64 research outputs found

    CoSMiC: A hierarchical cloudlet-based storage architecture for mobile clouds

    Get PDF
    Storage capacity is a constraint for current mobile devices. Mobile Cloud Computing (MCC) is developed to augment device capabilities, facilitating to mobile users store/access of a large dataset on the cloud through wireless networks. However, given the limitations of network bandwidth, latencies, and devices battery life, new solutions are needed to extend the usage of mobile devices. This paper presents a novel design and implementation of a hierarchical cloud storage system for mobile devices based on multiple I/O caching layers. The solution relies on Memcached as a cache system, preserving its powerful capacities such as performance, scalability, and quick and portable deployment. The solution targets to reduce the I/O latency of current mobile cloud solutions. The proposed solution consists of a user-level library and extended Memcached back-ends. The solution aims to be hierarchical by deploying Memcached-based I/O cache servers across all the I/O infrastructure datapath. Our experimental results demonstrate that CoSMiC can significantly reduce the round-trip latency in presence of low cache hit ratios compared with a 3G connection even when using a multi-level cache hierarchy

    Network Traffic Measurements, Applications to Internet Services and Security

    Get PDF
    The Internet has become along the years a pervasive network interconnecting billions of users and is now playing the role of collector for a multitude of tasks, ranging from professional activities to personal interactions. From a technical standpoint, novel architectures, e.g., cloud-based services and content delivery networks, innovative devices, e.g., smartphones and connected wearables, and security threats, e.g., DDoS attacks, are posing new challenges in understanding network dynamics. In such complex scenario, network measurements play a central role to guide traffic management, improve network design, and evaluate application requirements. In addition, increasing importance is devoted to the quality of experience provided to final users, which requires thorough investigations on both the transport network and the design of Internet services. In this thesis, we stress the importance of users’ centrality by focusing on the traffic they exchange with the network. To do so, we design methodologies complementing passive and active measurements, as well as post-processing techniques belonging to the machine learning and statistics domains. Traffic exchanged by Internet users can be classified in three macro-groups: (i) Outbound, produced by users’ devices and pushed to the network; (ii) unsolicited, part of malicious attacks threatening users’ security; and (iii) inbound, directed to users’ devices and retrieved from remote servers. For each of the above categories, we address specific research topics consisting in the benchmarking of personal cloud storage services, the automatic identification of Internet threats, and the assessment of quality of experience in the Web domain, respectively. Results comprise several contributions in the scope of each research topic. In short, they shed light on (i) the interplay among design choices of cloud storage services, which severely impact the performance provided to end users; (ii) the feasibility of designing a general purpose classifier to detect malicious attacks, without chasing threat specificities; and (iii) the relevance of appropriate means to evaluate the perceived quality of Web pages delivery, strengthening the need of users’ feedbacks for a factual assessment

    Estudo do IPFS como protocolo de distribuição de conteúdos em redes veiculares

    Get PDF
    Over the last few years, vehicular ad-hoc networks (VANETs) have been the focus of great progress due to the interest in autonomous vehicles and in distributing content not only between vehicles, but also to the Cloud. Performing a download/upload to/from a vehicle typically requires the existence of a cellular connection, but the costs associated with mobile data transfers in hundreds or thousands of vehicles quickly become prohibitive. A VANET allows the costs to be several orders of magnitude lower - while keeping the same large volumes of data - because it is strongly based in the communication between vehicles (nodes of the network) and the infrastructure. The InterPlanetary File System (IPFS) is a protocol for storing and distributing content, where information is addressed by its content, instead of its location. It was created in 2014 and it seeks to connect all computing devices with the same system of files, comparable to a BitTorrent swarm exchanging Git objects. It has been tested and deployed in wired networks, but never in an environment where nodes have intermittent connectivity, such as a VANET. This work focuses on understanding IPFS, how/if it can be applied to the vehicular network context, and comparing it with other content distribution protocols. In this dissertation, IPFS has been tested in a small and controlled network to understand its working applicability to VANETs. Issues such as neighbor discoverability times and poor hashing performance have been addressed. To compare IPFS with other protocols (such as Veniam’s proprietary solution or BitTorrent) in a relevant way and in a large scale, an emulation platform was created. The tests in this emulator were performed in different times of the day, with a variable number of files and file sizes. Emulated results show that IPFS is on par with Veniam’s custom V2V protocol built specifically for V2V, and greatly outperforms BitTorrent regarding neighbor discoverability and data transfers. An analysis of IPFS’ performance in a real scenario was also conducted, using a subset of STCP’s vehicular network in Oporto, with the support of Veniam. Results from these tests show that IPFS can be used as a content dissemination protocol, showing it is up to the challenge provided by a constantly changing network topology, and achieving throughputs up to 2.8 MB/s, values similar or in some cases even better than Veniam’s proprietary solution.Nos últimos anos, as redes veiculares (VANETs) têm sido o foco de grandes avanços devido ao interesse em veículos autónomos e em distribuir conteúdos, não só entre veículos mas também para a "nuvem" (Cloud). Tipicamente, fazer um download/upload de/para um veículo exige a utilização de uma ligação celular (SIM), mas os custos associados a fazer transferências com dados móveis em centenas ou milhares de veículos rapidamente se tornam proibitivos. Uma VANET permite que estes custos sejam consideravelmente inferiores - mantendo o mesmo volume de dados - pois é fortemente baseada na comunicação entre veículos (nós da rede) e a infraestrutura. O InterPlanetary File System (IPFS - "sistema de ficheiros interplanetário") é um protocolo de armazenamento e distribuição de conteúdos, onde a informação é endereçada pelo conteúdo, em vez da sua localização. Foi criado em 2014 e tem como objetivo ligar todos os dispositivos de computação num só sistema de ficheiros, comparável a um swarm BitTorrent a trocar objetos Git. Já foi testado e usado em redes com fios, mas nunca num ambiente onde os nós têm conetividade intermitente, tal como numa VANET. Este trabalho tem como foco perceber o IPFS, como/se pode ser aplicado ao contexto de rede veicular e compará-lo a outros protocolos de distribuição de conteúdos. Numa primeira fase o IPFS foi testado numa pequena rede controlada, de forma a perceber a sua aplicabilidade às VANETs, e resolver os seus primeiros problemas como os tempos elevados de descoberta de vizinhos e o fraco desempenho de hashing. De modo a poder comparar o IPFS com outros protocolos (tais como a solução proprietária da Veniam ou o BitTorrent) de forma relevante e em grande escala, foi criada uma plataforma de emulação. Os testes neste emulador foram efetuados usando registos de mobilidade e conetividade veicular de alturas diferentes de um dia, com um número variável de ficheiros e tamanhos de ficheiros. Os resultados destes testes mostram que o IPFS está a par do protocolo V2V da Veniam (desenvolvido especificamente para V2V e VANETs), e que o IPFS é significativamente melhor que o BitTorrent no que toca ao tempo de descoberta de vizinhos e transferência de informação. Uma análise do desempenho do IPFS em cenário real também foi efetuada, usando um pequeno conjunto de nós da rede veicular da STCP no Porto, com o apoio da Veniam. Os resultados destes testes demonstram que o IPFS pode ser usado como protocolo de disseminação de conteúdos numa VANET, mostrando-se adequado a uma topologia constantemente sob alteração, e alcançando débitos até 2.8 MB/s, valores parecidos ou nalguns casos superiores aos do protocolo proprietário da Veniam.Mestrado em Engenharia de Computadores e Telemátic

    Distributed services across the network from edge to core

    Get PDF
    The current internet architecture is evolving from a simple carrier of bits to a platform able to provide multiple complex services running across the entire Network Service Provider (NSP) infrastructure. This calls for increased flexibility in resource management and allocation to provide dedicated, on-demand network services, leveraging a distributed infrastructure consisting of heterogeneous devices. More specifically, NSPs rely on a plethora of low-cost Customer Premise Equipment (CPE), as well as more powerful appliances at the edge of the network and in dedicated data-centers. Currently a great research effort is spent to provide this flexibility through Fog computing, Network Functions Virtualization (NFV), and data plane programmability. Fog computing or Edge computing extends the compute and storage capabilities to the edge of the network, closer to the rapidly growing number of connected devices and applications that consume cloud services and generate massive amounts of data. A complementary technology is NFV, a network architecture concept targeting the execution of software Network Functions (NFs) in isolated Virtual Machines (VMs), potentially sharing a pool of general-purpose hosts, rather than running on dedicated hardware (i.e., appliances). Such a solution enables virtual network appliances (i.e., VMs executing network functions) to be provisioned, allocated a different amount of resources, and possibly moved across data centers in little time, which is key in ensuring that the network can keep up with the flexibility in the provisioning and deployment of virtual hosts in today’s virtualized data centers. Moreover, recent advances in networking hardware have introduced new programmable network devices that can efficiently execute complex operations at line rate. As a result, NFs can be (partially or entirely) folded into the network, speeding up the execution of distributed services. The work described in this Ph.D. thesis aims at showing how various network services can be deployed throughout the NSP infrastructure, accommodating to the different hardware capabilities of various appliances, by applying and extending the above-mentioned solutions. First, we consider a data center environment and the deployment of (virtualized) NFs. In this scenario, we introduce a novel methodology for the modelization of different NFs aimed at estimating their performance on different execution platforms. Moreover, we propose to extend the traditional NFV deployment outside of the data center to leverage the entire NSP infrastructure. This can be achieved by integrating native NFs, commonly available in low-cost CPEs, with an existing NFV framework. This facilitates the provision of services that require NFs close to the end user (e.g., IPsec terminator). On the other hand, resource-hungry virtualized NFs are run in the NSP data center, where they can take advantage of the superior computing and storage capabilities. As an application, we also present a novel technique to deploy a distributed service, specifically a web filter, to leverage both the low latency of a CPE and the computational power of a data center. We then show that also the core network, today dedicated solely to packet routing, can be exploited to provide useful services. In particular, we propose a novel method to provide distributed network services in core network devices by means of task distribution and a seamless coordination among the peers involved. The aim is to transform existing network nodes (e.g., routers, switches, access points) into a highly distributed data acquisition and processing platform, which will significantly reduce the storage requirements at the Network Operations Center and the packet duplication overhead. Finally, we propose to use new programmable network devices in data center networks to provide much needed services to distributed applications. By offloading part of the computation directly to the networking hardware, we show that it is possible to reduce both the network traffic and the overall job completion time

    YOLO: Accélération du temps de démarrage de la machine virtuelleen réduisant les opérations d’I/O

    Get PDF
    Several works have shown that the time to boot one virtual machine (VM) can last up to a fewminutes in high consolidated cloud scenarios. This time is critical as VM boot duration defines how anapplication can react w.r.t. demands’ fluctuations (horizontal elasticity). To limit as much as possible thetime to boot a VM, we design the YOLO mechanism (You Only Load Once). YOLO optimizes the numberof I/O operations generated during a VM boot process by relying on the boot image abstraction, a subsetof the VM image (VMI) that contains data blocks necessary to complete the boot operation. Whenevera VM is booted, YOLO intercepts all read accesses and serves them directly from the boot image, whichhas been locally stored on fast access storage devices (e.g., memory, SSD, etc.). Creating boot imagesfor 900+ VMIs from Google Cloud shows that only 40 GB is needed to store all the mandatory data.Experiments show that YOLO can speed up VM boot duration 2-13 times under different resourcescontention with a negligible overhead on the I/O path. Finally, we underline that although YOLO hasbeen validated with a KVM environment, it does not require any modification on the hypervisor, theguest kernel nor the VM image (VMI) structure and can be used for several kinds of VMIs (in this study,Linux and Windows VMIs have been tested)Plusieurs travaux ont montré que le temps de démarrage d’une machine virtuelle (VM)peut s’étale sur plusieurs minutes dans des scénarios fortement consolidés. Ce délai est critique car ladurée de démarrage d’une VM définit la réactivité d’une application en fonction des fluctuations decharge (élasticité horizontale). Pour limiter au maximum le temps de démarrage d’une VM, nous avonsconçu le mécanisme YOLO (You Only Load Once). YOLO optimise le nombre d’opérations “disque”générées pendant le processus de démarrage. Pour ce faire, il s’appuie sur une nouvelle abstractionintitulée “image de démarrage” et correspondant à un sous-ensemble des données de l’image de la VM.Chaque fois qu’une machine virtuelle est démarrée, YOLO intercepte l’ensemble des accès en lectureafin de les satisfaire directement à partir de l’image de démarrage, qui a été stockée préalablement surdes périphériques de stockage à accès rapide (par exemple, mémoire, SSD, etc.). La création d’imagede démarrage pour les 900 types des VMs proposées sur l’infrastructure Cloud de Google représenteseulement 40 Go, ce qui est une quantité de données qui peut tout à fait être stockée sur chacundes noeuds de calculs. Les expériences réalisées montrent que YOLO permet accélérer la durée dedémarrage d’un facteur allant de 2 à 13 selon les différents scénarios de consolidation. Nous soulignonsque bien que YOLO ait été validé avec un environnement KVM, il ne nécessite aucune modificatfionsur l’hyperviseur, le noyau invité ou la structure d’image de la VM et peut donc être utilisé pourplusieurs types d’images (dans cette étude, nous testons des images Linux et Windows)

    Proceedings of the 12th International Conference on Digital Preservation

    Get PDF
    The 12th International Conference on Digital Preservation (iPRES) was held on November 2-6, 2015 in Chapel Hill, North Carolina, USA. There were 327 delegates from 22 countries. The program included 12 long papers, 15 short papers, 33 posters, 3 demos, 6 workshops, 3 tutorials and 5 panels, as well as several interactive sessions and a Digital Preservation Showcase

    Proceedings of the 12th International Conference on Digital Preservation

    Get PDF
    The 12th International Conference on Digital Preservation (iPRES) was held on November 2-6, 2015 in Chapel Hill, North Carolina, USA. There were 327 delegates from 22 countries. The program included 12 long papers, 15 short papers, 33 posters, 3 demos, 6 workshops, 3 tutorials and 5 panels, as well as several interactive sessions and a Digital Preservation Showcase

    Matching distributed file systems with application workloads

    Get PDF
    Modern storage systems have a large number of configurable parameters, distributed over many layers of abstraction. The number of combinations of these parameters, that can be altered to create an instance of such a system, is enormous. In practise, many of these parameters are never altered; instead default values, intended to support generic workloads and access patterns, are used. As systems become larger and evolve to support different workloads, the appropriateness of using default parameters in this way comes into question. This thesis examines the implications of changing some of these parameters and explores the effects these changes have on performance. As part of that work multiple contributions have been made, including the creation of a structured method to create and evaluate different storage configurations, choosing appropriate access sizes for the evaluation, picking representative cloud workloads and capturing storage traces for further analysis, extraction of the workload storage characteristics, creating logical partitions of the distributed file system used for the optimization, the creation of heterogeneous storage pools within the homogeneous system and the mapping and evaluation of the chosen workloads to the examined configurations
    • …
    corecore