1,313 research outputs found

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Traffic Operations Analysis of Merging Strategies for Vehicles in an Automated Electric Transportation System

    Get PDF
    Automated Electric Transportation (AET) is a concept of an emerging cooperative transportation system that combines recent advances in vehicle automation and electric power transfer. It is a network of vehicles that control themselves as they traverse from an origin to a destination while being electrically powered in motion – all without the use of connected wires. AET\u27s realization may provide unparalleled returns in the form of dramatic reductions in traffic-related air pollution, our nation’s dependence on foreign oil, traffic congestion, and roadway inefficiency. More importantly, it may also significantly improve transportation safety by dramatically reducing the number of transportation-related deaths and injuries each year as it directly addresses major current issues such as human error and adverse environmental conditions related to vehicle emissions. In this thesis, a logical strategy in transitioning from today’s current transportation system to a future automated and electric transportation system is identified. However, the chief purpose of this research is to evaluate the operational parameters where AET will be feasible from a transportation operations perspective. This evaluation was accomplished by performing lane capacity analyses for the mainline, as well as focusing on the merging logic employed at freeway interchange locations. In the past, merging operations have been known to degrade traffic flow due to the interruptions that merging vehicles introduce to the system. However, by analyzing gaps in the mainline traffic flow and coordinating vehicle movements through the use of the logic described in this thesis, mainline traffic operations can remain uninterrupted while still allowing acceptable volumes of merging vehicles to enter the freeway. A release-to-gap merging algorithm was developed and utilized in order to maximize the automated flow of traffic at or directly downstream of a freeway merge point by maximizing ramp flows without causing delay to mainline vehicles. Through these tasks, it is the hope of this research to aid in identifying the requirements and impending impacts of the implementation of this potentially life-altering technology

    Stage Definition for AHS Deployment and an AHS Evolutionary Scenario

    Get PDF
    Pros and cons of various mature Automated Highway Systems (AHS) have been a subject of intense study. However, such discussions are nothing but intellectual exercises unless the issue of how to evolve, in a planned and managed fashion, the current highway systems towards these mature AHS is also addressed. Since full functionality of a mature AHS cannot be realized suddenly, discrete functional steps must be identified and optimized. This paper defines an evolutionary stage towards a mature AHS as any discernible functional increment whose realization may encounter considerable difficulties requiring a significant amount of conscious effort to overcome. A good evolutionary scenario consists of stages each of which provides sufficient additional functionality that justifies the required effort to overcome the associated difficulties. Six dimensions of deployment difficulties are identified: technology, infrastructure, human factors, vehicle manufacturing and mainlenance. insurance and public will. An illustrative evolutionary scenario is also provided. Since issues regarding deploying AHS in the real world actually dictate AHS technological requirements, deployment research should be an integral part of AHS concept definition/evaluation and system design

    Entrance Capacity of an Automated Highway System

    Get PDF
    This paper evaluates the entrance capacity and queueing delay for Automated Highway Systems through use of simulations and analytical modeling. Queueing statistics are also used to determine the sustainable capacity of alternative concepts, taking trip length distribution and spacing between ramps into consideration. Based on safety-spacing headways (produced in a separate analysis), the most promising concept utilizes platoons both on the highway and on on-ramps. However, it is unclear whether comparable capacity can be achieved on exit, when vehicles must be decoupled from their platoons, and whether it is safe for vehicles to enter the highway in closely spaced platoons. The analytical evaluation indicates that entrance/exit spacing on the order of one per 2 km or closer would be required to support highways with total capacity on the order of 20,000 vehicles per hour. Most likely, this would be achieved most efficiently if separate dedicated entrances are provided for automated vehicles, to minimize weaving on manual lanes

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I
    • …
    corecore