packets 

directed towards the central controller relay them to the closest 

nodes (in terms of the number of hops) to the central 

controller. This approach was modified by restricting sensor 

nodes to only sense and forward traffic to the closest sub-

controller which has the entire network’s flow table. The cost 

of sending traffic to the sub-controller (cluster head) was made 

lowest so that nodes still forward traffic to the cluster head 

even though they may have closest physical neighbors.  

4. Proposed Protocol Algorithm  

The burden of topology information collection was shifted to 

the cluster heads (sub-controllers) with enhanced resources to 

eliminate the exchange of control messages among the sensor 

nodes and between the sensor nodes and the central controller 
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and reduce the hop count of data packets. Algorithm 1 

illustrates the logic of the proposed protocol and the 

flowcharts for topology discovery and data forwarding are 

shown in figure 2 and 3 respectively.   

 

Require: Let C = controller, n = set of sensor nodes in a 

cluster (neighbors to CH) and t = timer for topology updates 

and r = requests send to CH by n. 

Upon receiving an event, E do 

    if E==Flow Table then 

      Broadcast to n  

    end 

    if E==data then 

        Forward to destination 

    end 

    if E==t or r 

             while t<Tmax or n<Nmax do        

Broadcast neighbor discovery message or        

receive a cluster head discovery message 

if a new neighbor is found from cluster head 

discovery message then 

              Add to neighbor table 

               end 

if neighbor is found and neighbor ID exists and 

status is the same as status data then 

Ignore cluster head discovery message for that 

neighbor 

                  end 

if the neighbor is found and status is not the same 

as status data then 

             Update status data 

                  end 

                send the neighbor table to C 

      end 

  end 

wait for the event, E 

end procedure 
 

 
Figure 2: Controller Discovery Process 

CH broadcasts neighbor discovery messages to all sensor 

nodes within its radius and sensor nodes send cluster head 

discovery messages by unicast to a CH with stronger RSSI to 

join that cluster. 

 
Figure 3: Data Forwarding Process 

5. Experimental Setup and Evaluation 

Procedure 

The proposed algorithm was validated using the IT-SDN 

framework [29]. The framework runs on COOJA, a network 

simulator of emulated Contiki WSN nodes [30] using the 

ContikiOS. Detailed description of COOJA is provided in 

[31]. Two experiments were performed comparatively: a 

distributed SDWSN with cluster heads as sub-controllers to 

evaluate the proposed protocol and implementation of the 

concept of topology discovery in SDN-WISE [21]. Figure 4 

depicts the distributed SDWSN, referred herein as the 

proposed solution. This experiment consists of one central 

controller and two sub-controllers. The second experiment, 

shown in Figure 5, depicts the implementation of SDN-WISE, 

referred herein as the traditional solution. We evaluated the 

number of control messages and the impact of these messages 

on key network metrics: traffic delay, traffic delivery rate, 

network initialization time, and energy consumption by 

comparing the two experiments. Both experiments were 

implemented on the same platform using the same framework. 

Table 1 summarizes the configuration parameters for the 

framework and the experiments. 10 sensor nodes and 1 central 

controller including 2 sub-controllers for the proposed 

solution were considered for both experiments. The choice 

was reasonable enough to analyze and compare both 

protocols. All nodes were manually positioned at a fairly equal 

distance from each other in both experiments and maintained 

constant throughout the experiments. Following a complete 

network initialization, the nodes began to send data packets at 

constant intervals, apart from sub-controllers and the central 

controller. A random initial delay was applied to avoid 

artificial data transmission synchronization. The packet loss 

and overhead control messages were assumed to depend on 

the intensity of the generated packets, so the packets were 

generated at intervals of 30 seconds. Each simulation was run 

for 10 minutes and repeated 12 times with random seeds, 

increasing the time of each run by 10 minutes. Since the 

performance evaluation was primarily time-related, each 

event that occurred in the sensor nodes, and the controller was 

time-stamped to make the measurement possible. After the 

simulation was run, the sender node log, the receiver node log, 

Algorithm 1: Procedure for CHs in topology discovery, 

maintenance, and data forwarding 
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and the controller node log were saved to a file. The logged 

file was later processed to extract values for the performance 

metrics. The simulation setup and flow table distribution are 

shown in Figure 6 and 7 respectively . 

 
Figure 4: Experiment 1, Proposed Solution 

 
Figure 5: Experiment 2, Traditional Solution 

Table 1: Simulation Parameters 

Simulation parameters 

Topology used Manually positioned 

Number of sensor nodes 10 

Number of sub-controllers 2 

Number of controllers 1 

Payload max size 116 bytes 

Buffer size 10 bytes 

Simulation time 120 minutes 

ContikiMAC channel check 

rate 

128Hz 

MAC layer CSMA 

Radio Medium Model UDGM 

Node type Sky mote 

Transmission Range 50 

Interference Range 100 

IT-SDN Tool parameters 

Version number 0.4 

Packet retransmission time 60s 

Link metric ETX 

Flow table size  15 entries 

Route calculation algorithm Dijkstra 

 
Figure 6: Simulation Setup 

 
Figure 7: Controller (1) and Sub-controllers (2 & 3) 

distributing flow table 

6. Results Analysis and Discussion  

6.1  Network Initialization Time  

The controller discovers the entire topology before making 

any routing decisions. The initialization time is the time it 

takes the central controller to learn of the entire network 

topology and install flow tables in all the nodes in the network. 

In the network initialization time measurement, the central 

controller and all the sensor nodes were started at the same 

time, and the instant at which a node received a data flow setup 

was recorded.  The time at which the last node received its 

data flow setup marked the full network initialization time. At 

this time, all the nodes in the network could forward traffic. 

The network initialization time for both experiments is shown 

in Figure 8. The graph indicates that the proposed solution has 

converged the network faster than the traditional solution. In 

the proposed solution, each sensor node only needs to discover 

a cluster head and send a flow request to and obtain the flow 

table from the central controller through that cluster head. This 

reduced the computation requirement and the hop count in 

building the global network view. The shorter convergence 

time could also be attributed to the introduction of sub-

controllers as cluster heads with enhanced capabilities to 

process neighbor related information on behalf of the sensor 

nodes. The cluster heads keep track of all sensor nodes joining 

the network and update the central controller, and the 

controller, in turn, computes/updates the flow table promptly. 

However, in the traditional solution, each sensor node needs 

to learn of all its neighbors before discovering the central 

controller and receiving the flow table.  This slowed down the 

 

 



455 
International Journal of Communication Networks and Information Security (IJCNIS)                                   Vol. 12, No. 3, December 2020 

 

network initialization time. The network converged 30s faster 

in the proposed solution than in the traditional solution. 

        
Figure 8: Network Initialization Time 

6.2  Control Message Overhead  

Control message overhead is defined as the number of specific 

control messages that are exchanged between the sensor nodes 

and the central controller. Control messages include the 

periodic topology reports by each sensor node and request and 

response messages for flow entries. Approximately, 200 

topology report messages alone are sent every 10 minutes to 

the SDN controller [32].   

The numbers of control messages over the simulation time is 

shown in Figure 9. The graph shows that the proposed solution 

generated fewer control messages than the traditional solution. 

This can be attributed to congestion or retransmission in the 

traditional solution. For instance, when the topology 

fluctuates due to the failure of a sensor node, some sensor 

nodes send repeated flow request messages, in addition to the 

usual topology report messages, to create new routes. Besides, 

the intermediate nodes often generate flow requests to help 

construct routes. This increases the overhead control message 

in the network. However, in the proposed solution, only the 

cluster heads generated flow request messages to setup new 

paths as intermediate nodes, and if a cluster head failed as a 

result of running out of a certain resource, the controller could 

pre-emptively select a new cluster head since the controller 

knows the status of each node in the network. These could be 

the reasons for the minimal control overhead in the proposed 

solution. 
 

Figure 9: Average Control Overhead 

6.3  Average Traffic Delay  

The end-to-end Packet delay can be defined as the time 

difference between when a packet is sent and when it is 

received. Packet delay can be computed by summing 

transmission delay, propagation delay, the processing time of 

the controller, and queue delay. However, it is highly difficult 

to compute these delays in WSNs due to synchronization 

problems. The commonest approach is to use the individual 

time of each node and sum them [28]. The delay, in this case, 

considered all the above for each node and was measured by 

calculating the time difference between when a packet was 

generated and when the packet was received. 

Heavy loading of requests in SDWSN may result in the central 

controller taking a longer time to process and respond to flow 

requests. This may also result in network congestion due to 

packets taking a longer time to reach the destination. As the 

proposed solution introduced sub-controllers to service low-

level requests and relay packets, this could account for the 

lower average delay of packets than the traditional solution, as 

shown in Figure 10.  

          

 
Figure 10: Average Packet Delay 

6.4  Average Data Delivery Rate   

The data delivery rate measures the ratio of receive data 

packets to send data packets at the destination. Data delivery 

rate is a very important network metric since it indicates 

network congestion, interference, or a yet to be established 

path in the network. Each node keeps a counter that is 

incremented every time the node sends or receives a packet. 

This counter is sent to the controller in the report message. 

The data delivery rate was measured by checking which and 

how many of the packets sent were received at the destination. 

The data packets were generated at a 30-second interval after 

the network had been converged. Figure 11 shows the 

distribution of the data packets. The graph shows that the 

proposed solution has a higher data packet delivery rate than 

the traditional solution. In the traditional solution, some 

packets were lost due to network congestion. Besides, the 

nodes used broadcast beacons with higher priority to establish 

and maintain the network global view. During the 

broadcasting period, data packets were buffered and lost when 

the underlying network could no longer accommodate 

incoming packets. With the proposed solution, only the cluster 

heads used broadcast beacons to establish and maintain the 

network global view, hence, packet loss would greatly relate 

to the capacity of the cluster head to collect topology 

information, update the central controller, and relay packets. 

Since sub-controllers have been used as cluster heads with 

enhanced capabilities, it is not unexpected that the proposed 

solution has shown a delivery rate of 20% higher than the 

traditional solution. 
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Figure 11: Average Packet Delivery Rate 

6.5  Energy Measurements  

Many factors affect node power consumption in WSNs. These 

factors include the network topology, the transmission ratio of 

each node, the propagation distance of the packets, and the 

type of transmissions such as broadcast or unicast 

transmission as well as synchronized or non-synchronized 

transmission [33]. Taking all these factors into consideration, 

the topology and the transmission ratio of each node were 

maintained constant for both experiments, and the energy of 

the Central Processing Unit (CPU), the energy of Low Power 

Mode (LPM), the energy of Radio Transmit, and energy of 

Radio Listen or receive were measured. The energy of CPU is 

defined as the total energy used for active computation, the 

energy of LPM refers to the total energy used when the sensor 

node is in the power saving condition or the idle state, and the 

energy of Radio Transmit (TX) and energy of Radio Listen or 

receive (RX) refer to the total energy used by the radio devices 

to send and receive data packets respectfully. Energest was 

used to track the energy consumption of each node, and the 

data were logged into a file. 

Figures 12-15 show the average distribution of power 

consumption for the different parameters. In Figure 12, the 

average CPU power consumed is lower in the proposed 

solution than in the traditional solution. This is because the 

sensor nodes performed less active computation when 

establishing and maintaining the global network view since 

this burden was shifted to the cluster heads and the hop count 

is significantly reduced to 1. However, as explained in Figure 

8, this is not the case for the traditional solution. Figure 13 also 

shows that the sensor nodes consume more power in the power 

saving or idle condition, a confirmation to the explanation for 

Figure12.             

 
Figure 12: Average CPU Energy Consumption 

 
Figure 13: Average LPM Energy Consumption 

Figure 14 shows that the proposed solution produced a slightly 

lower transmit power consumption effect on the nodes than 

the traditional solution. Since packets were retransmitted by 

fewer nodes in the proposed solution, it can be deduced that 

the average power consumed to transmit a packet across the 

network will be lower than in the traditional solution.              

 
Figure 14: Average TX Energy Consumption 

Figure 15 shows the average power consumed by the nodes in 

listening to the radio channel or receiving incoming packets. 

The data shows that the traditional solution outperforms the 

proposed solution when the network was in operation for more 

than 10 minutes. It can be deduced that because the average 

distance at which a node received a packet from a sender in 

the proposed solution was always longer than that of the 

traditional solution and since more distance means more 

interference, the nodes increased the received power to be able 

to detect incoming packets. This accounted for an increase in 

receive power after the 10th minute when the network was 

completely initialized, and all the nodes began to forward 

packets, thus increasing the interference in the network.           

 
Figure 15: Average RX Energy Consumption 
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7. Conclusion and Future Work   

The SDN concept is still at its novel stage regarding its 

utilization in WSN. Though the concept is envisioned to solve 

the various limitations of WSNs, its implementation in WSNs 

comes with many challenges. One of the most important 

challenges is how to reduce the overhead control traffic in 

topology discovery and maintenance. There are several 

proposals in literature on how to resolve this challenge. One 

of these proposals is SDN-WISE which seeks to minimize the 

exchange of control messages in the network and improve the 

network performance. However, its approach has serious 

limitations. These limitations were modified in this paper to 

propose an improved topology discovery protocol. The 

proposed protocol initializes the network faster, reduces the 

overhead control traffic significantly, requires less 

consumption of sensor node energy, and improves the 

SDWSN performances. The proof of concept experiments 

revealed that the proposed solution increased the data packet 

delivery rate by 20% and converges the network 49% faster 

than the traditional solution. Similar research on performance 

analysis of topology control techniques for SDWSNs using 

CORAL-SDN was carried out in [34]. The authors obtained 

an average convergence time of around 120 seconds for a 

linear topology of 25 sensor nodes whereas the result obtained 

for convergence time in this paper is about 60 seconds. This 

shows that the performance of the proposed solution is 

optimal. A correlation observed in the experiment is the effect 

of propagation distance on the consumption of energy to 

receive incoming packets. It was observed that as the 

propagation distance increases, the consumption of received 

energy increases. This has been explained as the sensor nodes 

having to increase sensitivity to be able to detect incoming 

packets as a result of increased radio interference. There is a 

possibility of tweaking the proposed algorithm to make 

routing decisions to take into account the battery levels of each 

sensor node. In the future, the authors intend to implement and 

evaluate the proposed protocol on a large-scale scenario to 

verify its scalability. 

8. Acknowledgement  

The authors would like to thank MTN Ghana for funding this 

research.  

References 
   

[1] J. E. Ibarra-Esquer, F. F. González-Navarro, B. L. Flores-

Rios, L. Burtseva, and M. A. Astorga-Vargas, “Tracking the 

evolution of the internet of things concept across different 

application domains,” Sensors (Switzerland), vol. 17, no. 6, 

pp. 1–24, 2017. 

[2] M. A. Zibouda Aliouat, “Efficient Management of Energy 

Budget for PEGASIS Routing Protocol,” HAL Arch., p. 215, 

2012. 

[3] M. L. F. Miguel, E. Jamhour, M. E. Pellenz, and M. C. 

Penna, “SDN architecture for 6LoWPAN wireless sensor 

networks,” Sensors (Switzerland), vol. 18, no. 11, pp. 1–23, 

2018. 

[4] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and 

A. M. Abu-Mahfouz, “Software defined wireless sensor 

networks application opportunities for efficient network 

management: A survey,” Comput. Electr. Eng., vol. 66, pp. 

274–287, 2018. 

[5] A. Jedidi, “Workload cluster balance algorithm to improve 

Wireless sensor Network performance,” Int. J. Commun. 

Networks Inf. Secur., vol. 11, no. 1, pp. 105–111, 2019. 

[6] M. Razzaq, D. Devi Ningombam, and S. Shin, “Energy 

efficient K-means clustering-based routing protocol for 

WSN using optimal packet size,” Int. Conf. Inf. Netw., vol. 

2018-Janua, no. 1, pp. 632–635, 2018. 

[7] M. J. McGrath, C. N. Scanaill, M. J. McGrath, and C. N. 

Scanaill, “Sensor Network Topologies and Design 

Considerations,” in Sensor Technologies, 2013, pp. 79–95. 

[8] T. Bakhshi, “State of the art and recent research advances in 

software defined networking,” Wirel. Commun. Mob. 

Comput., vol. 2017, p. 36, 2017. 

[9] A. Anadiotis, L. Galluccio, S. Milardoc, G. Morabito, and 

S. Palazzo, “SD-WISE : A Software-Defined Wireless 

SEnsor network ",” Elsevier, vol. 159, pp. 84–95, 2019. 

[10] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, 

“Software defined networking for improved wireless sensor 

network management: A survey,” Sensors (Switzerland), 

vol. 17, no. 5, pp. 1–32, 2017. 

[11] B. Smitha and D. Annapurna, “Software defined network 

for conservation of energy in wireless sensor network,” 

2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput. 

ICECDS 2017, pp. 591–596, 2018. 

[12] D. P. V. Neetesh Kumar, “A Green Routing Algorithm for 

IoT-Enabled Software Defined Wireless Sensor Network,” 

IEEE Sens. J., vol. 18, no. 22, p. 12, 2018. 

[13] M. S. Azizi and M. L. Hasnaoui, “Software defined 

networking for energy efficient wireless sensor network,” 

Proc. - 2019 Int. Conf. Adv. Commun. Technol. Networking, 

CommNet 2019, p. 7, 2019. 

[14] D. Hasan and M. Othman, “Efficient Topology Discovery 

in Software Defined Networks: Revisited,” Procedia 

Computer Science, vol. 116. pp. 539–547, 2017. 

[15] J. Kipongo, T. O. Olwal, and A. M. Abu-Mahfouz, 

“Topology Discovery Protocol for Software Defined 

Wireless Sensor Network: Solutions and Open Issues,” 

IEEE Int. Symp. Ind. Electron., vol. 2018-June, pp. 1282–

1287, 2018. 

[16] G. P. H. Egidius, Pineas M., Adnan M. Abu-Mahfouz, Musa 

Ndiaye, “Data Aggregation in Software-Defined Wireless 

Sensor Networks: A Review,” IEEE Access, vol. 9, p. 6, 

2019. 

[17] B. T. De Oliveira and Ć. B. Margi, “Distributed control 

plane architecture for software-defined Wireless Sensor 

Networks,” Proc. Int. Symp. Consum. Electron. ISCE, pp. 

85–86, 2016. 

[18] O. Flauzac, C. Gonzalez, and F. Nolot, “Developing a 

Distributed Software Defined Networking Testbed for IoT,” 

Procedia Comput. Sci., vol. 83, pp. 680–684, 2016. 

[19] H. I. Kobo, G. P. Hancke, A. M. Abu-Mahfouz, and G. P. 

Hancke, “Towards a distributed control system for software 

defined Wireless Sensor Networks,” Proc. IECON 2017 - 

43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, 

pp. 6125–6130, 2017. 

[20] B. B. Letswamotse, R. Malekian, C. Y. Chen, and K. M. 

Modieginyane, “Software defined wireless sensor networks 

and efficient congestion control,” IET Networks, vol. 7, no. 

6, pp. 460–464, 2018. 

[21] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, 

“SDN-WISE: Design, prototyping and experimentation of a 

stateful SDN solution for WIreless SEnsor networks,” Proc. 

- IEEE INFOCOM, vol. 26, pp. 513–521, 2015. 

[22] S. M. Nasim Abdolmaleki, Mahmood Ahmadi, Hadi 

Tabatabaee Malazi, “Fuzzy topology discovery protocol for 

SDN-based wireless sensor networks,” Elsevier, vol. 79, pp. 

54–68, 2017. 

[23] T. Theodorou and L. Mamatas, “A Versatile Out-of-Band 

Software-Defined Networking Solution for the Internet of 

Things,” IEEE Access, vol. 8, p. 24, 2020. 

[24] L. I. Peizhe, W. U. Muqing, L. Wenxing, and Z. Min, “A 

Game-Theoretic and Energy-Efficient Algorithm in an 

Improved Software-Defined Wireless Sensor Network,” 

IEEE Access, vol. 5, p. 16, 2017. 



458 
International Journal of Communication Networks and Information Security (IJCNIS)                                   Vol. 12, No. 3, December 2020 

 
[25] J. Long and O. Büyüköztürk, “Collaborative duty cycling 

strategies in energy harvesting sensor networks,” Comput. 

Civ. Infrastruct. Eng., vol. 35, no. 6, pp. 534–548, 2020. 

[26] N. F. Ali, A. M. Said, K. Nisar, and I. A. Aziz, “A Survey 

on Software Defined Network Approaches for Achieving 

Energy Efficiency in Wireless Sensor Network,” 2017 IEEE 

Conf. Wirel. Sensors, vol. 2018-Janua, pp. 28–33, 2017. 

[27] S. Misra, S. Bera, M. P. Achuthananda, S. K. Pal, and M. S. 

Obaidat, “Situation-aware protocol switching in software-

defined wireless sensor network systems,” IEEE Syst. J., 

vol. 12, no. 3, pp. 2353–2360, 2018. 

[28] M. A. Beyene, “Evaluation of SDN in Small Wireless- 

capable and Resource-constrained Devices,” Norwegian 

University of Science and Technology, 2017. 

[29] R. C. A. Alves, D. A. G. Oliveira, N. S. Gustavo, and C. B. 

Margi, “IT-SDN: Improved architecture for SDWSN,” 

XXXV Brazilian Symp. Comput. Networks Distrib. Syst., 

2017. 

[30] A. Dunkels, “Contiki - a Lightweight and Flexible 

Operating System for Tiny Networked Sensors,” IEEE 

Access, p. 8, 2010. 

[31] M. Q. Thomson, Craig, Ahmed Yassin Al-Dubai, Imed 

Romdhani, “Cooja Simulator Manual,” ResearchGate, no. 

July, p. 26, 2016. 

[32] T. C. Luz et al., “In - network performance measurements 

for Software,” Proc. 2019 IEEE 16th Int. Conf. Networking, 

Sens. Control, pp. 206–211, 2019. 

[33] M. Tutunovic and P. Wuttidittachotti, “Discovery of 

Suitable Node Number for Wireless Sensor Networks Based 

on Energy Consumption using Cooja,” Int. Conf. Adv. 

Commun. Technol. ICACT, p. 5, 2019. 

[34] T. Theodorou and L. Mamatas, “Software defined topology 

control strategies for the internet of things,” 2017 IEEE 

Conf. Netw. Funct. Virtualization Softw. Defin. Networks, 

NFV-SDN 2017, vol. 2017-Janua, no. November, pp. 236–

241, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


