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ABSTRACT 

Traffic Operations Analysis of Merging Strategies 

for Vehicles in an Automated Electric 

Transportation System 

 
by 

Derek Rulon Freckleton, Master of Science 

Utah State University, 2012 

 
Major Professor:  Dr. Kevin P. Heaslip 
Department:  Civil & Environmental Engineering 
 
 

Automated Electric Transportation (AET) is a concept of an emerging cooperative 

transportation system that combines recent advances in vehicle automation and electric power 

transfer.  It is a network of vehicles that control themselves as they traverse from an origin to a 

destination while being electrically powered in motion – all without the use of connected wires. 

AET’s realization may provide unparalleled returns in the form of dramatic reductions in 

traffic-related air pollution, our nation’s dependence on foreign oil, traffic congestion, and 

roadway inefficiency.  More importantly, it may also significantly improve transportation safety 

by dramatically reducing the number of transportation-related deaths and injuries each year as it 

directly addresses major current issues such as human error and adverse environmental conditions 

related to vehicle emissions.  In this thesis, a logical strategy in transitioning from today’s current 

transportation system to a future automated and electric transportation system is identified. 

However, the chief purpose of this research is to evaluate the operational parameters 

where AET will be feasible from a transportation operations perspective.  This evaluation was 

accomplished by performing lane capacity analyses for the mainline, as well as focusing on the 
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merging logic employed at freeway interchange locations.  In the past, merging operations have 

been known to degrade traffic flow due to the interruptions that merging vehicles introduce to the 

system.  However, by analyzing gaps in the mainline traffic flow and coordinating vehicle 

movements through the use of the logic described in this thesis, mainline traffic operations can 

remain uninterrupted while still allowing acceptable volumes of merging vehicles to enter the 

freeway.  A “release-to-gap” merging algorithm was developed and utilized in order to maximize 

the automated flow of traffic at or directly downstream of a freeway merge point by maximizing 

ramp flows without causing delay to mainline vehicles.  Through these tasks, it is the hope of this 

research to aid in identifying the requirements and impending impacts of the implementation of 

this potentially life-altering technology. 

(94 pages)  
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PUBLIC ABSTRACT 

Traffic Operations Analysis of Merging Strategies 

for Vehicles in an Automated Electric 

Transportation System 

 
by 

Derek Rulon Freckleton 

 
Automated electric transportation has the potential to revolutionize the way people move 

by providing unparalleled benefits to human health and safety, economic independence, and 

quality of life.  It is a system where vehicles with no emissions control themselves as they 

cooperatively move people from point “A” to point “B.”  Vehicle automation aims to eliminate 

human error from the task of driving, making the roads safer and leaving drivers able to perform 

other tasks as they desire while they travel.  Also, through wireless in-motion electric power 

transfer, the gas tank may finally be completely excluded from vehicles without sacrificing 

freedoms in range or mobility.  This feat will aid in the elimination of traffic-related air pollution 

as well as our nation’s dependence on foreign oil.  Other benefits affecting quality of life may 

also include reduced traffic congestion and roadway inefficiency. 

However, despite the many benefits anticipated by this new system of transportation, a 

framework upon which it can be built is yet to be developed.  This research provides a portion of 

that framework by specifying a logical transition strategy for moving from today’s transportation 

system to this future automated and electric transportation system.  Yet its chief purpose is to 

evaluate the operational parameters where AET will be feasible from a transportation operations 

point of view.  This evaluation is accomplished by performing lane capacity analyses of the 

freeway, as well as focusing on the merging maneuvers at freeway interchange locations. 
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Through the use of the logic presented in this thesis, freeway traffic operations can 

remain unaffected by vehicles entering freeway traffic flow, allowing automated freeway lanes 

the ability to quadruple their capacity.  It is the hope of this research to aid in identifying the 

requirements and quantifying the potential impacts of an automated electric transportation 

system. 
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CHAPTER 1 

INTRODUCTION 

The transportation system of the United States has had significant impacts on the nation’s 

development, both geographically and economically. However, tens of thousands of lives are lost 

each year due to externalities of today’s transportation system.  The majority of these lives are 

lost as a result of some form of human error, while much of the remainder are the result of 

adverse environmental conditions, such as degraded air quality.  Addressing these issues has led 

to increased interest in cooperative transportation systems. 

A cooperative transportation system is defined as a system in which drivers, vehicles, and 

the roadway itself all function as a single, integrated system designed to save lives, reduce 

injuries, and enhance quality of life, while maintaining or increasing travelers’ productivity and 

mobility (1). These transportation systems have become a topic of increased interest due to recent 

enabling technological advances. 

Intelligent communication between vehicle and infrastructure has been investigated in 

hopes of increasing safety and efficiency.  Vehicle manufacturers have implemented various 

technologies within vehicles to aid drivers in avoiding hazardous situations.  In addition, the 

automobile industry has continually sought to improve the environmental impact of vehicles by 

reducing vehicles’ carbon emissions, as has been seen through the research of biofuel technology, 

plug-in electric vehicles (PHEVs), and fuel cell technology.  However, a solution which addresses 

these issues holistically could provide significant breakthroughs in transportation intelligence, 

enhancing quality of life. 

Automated Electric Transportation (AET) has the potential to be a revolutionary 

cooperative transportation system that combines recent advances in vehicle automation and 

wireless electric power transfer.  The AET concept is a network of vehicles that can be 
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autonomously or cooperatively controlled while being wirelessly powered in motion.  Automated 

control of vehicles can be achieved through wireless communication from vehicle-to-vehicle 

(V2V), vehicle-to-infrastructure (V2I/I2V), and infrastructure-to-infrastructure (I2I).  Electrically 

powering vehicles in motion, even at speeds equal to or greater than current freeway travel, can 

be achieved through a wireless power transfer between the vehicles and charging pads embedded 

in the roadway infrastructure.  Figure 1 provides a graphical representation of the underlying 

concepts involved in AET. 

AET’s realization may provide unparalleled returns in the form of dramatic reductions in 

traffic-related air pollution, our nation’s dependence on foreign oil, traffic congestion and 

roadway inefficiency.  More importantly, it may also significantly improve transportation safety 

by dramatically reducing the number of transportation-related deaths and injuries each year as it 

directly addresses issues such as human error and adverse environmental conditions. 

The purpose of this research is to evaluate the operational parameters where AET will be 

feasible.  As a new form of transportation that cannot be built instantaneously, it is certain that a 

 

 
FIGURE 1.  Conceptual Schematic of Automated Electric Transportation (2). 



 
 

3 

 

phased implementation of AET systems will be required.  For this reason, a logical strategy for 

transitioning from today’s current transportation system to a future automated and electric 

transportation system is necessary, as that point has been overlooked in previous highway 

automation efforts (3). 

As the transition to AET occurs, a control transfer process is required in which vehicles 

toggle from manual control (human-driven) to automated control (machine-driven), and vice-

versa.  This process of transferring vehicle control should be included in the check-in and check-

out procedures for AET travel.  Also for these procedures, an analysis of merging and diverging 

vehicles into and out of traffic flow at designated AET freeway interchanges must be performed. 

Specifically, this research focuses on the analysis of the merging operations.  It will be 

conducted through the use of analytical theory and mathematical equations, and verified through 

the use of traffic micro-simulation software.  The evaluation of the AET system at a single 

freeway interchange location will be accomplished by performing a lane capacity analysis for the 

mainline, as well as focusing on the merging logic employed at these locations.  In the past, 

merging operations for a single lane have been known to degrade traffic flow due to the 

interruptions that merging vehicles introduce to the system (4, 5).  However, by analyzing gaps in 

the mainline traffic flow and coordinating vehicle movements, mainline traffic operations can 

remain uninterrupted while still allowing acceptable volumes of merging vehicles to enter the 

freeway.  A “release-to-gap” merging algorithm is utilized in order to maximize the automated 

flow of traffic at or directly downstream of a freeway merge point by maximizing ramp flows 

without causing delay to mainline vehicles. 

The significance of the results obtained is that they provide quantified measurements in 

automated lane capacities and traffic flows.  Under the logic outlined in this thesis, automated 

lane capacities may be more than quadrupled compared to freeway lanes today.  These values 

also incorporate the ability to maximize ramp operations without imposing delay on mainline 
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traffic flow.  Therefore, even at merging areas of the freeway, actual automated traffic flows 

approach theoretical values for maximum capacity.  However, while it does not actually reach 

maximum capacity, it is significant that any capacity loss experienced is the result of unused 

headway space, rather than the result of some delay.  This information may be useful in 

applications of cost/benefit analyses for land use and the acquisition of right-of-way. 

Research Question 

The major question on which this research focuses is: “In transitioning to an automated 

electric transportation system, what impacts will an automated vehicle interchange have on 

highway traffic operations?”  Addressing this question effectively calls for the ability to assess 

traffic situations under local conditions at a microscopic simulation level.  Such simulation tools 

improve the capability to visualize the impact of the application of these emerging technologies in 

the transportation arena as they are applied in a virtual transportation network.  These tools also 

aid in quantitatively assessing the requirements for the successful implementation of AET.  The 

information gathered could be useful to individuals designing similar systems at various 

locations. 

General Approach 

There have been difficulties in assessing the feasibility, as well as the impacts and 

requirements of such transportation technologies, as this system is currently theoretical and 

established analysis methodologies do not currently exist.  Even micro-simulation tools are not 

currently capable of addressing the dynamics of such a transportation system because traditional 

car following and lane changing algorithms are based on normal or near-normal traffic flow 

conditions.  With the implementation of the technology provided in AET, those traffic conditions 

will be altered.  Certain parameters (e.g. speed, flow, and capacity) may be increased, while 
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others (i.e. headway spacings and reaction times) may be decreased.  The dynamics surrounding 

how a vehicle moves will be different for an automated electric vehicle. 

The inability for the simulation tools to model an AET system is challenging because 

successful implementation requires such a system to be modeled, simulated, and analyzed.  

Transportation professionals need models that are sensitive to V2V interaction as well as V2I/I2V 

interaction simultaneously.  They are also in need of models that adequately define and simulate 

the movement of AET-type vehicles.  Therefore, this research will be coupled with research 

performed by others to build such a model for the analysis of the check-in procedure for an AET 

highway interchange. 

Therefore, the analysis methodology that was used in this research incorporates the 

development of an automated entrance algorithm within a micro-simulation software package.  

Within the software, modifications to traditional car following and lane changing behavior were 

made to allow vehicles to travel within tightly spaced platooning structures.  Then, considering 

this structure, the algorithm functions similarly to an advanced gap-based ramp metering system 

such that queued vehicles on the ramps must await acceptable gaps in the mainline to be allowed 

to merge into automated traffic flow.  This “release-to-gap” merging logic thus accomplishes the 

merging maneuver for automated vehicles without imposing any significant interruption to the 

mainline flow, as was proven by Ran et al. (6), and maintains the platooning structure with the 

specified parameters for maximum platoon size and spacing. 

Ran’s study also explains that the consequence of prioritizing the mainline flow over the 

ramp flow in this way is that the mainline will be able to operate with minimal impact from the 

merging maneuver, which was the goal of this project.  Thus, the algorithm developed inherently 

gives priority to mainline flows, which in turn transfers any delay that would be experienced on 

the mainline from a merging maneuver to queued vehicles on the ramp.  However, while delay 

may be transferred to the ramp, it should be noted that large ramp queues typically only develop 
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under conditions of high mainline flows and few available gaps for merging.  It stands to reason 

that under these conditions, mainline flows should take priority over ramp flows in order to move 

larger volumes of traffic. 

Major Research Theories 

The major theory that will drive the research is that the manner by which a vehicle moves 

transforms as it switches between manual operation to automated operation.  Implicit in this 

theory is that traditional car following behavior must be modified to incorporate smaller headway 

spacings, smaller gap acceptances, and altered lane-changing or merging/diverging behavior.  It is 

anticipated that those changes will have measurable impacts on traffic flow at locations where 

interruptions occur (e.g. freeway interchanges). 

Another major theory that will drive the research is that as wireless energy transfer 

technology develops, it may eventually penetrate into mainstream automobile design.  The ability 

to expand the traveling range of electric vehicles will likely push the development of on-demand 

charge-in-motion technology, and vehicle automation may provide benefits in maximizing energy 

transfer efficiency.  Thus, the concepts of automating and electrifying vehicles on go hand-in-

hand for a future improved and sustainable transportation system. 

Anticipated Contributions 

It is anticipated that with AET’s implementation, many dramatic and considerable 

benefits in various areas are possible.  These areas include human health and safety, economic 

independence, and quality of life.  This research will provide a foundation upon which this 

technology may be further developed by outlining a logical transition strategy and quantifying the 

requirements and traffic operations impacts of the merging strategy developed for AET freeway 



 
 

7 

 

interchanges.  Future researchers will then be provided with a means to further quantify the 

specific benefits mentioned previously.   
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CHAPTER 2 

LITERATURE REVIEW 

The topics that this literature review examines are: wireless power transfer for vehicle 

electrification, human factors in transportation, car following theory and car following models, 

and vehicle automation efforts.  The purposes for evaluating each of these topics are detailed 

below: 

• Wireless power transfer for vehicle electrification was reviewed to help determine the 

potential impact of this technology on the future of surface transportation.  A portion of 

this impact will be in the performance measures for an individual vehicle.  Another 

portion will be the potential impact electric vehicles may have on environmental 

conditions relating to human health. 

• Transportation literature related to human factors was analyzed to understand the impacts 

of automated driving on transportation safety and traffic flow.  Human error and driver 

behavior, including reaction time, are key factors in those facets of transportation. 

• Car following theory and car following models were examined in order to expand on the 

current knowledge base in automated vehicle traffic flows. 

• Previous vehicle automation efforts will be studied to show that automated vehicles 

introduce distinct differences in vehicle movement with respect to traditional car 

following theory. 

Wireless Power Transfer for Vehicle Electrification 

Currently, the burning of petroleum is by far the most common energy source for surface 

transportation vehicles.  As a result, according to the U.S. Environmental Protection Agency 

(EPA) (7), the automobile is the single greatest source of pollution in numerous cities across 
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America.  A study completed in 2000 estimated the health effects of traffic-related air pollution in 

Austria, France and Switzerland.  That report concluded that approximately 22,000 deaths (out of 

a total 40,000 estimated deaths related to air pollution) were due specifically to traffic-related air 

pollution (8). 

Consequently, technologies have emerged that are transforming vehicular travel, 

including the utilization of electricity to power a vehicle.  In particular, two types of technologies 

currently exist that provide highly efficient, wireless energy transfer: magnetic resonance 

coupling antennas and inductive coupling using a coaxial-winding transformer (9, 10).  

Preliminary physical tests for stationary charging using these technologies have shown 90% 

efficient power transfers of 5 kilowatts over a 10-inch gap simulating the distance between the 

road surface and the bottom of a vehicle (11).  Other tests using mathematical simulations have 

shown the ability to transfer 10 kilowatts of electrical energy over distances of 6.5-feet at 

efficiencies as high as 97% (12). 

However, one disadvantage of electric vehicles is that electricity is difficult and 

expensive to store.  Most electric vehicles today can only travel approximately 100-200 miles on 

a single charge (13). Without the option of re-charging when that energy has been expended, 

drivers are limited to a range of about 50-100 miles for round trip travel; and “quick charges” to 

80% capacity require 30 minutes while fully re-charging a battery can take anywhere from 4 to 8 

hours (13).  As a result, the adoption of these vehicles by the public has been slow. 

AET resolves this issue by offering the ability to deliver electric energy on demand, in 

real time, to moving vehicles using “charge-in-motion” technology.  In an AET system, wireless 

charging pads would be installed within the transportation infrastructure.  By reducing the 

spacing between charging pads, vehicles would begin to have the capability of being powered and 

even re-charged while in motion, even at freeway speeds or greater.  This is known as “charge-in-

motion” technology. 
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Human Factors in Transportation 

According to the Centers for Disease Control and Prevention (CDC) (14), motor vehicle-

related injuries are the leading cause of death in the United States for individuals between the 

ages of 5 and 34. In 2009, the National Highway Traffic Safety Administration (NHTSA) 

reported an estimated 2.217 million people being injured in motor vehicle crashes (15).  In 

addition, the U.S. Department of Transportation (USDOT) (15) announced that the total number 

of highway fatalities in 2009 totaled 33,808. 

In light of those statistics, many efforts have been made to improve the safety of our 

roadways, and it has improved over the years (16).  In fact, over the last 60 years, the fatality rate 

per 100 million vehicle miles traveled (VMT) has consistently decreased, as shown in Figure 2.  

Although the number of fatalities per year has remained relatively constant over the years, the 

actual ratio of fatalities due to motor vehicle-related injuries per capita has decreased by over 

50% (17, 18). 

While a portion of the credit may be attributed to advances in medical technology, for 

example, another significant portion is likely due to advances in transportation technology.  Road 

safety audits have resulted in vast improvements in crash prevention, barriers separating traffic 

flows have been installed, speed limits and geometric designs have been adjusted, and sight 

triangles and sight distances have been analyzed.  Also, despite these efforts, accepting that motor  

 

 
FIGURE 2.  Fatalities and Fatality Rate per 100M VMT by Year (19). 
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themselves to protect their passengers.  Examples of these improvements include seatbelts, 

airbags, anti-lock brakes, crumple zones, traction control, advanced cruise control, and collision 

avoidance technology. 

One of the main safety benefits to automating vehicle travel lies in the results expected 

by taking the human factors out of driving.  A common phrase used for the justification of some 

error or mistake is, “it’s only human.”  Although no universally accepted definition of human 

error technically exists, the working definitions of errors and mistakes developed by Reason (20) 

give adequate insight.  Error was defined as “a generic term to encompass all those occasions in 

which a planned sequence of mental or physical activities fails to achieve its intended outcome, 

and when these failures cannot be attributed to the intervention of some chance agency.”  

Mistakes were defined as “deficiencies or failures in the judgmental and/or inferential processes 

involved in the selection of an objective or in the specification of the means to achieve it, 

irrespective of whether or not the actions directed by this decision-scheme run according to plan.” 

Many studies have been completed in order to identify common driver errors and error-

causing conditions in motor vehicle crashes.  Using data collected from documented incident 

cases, on-site accident investigations, and accident evaluations, four categories of incident 

causation factors were developed: human conditions and states, human direct causes, 

environmental factors, and vehicular factors.  A summary of common driver errors and incident 

causation factors is shown in Table 1 (21). 

Upon inspection of Table 1, one can see that human factors (the two left columns) 

account for the majority of incident causation.  In fact, according to the study that produced the 

results of the table, it was found that overall, driver error played a part in 93% of the road crashes 

analyzed, as shown in Figure 3 (21). 

Understanding, controlling, and eliminating driver deficiencies is vitally important to 



 
 

12 

 

TABLE 1.  Driver Error and Incident Causation Factors. 

Human Conditions 

and States 
Human Direct Causes Environmental Factors Vehicular Factors 

• Alcohol impairment 

• Other drug 

impairment 

• Reduced vision 

• Critical non-

performance 

• Emotionally upset 

• Pressure or strain 

• In hurry 

• Driver experience 

• Vehicle unfamiliarity 

• Road over-familiarity 

• Road/area 

unfamiliarity 

• Failure to observe 

• Inattention 

• Internal distraction 

• External distraction 

• Improper lookout 

• Delay in recognition 

• Misjudgment 

• False assumption 

• Improper maneuver 

• Improper driving 

technique or practice 

• Inadequately 

defensive driving 

technique 

• Excessive speed 

• Tailgating 

• Excessive 

acceleration 

• Pedestrian ran into 

traffic 

• Panic or freezing 

• Inadequate 

directional control 

• Control hindrance 

• Inadequate signs and 

signals 

• View obstruction 

• Design problems 

• Maintenance 

problems 

• Slick roads 

• Special/transient 

hazards 

• Ambient vision 

limitations 

• Rapid weather 

change 

• Tire and wheel 

problems 

• Brake problems 

• Engine system 

failures 

• Vision obscured 

• Vehicle lighting 

problems 

• Total steering failure 
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FIGURE 3.  Crash Incident Causation Factors. 

mitigating risk and ensuring safe transportation on our roadways.  Automating the task of driving 

directly addresses this very significant crash-causing factor in human error.  AET therefore has 

the potential to significantly reduce the annual number of deaths, injuries, and motor vehicle 

crashes. 

Human factors are also important in the modeling of driver behavior in car following and 

merging scenarios.  Driver awareness, reaction time, and gap acceptance are key factors in 

determining changes in traffic flow, as discussed by Koppa (22).  In merging from an acceleration 

lane onto a freeway, the data for a four-lane facility at roughly 55 mph with a one-second 

allowance for the ramp necessitates a gap of about 4.5 seconds.  Theoretically as short a gap as 

three car lengths can be accepted if vehicles are traveling at about the same speed, as they would 

be in merging from one lane to another.  Koppa also states that this is the minimum, however, and 

at least twice that gap length should be used as a nominal value for such lane merging maneuvers. 

By utilizing the concepts of V2V, V2I, and I2I communication, automated vehicles may 

be able to significantly reduce that acceptable gap by eliminating human error, increasing vehicle 

awareness, and decreasing perception and reaction times.  This theory simultaneously resolves 

other transportation issues, such as capacity and roadway efficiency.  Capacity will be increased, 
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without the need for additional right-of-way, and congestion will decrease due to less severe 

interruptions in traffic flow. 

Car Following Theory and Car Following Models 

Car following models shape the link between individual vehicle behavior (microscopic) 

and streams of vehicles and their corresponding flow and stability properties (macroscopic) (23).  

In order to modify the car following models present in current simulation packages, an 

understanding of traditional car following models is required.  

Car Following Theories 

Car following is a task that has been of interest since the development of the automobile, 

and for over half a century, theories describing how one vehicle follows another have been widely 

studied (24, 25, 26, 27).  However, with roadway capacity and roadway efficiency continuing to 

decline, this topic has become a subject of increased importance in transportation/traffic 

engineering and safety research (27).  Car following theories consider the inter-vehicle spacing 

between vehicles as well as the speed of individual vehicles.  They are mathematical models that 

express a vehicle’s acceleration as a function of the speed differential between the leading and 

following vehicles.  As automated systems seek to replicate human driving behavior through 

control of the accelerator, establishing a car following model for automated vehicles is now a 

topic of increased interest and importance. 

Average inter-vehicle spacing is an important car following characteristic that one 

vehicle following another would maintain.  This is due to the fact that capacity estimations of a 

single lane roadway are based on the speed-spacing relationship shown in the following equation, 

modified from Rothery’s capacity equation (23): 
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(2.1) 
𝐶 = 5280 ∗

𝑢
𝑙 + ℎ

 

where 

C = capacity of a single lane, [vehicles per hour, vph] 

u = speed, [miles per hour, mph] 

l = average effective vehicle length, [feet, ft] 

h = average space headway distance from the front bumper of following vehicle 

to the rear bumper of leading vehicle, [ft] 

Through observational studies, an operative speed-spacing relationship to estimate the 

capacity of single lanes was established in the first Highway Capacity Manual (28).  The 

relationship obtained from these studies is represented by the following modified equation: 

(2.2) 

ℎ =
5280
3600

∗ 𝛼𝑢 + 𝛽
5280
3600

∗ 𝑢
!

 

where 

h = average space headway distance from the front bumper of following vehicle 

to the rear bumper of leading vehicle, [ft] 

α = reaction time, [seconds, s] 

u = speed, [mph] 

β = reciprocal of twice the maximum average deceleration of a following 

vehicle, [s2/ft] 

The second term in Equation 2.2, 𝛽 !"#$
!"##

∗ 𝑢
!
, is included in order to provide sufficient 

spacing for a following vehicle to come to a complete stop without colliding with the vehicle in 

front if the leading vehicle performs a hard braking scenario, or emergency stop (23).  

Considering the differences automation will introduce to reaction time, as well as the differences 
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electric vehicles will introduce to acceleration/deceleration and braking capabilities, the inter-

vehicle spacing may be significantly reduced from conservative values considering manually 

controlled ICE vehicles.  

These models are applicable to cases where each vehicle in the traffic stream maintains 

the same (or nearly the same) constant speed and each vehicle is attempting to maintain a 

consistent spacing (e.g. “steady-state”), they are appropriate for automated vehicle applications as 

well. 

Car Following Model Development 

Single lane car following models assume a correlation between vehicles within a range of 

inter-vehicle spacing.  Each driver in a following vehicle is an active and predictable control 

element in the driver-vehicle-infrastructure system and requires a continued response to a 

continuous series of stimuli.  The relatively simple task of one vehicle following another on a 

straight roadway where passing is prohibited has been categorized by three subtasks (23): 

1. Perception:  The driver collects relevant information primarily from the motion 

of the lead vehicle and the driver’s vehicle.  This includes vehicle speeds, 

accelerations/decelerations, inter-vehicle headway spacing, and rate of closure. 

2. Decision Making:  A driver interprets the perception information obtained within 

a framework of knowledge of vehicle characteristics and from the driver’s 

experience.  The integration of current information and catalogued knowledge 

allows for the development of driving strategies that become “automatic” and 

from which evolve “driving skills.” 

3. Control:  The skilled driver can execute control commands with dexterity, 

smoothness, and coordination, constantly relying on feedback from their own 

responses. 
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For automated vehicles, this model will be similar; however, key differences exist in the 

perception and decision making subtasks.  Rather than keeping a following distance that a human 

driver feels is safe, automated vehicles perform the perception subtask using sensing and 

communications technologies (V2V/V2I).  Therefore, vehicle speeds, accelerations/decelerations, 

inter-vehicle headway spacing, vehicle dynamics and performance measures will be sensed 

and/or communicated by the vehicles.  Specific algorithms for interpreting this information 

according to the vehicle characteristics of both the leading and following vehicles will be needed 

for the decision making subtask.  This process represents a “reaction time,” or total delay in terms 

of a response to a continuous series of stimuli for car following and is illustrated in Figure 4. 

 

 
FIGURE 4.  Human Reaction Time vs. Automated Delay. 

 

Microscopic/Macroscopic Models 

Microscopic models can be used to determine the velocity, flow, and density of a traffic 

stream when the traffic stream is moving in a steady state.  Considering two consecutive vehicles 

on a single lane of a highway, as shown in Figure 5, the leading vehicle is considered to be the 

nth vehicle and the following vehicle is considered the (n+1)th vehicle.  The distances of these 

vehicles from a fixed point at any time, t, can be taken as xn and xn+1, respectively. 

The general expression for the microscopic models has been written by Garber and Hoel 

(29) as: 
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FIGURE 5.  Basic Assumption of Car Following Theory. 

 
 

 (2.3) 

𝑥!!! 𝑡 + 𝜏 = 𝑎 ∗ 𝑥!!!! 𝑡 + 𝜏 ∗
𝑥! 𝑡 − 𝑥!!! 𝑡
𝑥! 𝑡 − 𝑥!!! 𝑡 ! 

where 

ẍ = acceleration, [feet per second squared, ft/s2] 

ẋ = velocity, [feet per second, ft/s] 

τ = time lag of response to the stimulus, or reaction time, [s] 

a, l, and m = constants 

Using this general expression for microscopic models, macroscopic models may also be 

obtained analytically.  Garber and Hoel (29) further show that the macroscopic traffic flow model 

known as the Greenberg model is obtained when m = 0 and l = 1.  The well-known Greenshields’ 

model can similarly be obtained when m = 0 and l = 2. 

Gipps’ Car Following Model 

The car following model used in many microscopic simulation packages is known as 

Gipps’ model.  In this model, certain characteristics of each vehicle are calculated for each pre-

determined time-step.  Hence, the model is a discrete time, continuous space model.  The primary 

quantity that is calculated is the vehicle’s speed, and through this, its new position.  The formula 

used to calculate the updated speed (at time t + τ) was modified using the equation shown by 

Spyropoulou (30), and is shown in the following equation: 
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(2.4a) 

𝑢!!! 𝑡 + τ = 𝑚𝑖𝑛 𝐹 𝑡
𝐺 𝑡  

where 

(2.4b) 

𝐹 𝑡 = 𝑢!!! 𝑡 + 2.5𝑎!!!τ 1 −
𝑢!!! 𝑡
𝑈!!!

0.025 +
𝑢!!! 𝑡
𝑈!!!

 

(2.4c) 

𝐺 𝑡 = 𝑏!!!τ + 𝑏!!!! τ! − 𝑏!!! 2 𝑥! 𝑡 − 𝑙 − ℎ − 𝑥!!! 𝑡 − 𝑢!!! 𝑡 τ −
𝑢! 𝑡 !

𝑏!
 

and 

u = speed, [ft/s] 

a = maximum acceleration which a driver wishes to undertake, [ft/s2] 

τ = time lag of response to the stimulus, or reaction time, [s] 

U = speed at which a driver wishes to travel, [ft/s] 

b = most severe braking a driver wishes to undertake (b < 0), [ft/s2] 

x = distance from a fixed point, [ft] 

l = average effective vehicle length, [ft] 

h = average space headway distance from the front bumper of following vehicle 

to the rear bumper of leading vehicle, [ft] 

The formula for the estimation of a vehicle’s speed comprises of acceleration and 

deceleration states.  The speed that a vehicle would obtain if its movement were not impeded by 

the movement of a preceding vehicle is given by Equation 2.4b.  The speed that a vehicle would 

obtain if its movement were impeded by the movement of a preceding vehicle is given by 

Equation 2.4c.  Generally, if the limiting condition for vehicles in a link is Equation 2.4b, this 

indicates that vehicles are moving at free-flow speeds, whereas if the limiting condition is 
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Equation 2.4c, this indicates that the link is congested.  However, for automation purposes, rather 

than indicating congestion, Equation 2.4c may indicate the existence of a platoon. 

Finally, the new position of a vehicle at time (t + τ) was also shown by Spyropoulou (30) 

in the following equation: 

(2.5) 
𝑥!!! 𝑡 + 𝜏 = 𝑥!!! 𝑡 + 0.5 𝑢!!! 𝑡 + 𝑢!!! 𝑡 + 𝜏 𝜏 

where 

x = distance from a fixed point, [ft] 

u = speed, [ft/s] 

τ = time lag of response to the stimulus, or reaction time, [s] 

Although these equations were developed assuming human drivers controlling vehicle 

movements, through vehicle automation, the values of certain parameters (i.e. τ, h) will be 

different, thus producing different results.  For example, although the inter-vehicle headway 

spacing will be dependent on communications/sensing capabilities as well as the vehicle 

performance measures of both the leading and following vehicles, much tighter inter-vehicle 

spacing within vehicle platoons could be achieved through automating the driving task.  Safely 

maintaining these tighter spacings will theoretically lead to significant increases in capacity, as 

shown by previous research, and can potentially lead to significant impacts in operational 

efficiencies. 

Vehicle Automation 

Although vehicle automation may seem like a “futuristic” concept, the idea has been 

around for centuries.  Leonardo da Vinci considered the idea of a self-propelled, automated 

vehicle in the 15th century, where the vehicle’s direction was determined by the configuration of 

its springs and gears, rather than by a steering wheel (31).  In 1939, at the World’s Fair in New 



 
 

21 

 

York, General Motors (GM) sponsored an exhibit called “Futurama” – considered by some to be 

the model for the modern interstate highway system.  The purpose of the exhibit was an attempt 

to design the world 20 years into the future.  Among many ideas and concepts, it included 

automated highways and suburbs (32).  A similar exhibit was again displayed at the 1964 World’s 

Fair in “Futurama II.” 

However, research and development in automated highway systems did not begin until 

1986, when the University of California Berkeley’s Partners for Advanced Transportation 

Technology Program (PATH) began the Automated Highway Systems (AHS) project.  This 

project’s system relied on V2V and V2I communication, as AET will.  In 1997, the National 

Automated Highway System Consortium (NAHSC) was formed with the ultimate goal of 

identifying a feasible full automation concept.  Demo ‘97 was thus an automation concept of a 

short platoon of automated vehicles traversing themselves down a stretch of Interstate-15 in San 

Diego, California (33).  Focus was later also turned to busses and other heavy-vehicle 

applications (34, 35). 

Automated vehicle control may be achieved in a variety of ways.  In Demo ’97, lateral 

control was achieved using magnets imbedded in the roadway (36).  Today, lateral control of a 

vehicle may be achieved using magnets, as in Demo ’97, the use of sensors or video cameras to 

track visual lane boundaries (white or yellow painted road markers), or the use of Differential 

Global Positioning Systems or Inertial Navigation Systems (37).  The same would also be 

achievable through V2I and V2V communications.  V2I data may include information such as 

lane widths, roadway geometry, and precise real-time vehicle location and position information. 

Longitudinal control (acceleration/deceleration) of the vehicles in Demo ’97 was 

achieved using radar and other sensors (36).  Today, technologies in advanced cruise control and 

collision avoidance systems further strengthen the feasibility of automating the longitudinal 

control of a vehicle.  Further utilizing V2I/V2V communication, speed adjustments and traveling 
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maneuvers may be communicated and automatically accommodated.  This process would 

eliminate many common human errors of driving, such as failure to check a blind spot, as well as 

having to quickly apply the brakes due to another vehicle unexpectedly maneuvering into another 

lane.  As a result, safety may be expected to significantly improve, and non-reoccurring 

congestion has the potential to be significantly reduced. 

By communicating location and driving conditions between vehicles and the 

infrastructure, critical data may also be passed to vehicles upstream of a given point at both short 

and long distances.  For example, a lead vehicle communicating to other following vehicles and 

the infrastructure that the road is slippery allows the platoon to adjust its speed accordingly.  

Also, when the next platoon of vehicles is not close enough in proximity to achieve V2V 

communication, the V2I capabilities can also be used to inform the next platoon that adverse 

roadway surface conditions exist ahead.  That platoon may then adjust accordingly, thus reducing 

the risk of an incident.  Upcoming impedances and lane closures are also examples of information 

that may be passed V2I, which has the potential to significantly reduce traffic congestion issues 

as well.  Therefore, with AET addressing reoccurring and non-reoccurring congestion, more 

consistent traffic flows may be achieved, and roadway efficiency would significantly increase, 

particularly on roads with high demand. 

Automatically adjusting vehicle travel according to the information provided by the 

V2V/V2I data transfer also has potential to reduce the AET vehicle’s energy consumption.  

Communication allows vehicles to safely narrow the headway spacing between them while 

maintaining consistent speeds, thereby allowing vehicles to travel in tight platoons.  The “drafting 

effect” created would reduce aerodynamic drag for follower vehicles, thus reducing the amount of 

energy required to power a vehicle along its path. 

Finally, lane capacity may be significantly increased by reducing the headway spacing, 

increasing traveling speeds, and narrowing lane widths.  This is especially significant for 
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locations with right-of-way limitations.  Increasing throughput per lane and adding additional 

lanes without having to physically expand the roadway represent significant motivations for the 

development of an automated system. 

According to an NAHSC report (36), the theoretical capacity of a dedicated automated 

highway lane was estimated around 8,000 vehicles per hour per lane (vphpl).  Among the 

assumptions in this calculation were sensing delays, emergency warning signal output and 

detection delays, nominal actuation delays, and actual braking trajectories for a typical passenger 

vehicle with an internal combustion engine (ICE).  The total “reaction time” of an autonomous or 

cooperative vehicle was estimated to be between 300 and 350 milliseconds, excluding the actual 

braking trajectories. 

A comparison of human and automated measured brake reaction times is shown in Figure 

6.  The figure shows 85th-percentile values, when an event is expected, human reaction time 

averages about 0.6 seconds, with a some drivers taking as long as 2 seconds.  With unexpected 

events, reaction times increased by 35% (38). 

The mainline capacity of a roadway is affected by the traffic operations of entering 

vehicles on that system.  Traditionally, freeway entrance processes have been studied in the 

 

 
FIGURE 6.  85th-Percentile Reaction Times. 
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context of driver behavior, with respect to acceleration/deceleration and gap acceptance behavior 

(39, 40).  However, an AET system will not perform these procedures according to typical 

parameters, as vehicles will be under automated control.  Despite that fact, the effect of entry 

operations on traffic flow must not be overlooked when estimating the true theoretical capacity of 

an automated freeway lane. 

As part of the AHS project, several entrance and exit configurations for automated 

vehicles were examined (5).  Two alternatives were specified in some detail, including 

configurations where entry and exit occurred through a “transition lane” separating manual from 

automated lanes, and where entry and exit occurred through dedicated “ramps.”  However, both 

configurations mentioned the need for accommodations for rejecting unqualified vehicles during 

the check-in phase and handling non-responsive vehicles during the check-out phase, yet no 

accommodations were specified.  Considering the assumptions made in the report, the overall 

mainline (“steady-state”) capacity of an automated lane was calculated to be approximately 8,250 

vphpl.  Assuming entry and exit configurations, mainline flows, even below capacity, were 

reduced by about 10% (from 6,000 vphpl to 5,400 vphpl). 

Other research on automated lane capacity has examined the total highway capacity as 

well as the delays that occur at automated entrances (41, 42).  Required on-ramp capacity as a 

function of the on/off ramp spacing, in order to support a total automated highway capacity of 

16,000 vehicles per hour (vph) was determined.  Nominal mainline capacity of an automated lane 

in this report was estimated to be approximately 8,372 vphpl.  Assuming various entry protocols, 

this capacity was reduced by percentages ranging from 25% to 75%. 

Therefore, it is clear that despite vehicle automation and the communicative advantages 

transportation operations have available today, capacity will be affected by the number and type 

of interruptions in traffic flow made by merging vehicles.  Optimal strategies must be identified 
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in order for vehicle automation to begin its implementation.  The research presented in this thesis 

will differ from previous efforts by modifying entry/exit configurations as well as updating 

protocols related to the merging strategies for automated vehicle travel. 
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CHAPTER 3 

TRANSITION STRATEGY AND MODEL DEVELOPMENT 

One of the major challenges for AET is changing the way people travel, including the 

penetration rate required to achieve system-level benefits.  In order to realize those benefits, 

barriers, including the logistics of a deployment strategy in transitioning from today’s 

transportation system to an AET system, must be addressed.  Previous work in highway 

automation (3) has addressed many of the issues concerning vehicle automation, but lacks the 

added benefits of vehicle electrification.  This strategy is meant to add to those efforts previously 

made. 

In order for AET to succeed in implementation, a logical transition strategy must exist 

which encourages the development of necessary technology in both vehicle and infrastructure.  

Similarly, supply and demand must be stimulated through this strategy such that it encourages 

further development and widespread adoption. 

Drawing from history, previous attempts at system-level changes in the transportation 

sector have ultimately failed in part due to an inability to provide backwards compatibility to 

previous systems (2).  When the Federal-Aid Highway Act (43) was enacted, creating what is 

now known as the Interstate Highway System, President Dwight D. Eisenhower simply sought an 

increased ability to quickly move military resources across the country (44).  While this system 

ultimately led to monumental changes in vehicle and infrastructure technology, it was primarily 

developed simply to increase mobility for existing vehicles. 

It may be argued that this compatibility, along with the potential for its adaptation to 

upcoming technological advances in transportation, were some of the chief reasons for the 

success of this system.  As the nation developed around it, it also provided direct user benefits by 

offering easy access to goods and resources from further distances.  These benefits thus 
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stimulated demand, and consequently supply, of further developments in transportation 

technology both in vehicle and infrastructure that still continues today.  Therefore, this same 

model should be used as a template in developing future transportation system options. 

Examining the vehicles on roadways today, the energy that powers them is almost 

exclusively produced by the burning of gasoline in an ICE.  Government requirements for 

reduced emissions and improved fuel economy have therefore become stricter.  Travelers have 

also increased their demand for more environmentally friendly and higher fuel economy vehicles 

(45).  Also, considering the continued efforts to increase transportation safety, technologies 

aiding in safety and convenience, including partially automated vehicle control features (i.e. 

obstacle detection, adaptive cruise control, lane keeping assistance, and connected vehicles), are 

found in many current vehicle systems and will continue to be developed. 

Therefore, using the model of the past, this information may be used as a starting point 

for developing a successful transition strategy to move from today’s transportation system to a 

future AET system. 

Stationary Charging 

Embracing the current environmental “green boom” and anticipating its growth 

specifically in electric vehicles represents the first stage of the transition strategy.  The most 

stable, and the most “practice-ready” application of wireless electric power transfer for vehicles 

lies in stationary charging. 

Personal Application 

The most obvious first application for stationary charging is for personal home use.  This 

includes the installation of wireless charging pads at one’s home – in the garage or driveway.  

Rather than using a plug-in cord to transfer energy directly from grid to vehicle, the power is 

connected to wireless charging pads on or underneath the pavement.  When a vehicle with 
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compatible technology comes within an acceptable range to allow for a safe and efficient power 

transfer to occur, the vehicle’s battery is charged automatically.  This provides direct benefits to 

users by eliminating the need to plug in their vehicle.  This benefit may be significant in 

marketing strategies, due to the fact that when this task is ignored or forgotten, the range of an 

electric vehicle is diminished.  With wireless “eParking,” drivers can simply park their car and 

forget about worrying about having a fully charged battery the next time they need to travel. 

Public Applications 

The next step of the transition strategy is to expand the user benefits of electric vehicles.  

For example, in an effort to promote the adoption of green vehicles, Salt Lake City currently 

offers free metered parking to vehicles meeting any one of the following conditions (46): 

1. The vehicle has a Utah Clean Fuel special group license plate displayed. 

2. The vehicle achieves 41+ miles per gallon (MPG) city fuel economy as 

determined by the EPA. 

3. The vehicle is certified as achieving an EPA pollution score of at least 8 in Utah. 

Retail businesses offering priority parking spaces for green vehicles would also promote the 

adoption of electric vehicles. 

However, current electric vehicles suffer from range limitations on how far they are able 

to travel between recharging their batteries.  While some vehicles address this issue by including 

energy-generating designs (i.e. regenerative braking (47)), none of them are able to produce 

enough energy to resolve this issue completely.  As a result, the adoption of electric vehicles by 

the public has been slow, as they are not likely to sacrifice their current freedoms in mobility, 

despite the economic and environmental gains. 

Therefore, further expanding the benefits of electric vehicles, the next step of the 

transition strategy lies in extending wireless charging technologies to public applications where 
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drivers frequently stop their vehicle (i.e. parking garages, street parking, and retail business 

parking lots).  Tax incentives could be offered to retail businesses for the installation of eParking, 

similar to the private application.  These priority parking spaces would be reserved specifically 

for vehicles with wireless power transfer capabilities. 

This step of the transition strategy begins to eliminate range anxiety by providing 

convenient intermediate charging points.  Thus, by regaining freedoms in mobility, as well as 

gaining the economic and environmental benefits an electric vehicle offers, public adoption for 

electric vehicles would be stimulated. 

Semi-Stationary Charging 

This stage of the transition strategy attempts to further resolve range anxiety for electric 

vehicles by adding the ability to charge at locations where vehicles momentarily pause their 

vehicle en-route.  This is specifically beneficial to agencies in control of vehicle fleets that 

frequently use the same locations to pause throughout their route. 

Private Applications 

For private applications, loading docks, for example, present potentially ideal locations 

for implementation in this step of the transition strategy.  Freight vehicles will have the ability to 

recharge their batteries as cargo is loaded and/or unloaded.  Depending on the amount of time 

spent for this process and the amount of energy capable of being transferred during that time, 

freight vehicles could potentially eliminate or reduce the costs of re-fueling, including time spent 

off-line and the cost of fuel. 

In addition to electric power transfer technology, off-road applications for automated 

vehicle technology may begin to emerge at this stage of the transition strategy.  Ports and mining 

facilities, for example, could benefit from automating and electrifying short vehicle trips across 

dedicated travel paths.  



 
 

30 

 

Public Transportation Applications 

Public transportation applications present potentially ideal locations for semi-stationary 

charging.  Taxis, for example, frequently wait for passengers at designated locations at airports, 

public transit stations, and hotels, often times waiting for long periods of time.  Upon gaining 

passengers, a taxi will take them to their destination and return again to a location where they 

may acquire more passengers.  Incorporating wireless charging capabilities at these locations 

where taxis wait for passengers may motivate agencies in control of taxi fleets to convert to 

electric vehicles.  Benefits to this conversion can be seen in reduced idle costs, reduced needs to 

refuel a vehicle, and reduced maintenance costs. 

Buses also present ideal applications at this stage of the transition strategy, as they travel 

along specific routes in a closed loop.  They begin from one point and travel along a designated 

route, making necessary stops along the way at designated locations, and return again to the point 

of origin.  Installing charging pads at bus stops would allow vehicles to gain “mini-charges” 

during the boarding and alighting stages of a stop, allowing vehicles to regain all, or at least 

portions of the power lost between stops.  Potential benefits a transit agency may see upon the 

adoption of a wireless electric bus fleet include: 

• Decreased fleet sizes as a result of reducing or eliminating the need to take 

vehicles off-line to refuel or recharge 

• Increased vehicle efficiency due to decreased vehicle weight as a result of 

smaller battery requirements 

• Decreased operational costs due to the fact that electricity is cheaper than 

gasoline 

• Decreased maintenance costs due to the fact that electric motors are cheaper and 

easier to maintain than combustion engines 

• Possible tax incentives for “going green” 
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As a point of note, currently, specific bus routes in Logan, as well as Salt Lake City, Utah are 

scheduled for implementing stationary charging capabilities for fully electric buses (48). 

Dynamic Charging (Charge-In-Motion) 

The next stage expands upon the idea of semi-stationary charging and takes full 

advantage of the potential that wireless electric power transfer offers.  This means moving 

beyond stationary charging and on-board storage to dynamic charging, where delivering electric 

energy on demand to moving vehicles will allow them to “charge-in-motion.”  However, 

stakeholders are unlikely to invest in charge-in-motion electric road infrastructure that will serve 

only small portions of the population and gain little benefits to the system as a whole.  Therefore, 

implementation of this stage of the transition strategy is not likely to occur unless sufficient 

adoption rates have been achieved. 

eLanes 

In order to continue promoting the adoption of green vehicles, besides offering parking 

benefits, travel benefits have also been extended in many states.  Virginia, for example, has lifted 

the high occupancy vehicle (HOV) restrictions for green vehicles to travel the HOV lanes (49).  

The designed benefit of an HOV lane is that it allows users to travel faster and free of congestion, 

while also freeing up congestion in regular lanes. 

This stage of the transition strategy further promotes electric vehicle adoption specifically 

by incorporating wireless charging technology into an “eLane,” where travel is restricted to 

electric vehicles.  In these lanes, series of charging pads, spaced closely together, would be 

embedded within the roadway infrastructure.  As an electric vehicle with compatible technology 

comes within range of the first charging pad in the series to allow for a safe and efficient power 

transfer, the pad is activated, and electric energy is transferred to the vehicle.  As the vehicle 

continues moving, it will eventually move outside the range of the first pad, and be within the 
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range of the next pad.  The first pad is then deactivated, and the second pad is activated.  This 

process continues as the vehicle traverses the eLane, and is illustrated in Figure 7. 

With vehicles gaining a charge while traveling in this way, the roadway itself essentially 

becomes a charging station, thus allowing for a substantial increase in electric vehicles’ range.  In 

fact, by implementing charge-in-motion technology in major transportation roadways around the 

country, range-anxiety may be completely eliminated, urging widespread public adoption of 

compatible vehicles. 

 

 
FIGURE 7.  Charge-In-Motion Illustration. 

 

Dedicated AET Lanes 

As eLanes resolve concerns such as range anxiety and provide economic and 

environmental benefits on both individual and societal levels, human factors still limit the 

potential of this system.  For example, one criticism of HOV lanes is that while HOV restrictions 

reduce congestion by encouraging carpooling, they also have the potential to amplify congestion 

by imposing increased congestion on the non-HOV lanes as well as decreasing the capacity of the 

HOV lanes themselves (50).  If the combined penalties are larger than the positive carpooling 

effect, HOV restrictions actually worsen congestion.  One of the reasons behind this phenomenon 

is the fact that an HOV lane effectively becomes a one-way single-lane highway whose speed is 

governed by low-speed vehicles.  With human drivers still behind the wheel, even in dedicated 

eLanes, this phenomenon is likely to continue. 
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Therefore, at this point in the transition strategy, vehicle automation provides direct 

benefits to efficiency and safety.  Further restricting travel in the eLanes to vehicles with 

automated control features would alleviate the issue of low-speed drivers governing the speed of 

travel in the AET lane.  Traveling speeds would be unified, thus increasing roadway efficiency, 

and platoons could be formed, favoring energy efficiency and increased lane capacity.  Vehicle 

automation would also ensure the most efficient power transfer from the charging pads, as a 

vehicle is guaranteed to pass over the pad in the center of the lane, where maximum power 

transfer occurs. 

AET Nomenclature 

In order to conduct meaningful discussions concerning Automated Electric 

Transportation, an understanding of key terminologies and nomenclature should be established.  

Therefore, the purpose of this section is to formally define that nomenclature. An AET Network 

is defined as the roadway infrastructure that incorporates wireless electric transfer pads capable of 

transferring the required energy to vehicles passing over them.  It is further specified that all 

vehicles traveling on this infrastructure will be controlled automatically via wireless 

communication links between vehicles and the infrastructure.  Therefore, the roadway 

infrastructure will be capable of sending and receiving information between itself and vehicles 

within a specified distance range.  Other terms that may be used interchangeably include AET 

network, AET system, AET roadway, and AET lane(s).  It is also recognized that these systems 

may be individual links to begin with, likely spanning commuter routes and other links that may 

alleviate traffic conditions.  Later, these systems may be interconnected to span longer routes 

between major cities. 

The term AET Vehicle refers to an automotive entity operating within an AET 

environment.  While it is recognized that an AET vehicle may be “dual mode,” where it may also 



 
 

34 

 

be controlled manually while outside an AET environment, when it is operating within an AET 

system, it must be capable of utilizing the electric infrastructure described above, as well as meet 

performance standards with respect to automated longitudinal maneuvers (acceleration and 

deceleration), lateral maneuvers (lane keeping and lane changing), and communications (vehicle-

to-vehicle, V2V, and vehicle-to-infrastructure, V2I).  It is also noted that communications may 

also occur as infrastructure-to-vehicle, I2V, and infrastructure-to-infrastructure, I2I. 

Within this AET structure, and with accurate communications and control protocol, one 

of the benefits of AET is the ability for vehicles to travel in tight platoons.  A platoon is defined 

as a tight grouping of vehicles traveling together and interacting in a cooperative manner to 

maintain balance between objectives to maximize safety, maximize system capacity, and to meet 

individual travel needs.  Interactions include maintenance of safe and efficient following 

distances through tightly matched performance of acceleration and deceleration maneuvers and 

maintenance of one-to-one and one-to-many situational awareness through frequent exchange of 

critical information packets on parameters of interest. 

Two critical target following distances will exist within an AET system: intra-platoon 

spacing and inter-platoon spacing.  Intra-platoon spacing, or the inter-vehicle spacing within a 

platoon, is defined as the target headway spacing a vehicle will maintain between itself and the 

vehicle directly ahead of it within a platoon.  It is anticipated that this distance will be very short 

(on the order of 3-5 feet), depending on parameters related to speed, brake performance, controls, 

communications, and safety.  However, the limits to intra-platoon following distance are 

governed by safety and aerodynamic advantage. 

The minimum distance is determined based on the ability for a following vehicle to 

sense, interpret, command, and implement an emergency braking maneuver to avoid a serious 

collision with the leading vehicle under a condition where the leading vehicle executes an 

emergency braking maneuver.  The maximum distance is determined based on the following 
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distance associated with loss of aerodynamic advantage associated with vehicle drafting for the 

purpose of achieving the minimum energy advantage associated with the break-even point 

determined in economic analysis of the AET alternative.  These target following distances will be 

maintained by all vehicles within a platoon, with the exception of the first vehicle in the platoon. 

Inter-platoon spacing is defined as the target headway spacing a vehicle will maintain 

between itself and the vehicle located in the rear of the platoon directly ahead of it.  This distance 

will be greater than the intra-platoon distance, and it is anticipated that it will be on the order of 

100 feet, depending on parameters related to speed, brake performance, controls, 

communications, maximum platoon size, and safety.  However, the limits to inter-platoon 

following distance are governed by safety and capacity. 

The minimum distance is determined based on the ability for a following platoon to 

execute an emergency-braking maneuver to avoid overrunning a platoon experiencing a 

catastrophic event that brings the leading platoon instantaneously to a velocity of zero.  The 

maximum distance is determined based on the headway spacing associated with the minimum 

capacity advantage over a conventional freeway associated with the break-even point determined 

in economic analysis of the AET alternative.  Only vehicles designated as the first vehicle in a 

platoon will maintain these following distances.  Therefore, vehicles operating on an AET 

roadway will each have a specific role, determined by its position relative to other vehicles in the 

system.  A vehicle can either be a Singleton, a Leader, or a Follower. 

The term Singleton refers to the role of a vehicle within an AET environment that is 

operating outside of a platoon.  It identifies a set of behaviors that a vehicle will follow in 

dynamic and static situations that involve joining an existing platoon or creating a new platoon 

while adhering to rules governing speed management, gap acceptance, platoon following, and 

itinerary management.  A Singleton will always have a target headway spacing equal to the inter-

platoon separation distance. 
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The term Leader, or Platoon Leader, refers to the role of a vehicle within an AET 

environment that is designated as the vehicle located in the front position of a platoon.  It also 

identifies a set of behaviors that a vehicle will follow in dynamic and static situations that involve 

maintaining a platoon, joining an existing platoon, or expanding a new platoon while adhering to 

rules governing speed management, gap acceptance, platoon following, and itinerary 

management.  A Platoon Leader will also always have a target headway spacing equal to the 

inter-platoon separation distance. 

The term Follower refers to the role of a vehicle within an AET environment that is 

designated as any vehicle in a platoon that is not located in the front position of the platoon.  It 

identifies a set of behaviors that a vehicle will follow in dynamic and static situations that involve 

maintaining a platoon, joining an existing platoon or expanding a platoon, and diverging from a 

platoon while adhering to rules governing speed management, gap acceptance, car following, and 

itinerary management.  A Follower will always have a target headway spacing equal to the intra-

platoon separation distance. 

Model Development 

As discussed, the implementation strategy will occur in piece-wise steps, especially 

beginning with locations identified as having the highest potential for positive impact and 

maximum exposure/usability.  In addition, AET will not be a closed-loop system; therefore 

vehicles must have the ability of being driven both manually and automatically, suggesting a need 

for a check-in and check-out strategy.  Fenton (51) discussed the likelihood that highways would 

be prime candidates for automation, while various rural roads and urban streets would not.  

Therefore, individual vehicles would enter the highway system at a designated entrance point 

where it would first undergo a rapid vehicle inspection, and the driver would indicate their 

destination.  If the vehicle passed the inspection, it would move to an entrance ramp from which 
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it would be automatically merged into the traffic stream (check-in).  The vehicle would then 

remain under automatic control until the driver’s selected exit was reached; then it would be 

guided off the highway onto the exit ramp, and control would be returned to the driver (check-

out). 

Check-In 

In this piece-wise implementation strategy, until a vehicle arrives at the beginning point 

of the dedicated AET lane, or “check-in” point, it would be driven manually, just as it is today 

(with the exception that it would be powered electrically).  Upon check-in, the system must 

determine whether the vehicle attempting to enter the dedicated lane qualifies for its use.  

Allowing unqualified vehicles on the lane would defeat the purpose and benefit of the dedicated 

lane.  Also, as this process must happen while in motion, the system must be fast and accurate in 

determining whether a vehicle qualifies for travel in the lane or not.  Consequently, a rejection 

scenario should be anticipated and designed for in cases where vehicles may attempt to enter the 

lane, but do not qualify by either being a non-automated vehicle or an automated vehicle with 

substandard performance characteristics.  It is also important to ensure that vehicles are switched 

to “automated” mode for entrance to be allowed.  Just as unqualified vehicles on the dedicated 

lane would defeat the purpose and benefit of AET travel, qualified vehicles that are still manually 

controlled would do the same. 

Finally, the process of merging into traffic flow on the AET lane would then be 

performed automatically.  Acceptable gaps into which vehicles checking in to the system will fill 

must be calculated and evaluated for this process to successfully occur.  Also, the traffic flow 

characteristics before and after a vehicle or group of vehicles check in should be carefully 

analyzed.  This analysis would provide valuable insight into such aspects as the capacity of the 

AET lane and the suggested frequency of dedicated check-in interchanges. 
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Check-Out 

Just as a vehicle checks in at the beginning of the dedicated AET lane, it must check-out 

when it reaches its end.  One of the benefits of automated driving is that the driver is no longer 

required to pay attention to the driving task.  Drivers would have the ability to use that time to 

perform other tasks valuable to each individual.  These activities may range from sleeping, 

reading, watching movies or some other form of entertainment, or working on a computer.  

However, it would be disastrous if a driver was asleep or otherwise not aware or prepared to 

manually take over the task of driving, and they were suddenly required to do so. 

Thus, the transition of control from automated to manual must also be explored prior to 

AET’s implementation.  However, while the importance of this process is recognized, for this 

thesis, the check-out process is suggested for future work and is only discussed for understanding 

here.  This process relies on human awareness and ability.  Therefore, before check-out, the 

awareness of the driver must be determined.  Once the driver is alert and prepared to make the 

transition from automated control to manual control, the transition must be just as smooth as 

check-in.  The driver, rather than the system, should likely perform this task in order to ensure 

that the driver is prepared to manually control the vehicle.  Therefore, in the event that a driver 

fails the awareness test, or fails to manually take control of the vehicle, a strategy should also be 

developed in which this scenario is accommodated for in such a way that it does not disrupt 

traffic flow and may continue until the driver is adequately alert and prepared to perform the 

driving task. 

Configuration Design 

A simple schematic of a possible AET interchange design is shown in Figure 8.  In this 

schematic, there are several detection zones with specific functions to make the check-in process 

(Zones 1-5) and check-out process (Zones 6 & 7) run smoothly. 
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FIGURE 8.  AET Interchange Schematic. 

 
 

For the check-in process, Zone 1 would simply be an actuated signal for manually driven 

vehicles.  This signal would show red unless a vehicle is detected.  Zone 2 is similar to Zone 1; 

however no signal is needed due to the fact that vehicles will be under automated control at this 

point.  The “signals” at Zones 1 and 2 would coordinate such that conflicts between vehicles 

would be avoided.  Zone 3 would examine a vehicle’s specifications and qualifications to 

determine if a vehicle would be permitted to travel on the AET link.  Unqualified vehicles are 

permitted to exit through the additional exit lane provided.  Zone 4 would be an advanced 

actuated signal that would only give a “green” signal when a vehicle has been determined 

qualified for travel in the AET lane, the vehicle is set to “automated” mode, and an acceptable 

safe gap in which the entering vehicle may enter (determined by Zone 5) is detected. 

For the check-out process, Zone 6 would determine if the exit ramp is clear for a vehicle 

to exit the AET link.  Zone 7 would examine the awareness of the driver and their preparedness to 

take back control of the vehicle upon exiting.  Vehicles with non-responsive drivers would be 

diverted off the AET link at the exit point and looped back around to the entrance for the opposite 
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direction.  This process would repeat until a driver is aware and adequately prepared to assume 

control of the vehicle upon exiting.  
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CHAPTER 4 

RESEARCH METHODOLOGY 

This chapter presents the methodology for modeling and analyzing the AET mainline as 

well as an AET interchange.  It includes research questions and hypotheses, basic model 

assumptions, equations for maximum capacity analysis, gap formation for the check-in process, a 

description of the entrance algorithm used, along with the equations involved in the analysis, and 

the performance measures used.  Through this methodology, the requirements and impacts of 

traffic operations relating to the check-in, merging scenario at an AET interchange should be 

adequately understood. 

Research Questions and Hypotheses 

The major question on which this research focuses is: “In transitioning to an automated 

electric transportation system, what impacts will an automated vehicle interchange have on 

highway traffic operations?”  As the transition strategy has been laid out, no further discussion on 

that matter will follow in this report.  However, further details concerning the potential impacts of 

an AET interchange deserves further insight. 

Hypotheses Related to AET Interchange Impacts 

Through vehicle automation, lane capacities will likely be significantly increased.  

However, interrupting the traffic flow at interchange locations could negatively affect that 

mainline capacity.  Nevertheless, if modeled properly, this impact may be reduced by identifying 

traffic operations procedures which will maximize mainline capacity and minimize or eliminate 

delays in mainline traffic. 
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Assumptions 

In order to simplify the analysis of the model, specific assumptions will be made 

concerning vehicle and traffic characteristics.  Vehicle characteristic assumptions will include 

those concerning vehicle length, communication abilities, acceleration/deceleration capabilities, 

and reaction times.  For vehicle length, an average value for a mid-size sedan was used, which 

was 16.40 ft.  In terms of communication, in order to establish the vehicle “roles” and maintain 

the proper following distances, as well as the most efficient platoon formation, vehicles should be 

able to use communicative devices to send and receive information between other vehicles. 

This information should include data related to position (lateral and longitudinal), 

velocity, acceleration, and current headway spacing.  Other information should include platoon 

identification, vehicle identification, vehicle role, platoon position, platoon size, desired exit, 

nearest desired exit by any vehicle in the platoon, and furthest desired exit by any vehicle in the 

platoon.  It is possible for this information to be passed as a single string of numerical values.  For 

example, the string could consist of a comma-delimited string correspond to the following: 

• Vehicle Identification Number, [VIN] 

• Longitudinal location, [GPS milepost position] 

• Lateral location, [with respect to center, left = negative %, right = positive %] 

• Speed, or velocity, [mph] 

• Acceleration/deceleration, [feet per second squared, ft/s2] 

• Headway spacing, [ft] 

• Platoon Identification Number, [PIN] 

• Vehicle role, [1 = Singleton, 2 = Platoon Leader, 3 = Follower] 

• Vehicle position within the platoon 

• Total number of vehicles in the platoon 
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• Desired exit 

• Nearest desired exit by any vehicle within the platoon 

• Furthest desired exit by any vehicle within the platoon 

Therefore, a vehicle with the communication string […8704, 223.68, -0.01, 75, 1.20, 

3.80, 1868, 3, 4, 8, 227, 225, 231] refers to a vehicle with VIN #...8704, located at GPS milepost 

position 223.68, with a 1% lateral deviation to the left of center, traveling 75 mph, accelerating 

1.20 ft/s2, and with a current headway spacing of 3.80 ft.  The platoon ID is #1868, the vehicle 

role is a Follower, being the 4th vehicle in an 8-vehicle platoon, desiring to exit the AET link at 

exit #227.  The nearest exit desired by any vehicle within the platoon is exit #225, and the furthest 

exit desired by any vehicle within the platoon is exit #231. 

This communication string is important because it allows an individual vehicle’s position, 

velocity, and acceleration data to be processed in order to allow automated control with respect to 

other vehicles’ data surrounding it in the network.  It also allows for the possibility of forming 

platoons in the most efficient way.  This is likely to be achieved by forming the platoons such that 

vehicles only diverge at their desired exits from the rear of their platoon, rather than splitting a 

platoon to allow middle vehicles to exit.  For this application, it was assumed that this efficient 

platoon formation was already performed, such that platoons exist in configurations where exiting 

vehicles only exit from the rear of the platoon, and entering vehicles enter by prioritizing their 

entrance maneuvers by first, joining a platoon which has not yet reached maximum platoon size, 

and second, forming a new platoon.  It was further assumed that vehicles are provided with 

perfect information via I2V and V2V communication concerning gap sizes in the mainline and 

the size of the platoon directly preceding that gap.   

Further traffic characteristic assumptions will include those concerning mainline and 

ramp vehicle flows or demands.  Due to the fact that pushing the lanes to capacity was the goal 

here, ramp demands were assumed to be large and constant.  While this scenario may not entirely 
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represent the real world, it was simply assumed to analyze the worst-case scenario.  However, for 

mainline traffic, capacity is a function of speed, platoon size, intra-platoon headway spacing, 

inter-platoon headway spacing, and car following logic. 

Two of the major goals of AET are to increase the safety and capacity of our 

transportation infrastructure, particularly in freeway travel.  In conjunction with these goals, AET 

proposes to accomplish these initially by the use of a single lane of traffic.  In order to analyze the 

results of this system, a computer-based micro-simulation software package called Paramics was 

used with modified parameters to traditional car following protocol.  Gipps’ car following 

equations were used in this project, with parameters for maximum acceleration and deceleration 

set at levels acceptable for human comfort and safety.  Liu and Wu (52) identify these levels to be 

approximately 6.56 ft/s2, while Li et al. (53) estimate approximately 8.2 ft/s2.  For this research, ± 

8.2 ft/s2 were assumed for values of maximum acceleration and deceleration.  The reaction time, 

or total delay for an automated vehicle in an AET environment was estimated at approximately 

33.33 milliseconds (ms). 

While automated lateral and longitudinal control will inevitably achieve safety increases 

by virtually eliminating the human factors of driving, the aspects of safety and capacity carry an 

inverse relationship.  If each vehicle maintained a large enough headway spacing to be able to 

fully stop when the vehicle directly in front of it performs an emergency braking maneuver, 

where the leading vehicle abruptly decelerates to a velocity of zero without warning, capacity 

would approximate current freeway capacity.  However, if all vehicles were to maintain a small 

headway spacing (small enough that in an emergency braking scenario, crashes may occur, but 

below the magnitude of causing serious injury), capacity would greatly increase on the order of 

four times current freeway capacities.  However, this capacity increase consequently comes at 

some cost in terms of safety. 
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Therefore, there should be a balance between these two aspects in an AET system.  As 

mentioned, two critical following distances exist: intra-platoon spacing and inter-platoon spacing.  

Previous research has indicated that under emergency braking scenarios, these critical following 

distances must maintain safety while also achieving acceptable capacity improvements (54). 

Considering safety, automated vehicle platooning relies on the fact that intra-platoon 

separations must be safe, despite the short headway spacing, the steady state, or initial speed, 

communication delays, brake actuation delays, and brake performance.  Safe short headway 

spacings can be explained by the fact that in an emergency braking scenario, vehicles following at 

very close distances will be close enough that there is not sufficient space to build a large enough 

speed differential before the vehicles collide to cause serious injury or damage.  This “safe 

collision speed” concept was first introduced by Shladover (55), and expanded on by Tsao (56). 

This distance should also be far enough away that any collision would be avoided under 

normal conditions, and limited even in emergency conditions.  Preliminary results concerning 

safe following distances for identical electric vehicles traveling at speeds of 74.56 mph show that 

intra-platoon separations around 3.28 ft. and inter-platoon separations around 98.43 ft. may be 

considered valid assumptions for actual separation values, and resemble the values used by 

Fernandes and Nunes (57, 58) in their studies of autonomous vehicle platooning.  These values 

were therefore used as constants for mainline speed, and intra- and inter-platoon headway 

spacings, respectively. 

Equations for Maximum Capacity Analysis 

Maximum or optimal capacity for AET is achieved when no interruptions in mainline 

flow occur.  This value is important to calculate for the analysis of the effect the merging scenario 

imposes on the overall capacity of an automated system.  Since it is initially assumed that each 

AET vehicle will be identical vehicle types, with identical performance characteristics and 
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uniform length, l [ft], if we take the intra-platoon headway spacing as h [ft], and the number of 

vehicles in a platoon as N [vehicles, veh], we can calculate the effective platoon length, L [ft], as: 

(4.1) 
𝐿 = 𝑙 𝑁 + ℎ 𝑁 − 1  

Then, with given information concerning the steady state travel speed, u [mph], and 

taking the inter-platoon headway spacing as H [ft], we can calculate the flow, Q [vph (per lane)], 

using the following equation.  It should be noted that if N is considered the maximum platoon 

size, and all vehicles are traveling at steady state speed, the flow calculated is also the maximum 

capacity achievable on an AET freeway lane. 

(4.2) 

𝑄 = 𝑁
1

𝐿 + 𝐻
∗ 𝑢 ∗ 5280  

Also, assuming Greenshields’ speed/flow relationship, we can calculate density, k [vehicles per 

mile (vpm)], as: 

(4.3) 

𝑘 =
𝑄
𝑢

 

Gap Formation for Check-In 

When a vehicle desires to travel on an AET link, it must perform the check-in procedure 

or entrance algorithm, which, in part, requires an analysis of gaps in the mainline traffic.  

Therefore, the formation of an acceptable safe gap merits further discussion.  First, an acceptable 

safe gap is defined as a gap in the mainline that consists of an intra- or inter-platoon headway 

spacing before and after the vehicle (depending on the vehicle’s position in the platoon), as well 

as the length of the vehicle itself. 
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The procedure for measuring this gap and releasing vehicles queued on the entrance ramp 

to merge into mainstream traffic will resemble that of an advanced ramp metering system.  Liu 

(59) broadly divided ramp metering techniques into three categories: pre-timed, traffic-

responsive, and predictive.  In the traffic-responsive approach, detectors and computers are 

utilized to determine mainline flow and ramp demand in the immediate vicinity of the ramp, and 

an appropriate metering rate is set.  However, within this approach, two basic schemes exist: 

flow-based and gap-based. 

The gap-based scheme attempts to maximize the volume entering the freeway by looking 

for gaps in the main traffic stream.  Upstream detectors, similar to those described previously in 

the model development, provide gap information to the ramp meter.  For the check-in process, 

this scheme will be used to time the release of vehicles at the check-in point of the AET freeway, 

such that a released vehicle (or platoon) is guaranteed to find an acceptable safe gap upon arrival 

at the merge point on the mainline.  One benefit to this scheme is that less land space is 

necessary, due to the fact that short acceleration ramps may be used (60). 

In general, there are three cases for an acceptable safe gap to occur in the mainstream 

traffic.  In these cases, gaps are assumed to occur naturally, so as to avoid any delay imposed on 

the mainline by forcing vehicles to brake in order to form gaps.  The first is the case where there 

is light traffic on the mainline and there is demand on the entrance ramp.  Once the vehicles on 

the ramp have been switched from manual mode to automated mode, they will immediately be 

allowed entrance to the freeway.  The second case is moderate traffic on the mainline.  In this 

instance, once a vehicle or group of vehicles on the on-ramp have been switched from manual 

mode to automated mode, they simply wait until they may enter the freeway such that they 

precisely meet the gap directly behind a vehicle traveling in the mainstream.  Depending on the 

size of the platoon directly preceding the gap, these entering vehicles may either join at the rear of 
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the existing platoon on the mainline, or form a new platoon following the existing platoon on the 

mainline. 

The third case is designed for high traffic volumes where mainline gaps are formed by 

exiting vehicles prior to the entrance ramp.  Once a group of vehicles on the on-ramp have been 

switched to automated mode, they wait until they may enter the freeway such that they precisely 

meet the gap directly behind a vehicle traveling on the mainline.  Depending on the size of the 

platoon directly preceding the gap, these entering vehicles may either join at the rear of the 

existing platoon on the mainline, or form a new platoon following the existing platoon on the 

mainline. 

However, despite how the gap is formed, considering average flow values on the 

mainline, as well as average platoon sizes, previous research determined a value for an average 

gap in the mainline by the following modified equation (5): 

(4.4) 

𝐺 =
3600 𝑁

𝑄
∗ 𝑢 ∗

5280
3600

− 𝑁 𝑙 + ℎ + ℎ 

where 

Ḡ = average gap, [ft] 

N = average platoon size, [veh] 

Q = average mainline flow, [vph] 

u = speed, [mph] 

l = vehicle length, [ft] 

h = intra-platoon headway spacing, [ft] 

This equation was used in comparative analyses in order to show the improvement in 

effective capacity from past research. 
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Entrance Algorithm & Analysis Equations 

Entrance into mainline automated vehicle traffic flow is a function of the gap size on the 

mainline, the size of the platoon preceding that gap, and the maximum platoon size.  The logic 

behind the AET entrance algorithm is based on the concept that interrupting mainline traffic flow 

through the merging maneuvers of entering vehicles is unacceptable, as mainline traffic streams 

perform optimally under constant steady-state speed and spacing parameters.  Therefore, the 

algorithm attempts maximize the size of all mainline platoons and fill all acceptable gaps in the 

mainline to the extent the ramp demand allows.  Queued vehicles on the ramps are therefore 

allowed to enter as Singletons, or as platoons. 

The algorithm resembles a gap-based advanced ramp metering system.  It acts as a single 

server regulator for vehicles entering mainline automated traffic.  Although ramp demand was 

assumed to be large and constant in order to push the system to capacity, the algorithm does 

account for scenarios where the ramp demand may be adjusted.  A flowchart of the algorithm is 

provided in Figure 9 and the visual basic computer code for the algorithm is found in the 

appendix. 

 

 
FIGURE 9.  AET Entrance Algorithm Flowchart. 
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The algorithm consists of two parts: a “Join Platoon” procedure and a “New Platoon” 

procedure.  In order to begin, a gap of at least the intra-platoon headway spacing (h [ft]), the 

length of a vehicle (l [ft]), and the inter-platoon headway spacing (H [ft]) must exist to start the 

algorithm.  Therefore, the model requires pre-determined inputs for these parameters, as well as 

for the maximum platoon size (Nmax [veh]).  Once the algorithm starts, ramp demand (nDemand 

[veh]) is detected on the ramp, and the preceding platoon size (Np [veh]) and gap size (G [ft]) are 

detected on the mainline. 

Also, initial values for the platoon number (i [platoons, pls]) and the total number of 

merging vehicles to be released for the current gap (nTotal [veh]) are set to 1 and 0, respectively.  

Setting i to a value of one simply means that the platoon on the mainline preceding the gap being 

analyzed is designated as the first platoon in the analysis.  A “Join Platoon” procedure will 

determine the number of vehicles from the ramp that will be released to merge by joining this 

platoon, and, if space allows, a “New Platoon” procedure will determine the number of vehicles 

from the ramp that will be released to merge by forming new platoons following the initial 

mainline platoon. 

The algorithm flowchart shown in Figure 9 was simplified to numbered junctions in the 

process for visual simplification.  Verbal and mathematical definitions of each junction are 

described as follows: 

1. Calculate the maximum number of vehicles that can fit into the gap, nEnter [veh], 

assuming they perform the “Join Platoon” procedure.  (Round down to the nearest whole 

vehicle.) 

(4.5) 

𝑛!"#$% =
𝐺 − 𝐻
𝑙 + ℎ
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2. Does the maximum number of vehicles that can fit into the gap (nEnter calculated in 

junction 1) exceed the number of vehicles required to fill the existing platoon to 

maximum size? 

(4.6) 
𝑛!"#$% > 𝑁!"# − 𝑁!      ? 

3. Does the number of vehicles required to fill the existing platoon to maximum size exceed 

the demand on the ramp? 

(4.7) 
𝑁!"# − 𝑁! > 𝑛!"#$%&       ? 

4. Send the demand. 

(4.8) 
𝑛! = 𝑛!"#$%& 

where 

ni = number of platoons released for platoon i, [veh] 

5. Fill the existing platoon to maximum size. 

(4.9) 
𝑛! = 𝑁!"# − 𝑁! 

6. Does the maximum number of vehicles that can fit into the gap (nEnter calculated in 

junction 1) exceed the demand on the ramp? 

(4.10) 
𝑛!"#$% > 𝑛!"#$%&       ? 

7. Send the maximum number of vehicles that can fit into the gap (nEnter calculated in 

junction 1). 
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(4.11) 
𝑛! = 𝑛!"#$% 

8. Determine the number of vehicles that will join the existing platoon, nJoin [veh].  Decrease 

the ramp demand by the number of vehicles that join the existing platoon.  Store the 

count of the total number of vehicles released from the ramp for the current gap.  

Determine the size of the gap remaining, G [ft], after the entering vehicles join the 

existing platoon. 

(4.12a) 
𝑛!!"# = 𝑛! 

(4.12b) 
𝑛!"#$%& = 𝑛!"#$%& − 𝑛! 

(4.12c) 
𝑛!"#$% = 𝑛! 

(4.12d) 
𝐺 = 𝐺 − 𝑛! 𝑙 + ℎ  

9. Is there any remaining demand on the ramp, and is the remaining gap large enough to 

allow any more vehicles to enter, assuming they perform the “New Platoon” procedure? 

(4.13a, 4.13b) 
𝑛!"#$%& > 0          𝐀𝐍𝐃          𝐺 ≥ 2𝐻 + 𝑙      ? 

10. Calculate the maximum number of vehicles that can fit into the remaining gap, nEnter.  

(Round down to the nearest whole vehicle.) 

(4.14) 

𝑛!"#!" =
𝐺 − 2𝐻 + ℎ

𝑙 + ℎ
 

11. Does the maximum number of vehicles that can fit into the gap (nEnter calculated in 

junction 10) exceed the maximum platoon size? 
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(4.15) 
𝑛!"#$% > 𝑁!"#       ? 

12. Does the maximum platoon size exceed the demand on the ramp? 

(4.16) 
𝑁!"# > 𝑛!"#$%&       ? 

13. Send the demand. 

(4.17) 
𝑛! = 𝑛!"#$%& 

14. Send a platoon of maximum size. 

(4.18) 
𝑛! = 𝑁!"# 

15. Does the maximum number of vehicles that can fit into the gap (nEnter calculated in 

junction 10) exceed the demand on the ramp? 

(4.19) 
𝑛!"#$% > 𝑛!"#$%&       ? 

16. Send the maximum number of vehicles that can fit into the gap (nEnter calculated in 

junction 10). 

(4.20) 
𝑛! = 𝑛!"#$% 

17. Determine the number of vehicles that will form a new platoon, nNew [veh].  Decrease the 

ramp demand by the number of vehicles that form a new platoon.  Update the count of 

the total number of vehicles released from the ramp for the current gap.  Store the number 
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of platoons that have been released.  Determine the size of the gap remaining after the 

vehicles form the new platoon. 

(4.21a) 
𝑛!"# = 𝑛! 

(4.21b) 
𝑛!"#$%& = 𝑛!"#$%& − 𝑛! 

(4.21c) 
𝑛!"#$% = 𝑛! 

(4.21d) 
𝑖 = 𝑖 + 1 

(4.21e) 
𝐺 = 𝐺 − 𝐻 − 𝑛! 𝑙 + ℎ + ℎ 

As soon as there is either no remaining demand on the ramp, or the remaining gap is not 

large enough to allow any more vehicles to enter, node number nine produces a “False” result, 

and the process terminates.  Therefore, the analysis of the original gap is ended, and the output of 

the algorithm is the total number of vehicles released from the ramp, nTotal [veh], the total number 

of platoons released from the ramp, iTotal [pls], the remaining gap on the mainline, G [ft], and the 

remaining demand on the ramp, nDemand [veh].  Information about each platoon released from the 

ramp is also obtained.  This information includes the number of vehicles released to join the 

existing platoon on the mainline, nJoin [veh], the number of full platoons released (excluding the 

first and last platoons), nFull [veh], and the number of vehicles released in the last platoon 

(excluding the first platoon), nLast [veh]. 

This “release-to-gap” merging logic accomplishes the merging maneuver for automated 

vehicles without imposing any significant interruption to the mainline flow, as was proven by 

Ran et al. (6).  Ran’s study explains that the consequence of prioritizing the mainline flow over 

the ramp flow in this way is that the mainline will be able to operate with minimal impact from 

the merging maneuver, which is the goal of this project.  Thus, the algorithm developed 
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inherently gives priority to mainline flows, which in turn transfers any delay that would be 

experienced on the mainline from a merging maneuver to queued vehicles on the ramp.  

However, while delay may be transferred to the ramp, it should be noted that large ramp queues 

typically only develop under conditions of high mainline flows and few available gaps for 

merging.  It stands to reason that under these conditions, mainline flows should take priority over 

ramp flows in order to move larger volumes of traffic. 

Performance Measures 

The performance measures used in this research were freeway and ramp lane capacities.  

This first includes the optimal capacity of the mainline without traffic interruptions.  Next, taking 

check-in merging into account, ramp capacities for automated entrance ramps were assessed, 

followed by the effective downstream capacity of the mainline, including the merging strategy 

outlined previously.  



 
 

56 

 

CHAPTER 5 

ANALYTICAL RESULTS 

The results of this research include a working micro-simulation model of an automated 

merging strategy for vehicles in an automated electric transportation system.  In addition, 

accurate estimates of lane capacities for automated vehicle systems both upstream and 

downstream of merging areas are calculated and proven.  This analysis gives meaningful and 

measurable insight as to the potential benefits and requirements of an automated system. 

Optimal Mainline Capacity 

First, using the equations shown in the previous chapter, and assuming values of l = 

16.40 ft, h = 3.28 ft, H = 98.43 ft, and u = 74.56 mph, Figure 10 shows the maximum capacity on 

the mainline of an AET freeway lane with respect to platoon size (N is varied) and compares it to 

a typical flow vs. density curve for a “normal” freeway lane.  The term “’Normal’ Case” here 

refers to a flow vs. density curve typically seen on today’s freeway lanes.  It is re-emphasized 

here that this maximum value for AET capacity does not take into account any disturbances in 

mainline travel. 

Next, in order to verify that the micro-simulation model accurately represented this 

maximum flow, a simple network consisting of a single lane of traffic with no interruptions was 

created in Paramics.  As vehicles were generated, they would assume the car following logic 

described in this thesis and maintain the proper headway spacings, h and H.  As the generation of 

the vehicles in the simulation was random, it was necessary to create a “dummy link” that was 

used for platoon forming purposes.  In this dummy link, vehicles would travel at high speeds in 

order to “catch up” to the vehicle they would be following until they achieved the required 

spacing.  After they had successfully formed and maintained their platoons for an acceptable 

amount of simulation time, they would then enter the “AET link,” where vehicle flows were  
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FIGURE 10.  Maximum Mainline Capacity Flow vs. Density. 

 
 
measured under platooned conditions. 

It was anticipated that the simulated flows would match very closely with the calculated 

flows shown previously due to the fact that the speed and spacing of each vehicle in the model 

was under automated control.  As is shown in Figure 11, this was found to be true.  The vehicle 

flows under each scenario were exactly the same flows as the calculated results. 

The usefulness of these values for optimal capacity is reflected in the growing concern of 

traffic congestion management where demand frequently surpasses supply, especially in locations 

where additional lanes are not viable options in terms of land space.  Therefore, based on the 

results presented here, the automated platooning of traffic streams presents immediate benefits, 

even at the “All Singleton” level due to the use of constant spacing and automated vehicle 

control.  In classical models, freeway traffic flows above a critical density of approximately 50 

vpm enter into a congested state, where vehicles travel closer together, but at lower speeds until 

traffic comes to a complete stop at a jam density of approximately 100 vpm.  However, the results 

of the micro-simulation model verify that traffic flow under automated control is capable of  
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FIGURE 11.  Simulated Results for Maximum Mainline Capacity. 

 
 
achieving traffic flows at the upper bounds of “theoretical” optimal capacity.  But in order for a 

traffic system to operate with a traffic flow at these upper limits, the admittance of vehicles to this 

system should be limited to ensure that the correspondent maximum density would never be 

surpassed (58). 

Ramp Capacity 

Using the merging strategy presented previously, the ramp flow is a function of the size 

of the gap in the mainline, the maximum platoon size, and the size of the platoon directly 

preceding the gap.  As assumed in previous research, the average size of the gap in the mainline 

may be calculated as a function of the speed and flow rate of the mainline vehicles using 

Equation 4.4.  Taking this value as an input for the merging algorithm, and using values for 

maximum platoon size equal to five and varying the mainline flows, Figure 12 shows an 

illustrative example of the calculated ramp capacity.  The “Mainline Capacity” line is calculated 
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by subtracting the actual mainline flow from the calculated optimal capacity for the given 

maximum platoon size, and is shown for reference.  The ramp capacity should never exceed this 

line, as that would cause the freeway to exceed maximum density, thus creating negative 

shockwaves that would impose delay on the mainline traffic flow. 

As the size of the platoon preceding the gap on the mainline will vary stochastically from 

one to the maximum platoon size (in this case five), the ramp capacity was calculated for each 

case.  While the results for uniform platoon sizes of 1, 3, and 4 are shown for reference, the solid 

black line in the figure represents the average for all cases, and can be taken as an average 

estimate of the ramp capacity at any given mainline flow.  Under low mainline flows, the results 

show that the ramp capacity can be very high, as the mainline is free to accept large flows of 

vehicles from the ramp without interruption.  However, these values are only applicable assuming 

constant and large ramp demands in order to determine the capacity.  Under normal conditions, 

although the ramp capacity may be high, actual ramp flows will likely be limited to the ramp 

 

 
FIGURE 12.  Ramp Capacity vs. Mainline Flow. 



 
 

60 

 

demand. 

Conversely, under high mainline flows, there is a threshold where allowing merging 

vehicles is not acceptable without interrupting mainline flow, which would cause mainline 

vehicles and platoons to brake in order to allow merging vehicles to enter the freeway.  As this 

scenario was determined to be unacceptable for this analysis, ramp capacity under these 

conditions is low, and eventually approach zero.  It is acknowledged that this effectively gives 

priority to the mainline flow, which in turn transfers delay to the vehicles waiting on the ramp.  

While this may be true, at the small cost of delaying vehicles on the ramp, the mainline flows are 

able to operate with minimal impact from merging vehicles, thus maximizing mainline vehicle 

flow.  The actual effect this has on mainline flows is explored in the discussion following on 

effective mainline capacity. 

In order to verify this analytical analysis, the micro-simulation model was used to run 

multiple scenarios with varying mainline flows.  Mainline flows in the model exist with 

stochastic variations in gap size and the size of the platoon preceding the gap on the mainline.  

This was achieved by seeding the demand in the simulation for each run.  It was found that by 

following the merging algorithm for automated entry to an AET freeway lane, the simulation 

accurately represented both the mainline and ramp flows under high mainline flows.  However, 

under low mainline flows, the simulation produced ramp flows slightly lower than the analytical 

model. 

This was due to the fact that the ramp in the model was limited to two lanes, so as to 

more accurately represent a real-world on-ramp.  Since there is a time lag between the time a 

platoon is released from the ramp and the next platoon on the ramp reaches the stop bar to 

analyze either the remaining gap or the next gap, some usable gaps in the mainline may pass by 

unused.  This results in some capacity loss and was discovered while the scenarios were being 

analyzed using a single-lane on-ramp.  Therefore, a two-lane on-ramp was then modeled, and the 
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results nearly doubled, as expected, with the addition of a second lane.  It is anticipated that this 

trend would continue with the addition of multiple lanes on the on-ramp, however, these 

scenarios were not analyzed due to the fact that the flows achievable with two lanes were 

determined to be adequate with respect to the capacity loss and the land space required for 

additional lanes. 

Therefore, rather than depicting the scenario for a ramp operating at maximum capacity, 

this phenomenon describes the model for the scenario of a ramp operating at flow levels 

corresponding to the actual demand at the ramp.  Under these conditions, neither the ramp nor the 

mainline flows are expected to reach capacity, as the system lacks the required demand.  

However, through the merging logic presented in this research, operations under these conditions 

allowed the traffic flows to merge seamlessly, thus maximizing mainline and ramp flows. 

Effective Mainline Capacity 

While optimal mainline capacities and ramp capacities are useful tools in the analysis of 

an AET interchange, effective mainline capacity represents the merging of the two flows.  The 

capacity of a merge or diverge area is always controlled by the capacity of its entering and exiting 

roadways (4).  However, by monitoring and controlling the traffic operations and vehicle 

movements at these locations, turbulence due to typical merging maneuvers can be avoided, and 

thus the capacity of the roadways involved may be maximized. 

When the vehicle speeds and headway spacings are controlled automatically through 

various communications and controls protocol, optimal mainline capacity can be broken down to 

the simple calculations shown in Equations 4.1 and 4.2.  Then, using Equation 4.4 as well as the 

merging algorithm discussed, ramp capacity is broken down to basic gap acceptance theory.  This 

section provides a comparative analysis of how this merging logic improves on past research, 
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focusing on the effective mainline capacity, or the capacity of the mainline at or directly 

downstream from an automated merging location. 

Using Equations 4.1 and 4.2, the optimal mainline capacity was calculated with varying 

values for maximum platoon size and mainline steady-state speed.  This was done to provide 

insight to moderate speed and high speed applications as well as optimal maximum platoon size.  

Clearly, if increasing optimal capacity was the only goal, longer platoon sizes provide more 

desirable results; however, considering safety and efficiency, especially relating to string stability 

of platooned vehicles, the analysis of a variety of platoon sizes aids in weighing options for 

various applications. 

Table 2 shows the results of that analysis.  These values represent the maximum 

achievable freeway lane flows for an automated system, given the parameters for speed, spacing, 

and platoon size, and represent the values that the merging logic should strive to achieve along 

the freeway. 

Two trends recognized from this table are that as maximum platoon size increases, the 

optimal mainline capacity increases asymptotically to the infinite platoon case.  The other is that 

as steady state speed increases, optimal mainline capacity increases linearly.  Therefore, one can 

conclude that the benefits of increasing platoon size provide diminishing returns in terms of 

 
TABLE 2.  Optimal Mainline Capacity, [vph]. 

  
Speed, [mph] 

  
45 65 75 90 100 

Pl
at

oo
n 

Si
ze

, [
ve

h]
 

1 2,069 2,988 3,448 4,138 4,598 
5 6,137 8,865 10,228 12,274 13,638 
10 8,137 11,753 13,561 16,274 18,082 
15 9,128 13,185 15,214 18,257 20,285 
20 9,720 14,041 16,201 19,441 21,601 
25 10,114 14,609 16,857 20,229 22,476 
∞ 12,070 17,434 20,116 24,140 26,822 
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capacity.  However, increasing speeds continually provides added benefit, regardless of the 

platoon size.  This may be especially insightful for research related to string stability for 

platooned vehicle formations and safety.  If larger maximum platoon sizes can only produce 

limited improvements, efforts should be less focused on this factor and more focused on being 

able to safely control smaller platoons at higher speeds. 

In order to perform a comparative analysis between past Automated Highway Systems 

(AHS) research and this current AET research, the same assumed values for spacing discussed 

previously in this report were used in all the relevant equations.  Using the analysis equations and 

merging logic used in past AHS research found in (5), the average effective capacity was 

calculated as an average mainline flow at or directly downstream from the merge area of the 

freeway.  This was obtained by finding the average flow for each maximum platoon size at 

increasing values of initial upstream mainline flow and preceding platoon sizes from one to the 

maximum value.  Finally, an overall average for each case was calculated, the results of which 

are tabulated in Table 3.  The values shown for the infinite platoon case were estimated based on 

the trend seen as maximum platoon size increased. 

Again, it was observed that increases in maximum platoon size provided diminishing 

returns, asymptotically approaching the infinite case.  Furthermore, it was observed that increases 

 
TABLE 3.  Effective Capacity (AHS), [vph]. 

  
Speed, [mph] 

  
45 65 75 90 100 

Pl
at

oo
n 

Si
ze

, [
ve

h]
 

1 1,458 2,096 2,139 2,729 2,937 
5 3,802 5,727 6,289 7,540 8,543 
10 4,832 7,226 7,872 9,532 10,757 
15 5,297 7,878 8,767 10,427 11,587 
20 5,476 8,022 9,055 10,776 12,121 
25 5,654 8,355 9,173 11,076 12,407 
∞ 6,600 9,900 11,000 13,200 14,850 
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in steady state speed provided improvements in a nearly linear fashion.  However, the results for 

effective capacity were considerably lower than the results for optimal capacity.  This is due to 

the fact that the logic used in the AHS work does not utilize acceptable gaps in the mainline to 

their full potential.  Also, in this past work, entering vehicles were permitted to impose delay on 

the mainline traffic stream.  This delay was calculated, and efforts were made to minimize the 

imposed delay to less than a ten percent flow reduction.  However, while this delay under 

conditions of low mainline traffic flow may not have been significant, it eventually increases 

exponentially under conditions of high mainline traffic flow. 

Using the equations and merging logic described in this report, the same analysis was 

performed to determine the average effective capacity for an AET system.  As was accomplished 

in the AHS analysis, the average effective capacity was calculated as an average mainline flow at 

or directly downstream from the merge area of the freeway.  This was obtained by finding the 

average flow for each maximum platoon size at increasing values of initial upstream mainline 

flow and preceding platoon sizes from one to the maximum value.  Finally, an overall average for 

each case was calculated, the results of which are tabulated in Table 4.  The values shown for the 

infinite platoon case were estimated based on the trend seen as maximum platoon size increased. 

Again, it was observed that increases in maximum platoon size provided diminishing 

 
TABLE 4.  Effective Capacity (AET), [vph]. 

  
Speed, [mph] 

  
45 65 75 90 100 

Pl
at

oo
n 

Si
ze

, [
ve

h]
 

1 1,926 2,823 2,916 3,621 3,975 
5 5,157 7,662 8,601 10,166 11,352 
10 6,973 10,375 11,470 13,775 15,442 
15 7,956 11,872 13,201 15,773 17,682 
20 8,579 12,777 14,230 17,025 19,125 
25 9,031 13,483 14,957 17,887 20,106 
∞ 10,800 16,200 18,000 21,600 24,300 
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returns, asymptotically approaching the infinite case.  It was also observed that increases in 

steady state speed provided improvements in a nearly linear fashion.  Furthermore, the results for 

effective capacity using the AET logic were lower than the results for optimal capacity, although 

not as significantly as seen in the AHS analysis.  This is due to the fact that the logic used in the 

AET merging algorithm fully utilizes the acceptable gaps in the mainline.  Also, entering vehicles 

were not permitted to impose delay on the mainline traffic stream. 

For a more clear understanding of the results seen in Tables 2 – 4, Figure 13 shows a 

graph of the results for optimal capacity, effective capacity using past AHS logic, and effective 

capacity using the AET logic presented in this report, all for the 75 mph case at each maximum 

platoon size (1, 5, 10, 15, 20, and 25).  The results clearly show that the merging logic outlined in 

this report for AET improve upon what has been achieved in the past, especially as maximum 

platoon size increases. 

While there remains a capacity loss using the AET logic, it is important to clarify that the 

capacity loss experienced using the AET logic is not the result of causing delay in the mainline. 

 

 
FIGURE 13.  Capacity Comparison. 
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Rather, it is attributed to unused capacity.  As the size of the gaps in the mainline varies 

stochastically, it is expected that not all gaps will be filled perfectly by merging vehicles or 

platoons.  Therefore, some capacity will be lost due to this unused space.  However, it is 

anticipated that this unused space, or this capacity loss, may be regained downstream by platoons 

re-assuming their optimum safe headway spacing.  Thus, slight forward-moving shock waves 

may be seen in mainline traffic flows between interchange locations.Further analysis of the 

results shown by this research provide some additional insight relating to the transition strategy 

for automated electric transportation.  The results shown for the low-speed scenarios provide 

information for policy makers and stakeholders in terms of the benefits that AET would provide 

in an urban setting.  Major arterials that currently operate at speeds near 45 mph would see instant 

benefits in terms of capacity due to the fact that even with platoons operating as all singletons, a 

single lane of arterial roadway is capable of handling capacities only seen on freeways today. 

The “All Singleton” scenario was chosen as an example for an urban setting due to the 

fact that arterial streets require more access points for entry and exit maneuvers than a limited-

access freeway.  Therefore, platooning may prove to be difficult, and if priority is always given to 

the major arterial as it was in the freeway scenario, it may also prove to be unfavorable in terms 

of entrance delay.  However, under automated control, in addition to keeping constant spacing 

parameters, vehicles would also have the ability to safely increase steady state travel speeds.  

Applying this to the urban setting, capacity would then increase by nearly 1,000 vph. 

For the freeway setting, the results of two scenarios can be compared to draw conclusions 

related to policy decisions concerning the operations of an AET freeway.  The first is the scenario 

at 65 mph with a maximum platoon size of 10 vehicles per platoon.  Referring to Table 4, the 

effective capacity under these conditions is just over 10,000 vph.  The second is the scenario at 90 

mph with a maximum platoon size of 5 vehicles per platoon.  Again referring to Table 4, the 

effective capacity under these conditions is similar – just over 10,000 vph.  Since the resulting 
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effective capacity is nearly the same, the difference between the two scenarios is the maximum 

platoon size and the steady state speed of the freeway. 

Much research has gone into the investigation of linear platoons of vehicles (61, 62).  It is 

recognized that as the number of vehicles in a platoon increases, string stability becomes more 

difficult to control.  The consequence is that when string stability is lost, oscillations in intra- and 

inter-platoon spacing will cause degradations in safety and efficiency, and is unacceptable for an 

automated system.  Therefore, in order to avoid this phenomenon yet still achieve freeway lane 

capacities above 10,000 vph, it may be wiser to set freeway operations at lower maximum 

platoon sizes, but increased steady state speeds.  
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CHAPTER 6 

SUMMARY AND CONCLUSION 

The importance of this work is propelled by the fact that after decades of use and deferred 

maintenance, the roadway infrastructure of this nation (in particular the interstate highway 

system) is in need of innovation.  Our mobility, safety, health, prosperity, and security depend on 

reimagining, rather than repairing, that infrastructure.  The subjects discussed in this thesis, 

including vehicle automation, energy transfer, and mobility, are becoming increasingly 

interdependent.  Therefore, reimagining this nation’s infrastructure has required looking at the big 

picture of how these different systems can work together to positively impact lives. 

Recognizing that interconnectedness, AET’s realization has the potential to revolutionize 

the way people move by providing unparalleled benefits to human health and safety, economic 

independence, and quality of life.  With human error and vehicle emissions contributing to the 

vast percentage of the number of annual deaths directly related to motor vehicles, significant 

impacts could be achieved through the synergy of motor vehicle automation and electrification.  

AET has the potential of alleviating and even resolving many of these issues, all while achieving 

increased mobility. 

Therefore, the underlying aim of this thesis was to provide a foundation upon which the 

technology surrounding AET may be further developed by evaluating the operational parameters 

where AET will be feasible from a transportation operations prospective.  The research conducted 

targeted the subjects of transitioning to an automated electric transportation system as well as 

quantifying the traffic flow impacts and lane capacity impacts concerning automated freeway 

lanes and on-ramps, with particular focus placed on the merging strategy at these locations.  It 

also touched on the continuing challenge of modeling automated and/or cooperative vehicle 

behavior in traffic micro-simulation software packages.  As a result, this thesis provides a robust 
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literature review to understand what has been achieved in past highway/vehicle automation 

efforts, and identifies areas of improvement. 

Central to this research was the formulation of an algorithm that improves upon past 

automated vehicle entrance logic by updating the limitations of headway spacing with respect to 

current electric vehicles compared to internal combustion engine vehicles, as well as maximizing 

mainline and ramp flows under automated control.  The expectation is that the work performed in 

this thesis will provide better understanding of the requirements and potential impacts this 

technology would have on a typical freeway interchange and provide useful information to 

transportation professionals attempting to perform analyses in related fields of research. 

Conclusion 

The information found in this thesis provides quantified measurements in automated lane 

capacities and traffic flows.  The analysis of the algorithm developed was compared to past work 

that has been done in similar areas.  It was shown in this research that the theories and logic 

presented indeed improve on past successes in terms of ramp capacity and effective capacity of 

the mainline freeway and was verified using Quadstone Paramics.  It was found that by using the 

logic outlined in this thesis, under the conditions of maximum platoon size set at 5 vehicles per 

platoon and steady state speeds set at 75 mph, lane capacities may be more than quadrupled to 

above 8,000 vph for automated vehicle lanes.  This is meaningful due to the fact that string 

stability has been proven for platoon sizes of 5 vehicles, and steady state highway speeds of 75 

mph are safely achievable along the majority of today’s freeways without alterations to geometric 

design. 

In addition, the strategies utilized in this research maximize automated mainline traffic 

flow, even at merging areas of the freeways, allowing actual traffic flows to approach maximum 
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capacity without imposing delay on mainline traffic streams.  This information may be useful in 

cost/benefit analyses for land use and the acquisition of right-of-way. 

One major hurdle that was overcome through this research was the lack of existing traffic 

simulation software packages to be sufficiently flexible to give accurate and reliable estimations 

of automated traffic flow, especially considering automated vehicle platooning and automated 

vehicle merging maneuvers at freeway on-ramps.  The work presented in this thesis, particularly 

the algorithm developed, thus has the potential to be integrated with available traffic simulation 

products such as Paramics (as was used in this research), VISSIM, etc.  Improved computer based 

simulation modeling techniques may prove to be a useful tool to help assess alternative automated 

entry and exit configurations and further identify optimal strategies to balance traffic management 

and safety concerns with automated vehicle control. 

Recommendations for Future Research 

A significant limitation in micro-simulation modeling was that vehicles could not 

communicate and move simultaneously, or cooperatively.  This hurdle was overcome by 

modifying the car following properties of the vehicles within the software and adjusting the 

length of the area of analysis in order to allow platoons to form.  However, if vehicles had the 

ability to move cooperatively within the software, many issues in the simulation analysis may be 

simplified greatly, and the amount of lane miles required for a simple model would be more 

accurate. 

Also, this research introduced an algorithm to overcome past limitations related to 

automated vehicle entry, but with one key assumption that may be critical to applying the results 

of this work on the network level.  That assumption is that platoons are formed in such a way that 

the vehicles that will exit from the platoon are always in the rear.  However, as destinations for 
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vehicles arriving at automated vehicle check-in locations will differ stochastically, a strategy for 

forming platoons optimally remains an area of significant importance. 

This optimal platoon configuration may likely be achieved by some strategy at the on-

ramps, however, in order to avoid unnecessary delays by forcing vehicles to wait for an optimal 

mainline platoon structure, it is anticipated that the analysis may have need to expand to include 

two lanes.  The first lane would be designated specifically for steady-state travel, and the second 

lane would be used for adjusting the platoon structure such that the optimal configuration is 

achieved by the time the platoon reaches the nearest desired exit of any vehicle in the platoon.  
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APPENDIX 

VISUAL BASIC COMPUTER CODE 

'Define Variables 

Public l As Integer ' Vehicle Length, [m] 

Public u As Integer ' Average Speed, [km/h] 

Public h As Integer ' Intra-Platoon Headway, [m] 

Public Hsafe As Integer ' Inter-Platoon Headway, [m] 

Public Nmax As Integer ' Maximum Platoon Size, [veh] 

Public nDemand As Integer ' Ramp Demand, [veh] 

Public Np As Integer ' Size of the Platoon Preceding the Gap, [veh] 

Public G As Integer ' Gap Size, [m] 

Public Q As Integer ' Mainline Flow, [veh/hr] 

Public i As Integer ' Counter for the Number of Platoons Analyzed for the Existing Gap, 

[platoons] 

Public n As Integer ' Counter for the Number of Vehicles, [veh] 

Public nEnter As Integer ' Number of Vehicles that can Fit into a Gap, [veh] 

Public nTotal As Integer ' Total Number of Vehicles that are Released for the Existing Gap, [veh] 

Public nJoin As Integer ' Number of Vehicles that Join the Rear of the Platoon Preceding the Gap, 

[veh] 

Public nFull As Integer ' Number of Full Platoons that are Released in the Existing Gap, 

Excluding the Platoon Preceding the Gap and the Last Platoon Analyzed, [veh] 

Public nLast As Integer ' Number of Vehicles that are Released in the Last Platoon Analyzed, 

Excluding the Platoon Preceding the Gap, [veh] 

Public Cleak As Integer ' Capacity Leak, or Excess Headway Existing After the Analysis, [m] 
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Public qRamp As Integer ' Ramp Flow, [veh/hr] 

 
Function AETEntry(Nmax, Np, Q) 

'Input Given Data 

        l = Range("D3").Value 

        u = Range("D4").Value 

        h = Range("D5").Value 

        Hsafe = Range("D6").Value 

        nDemand = Range("D8").Value 

'Initial Conditions 

        i = 1 

        nTotal = 0 

        G = Application.WorksheetFunction.RoundDown(((3600 * Np) / Q) * (u * (1000 / 3600)) - 

Np * (l + h) + h, 0) 

'Block 1 

        nEnter = Application.WorksheetFunction.RoundDown((G - Hsafe) / (l + h), 0) 

'Diamond 2 

    If nEnter > Nmax - Np Then 

            'Diamond 3 

            If Nmax - Np > nDemand Then 

                    'Block 4 

                    n = nDemand 

                Else 

                    'Block 5 

                    n = Nmax - Np 
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            End If 

        Else 

            'Diamond 6 

            If nEnter > nDemand Then 

                    'Block 4 

                    n = nDemand 

                Else 

                    'Block 7 

                    n = nEnter 

            End If 

    End If 

'Block 8 

    nJoin = n 

    nDemand = nDemand - n 

    nTotal = n 

    G = G - n * (l + h) 

'Diamond 9 

    While G >= 2 * Hsafe + l And nDemand > 0 

        'Block 10 

        nEnter = Application.WorksheetFunction.RoundDown((G - 2 * Hsafe + h) / (l + h), 0) 

        'Diamond 11 

        If nEnter > Nmax Then 

                'Diamond 12 

                If Nmax > nDemand Then 

                        'Block 13 
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                        n = nDemand 

                    Else 

                        'Block 14 

                        n = Nmax 

                End If 

            Else 

                'Diamond 15 

                If nEnter > nDemand Then 

                        'Block 13 

                        n = nDemand 

                    Else 

                        'Block 16 

                        n = nEnter 

                End If 

        End If 

'Block 17 

        G = G - Hsafe - n * (l + h) + h 

        nLast = n 

        nDemand = nDemand - n 

        nTotal = nTotal + n 

        i = i + 1 

    Wend 

'End (Diamond 18) 

    If i < 3 Then 

            'Block 19 
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            nFull = 0 

        Else 

            'Block 20 

            nFull = i - 2 

    End If 

'Block 21 

    Cleak = G - Hsafe 

'Block 22: Output 

'Return to Start 

    qRamp = nTotal * (Q / Np) 

    AETEntry = qRamp 

End Function 
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